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Abstract- Prol'l'Ssional video editing tools can generate slow
motion video by intcrpolating frames from video recorded at a 
standard framc rate. Thcrcby thc pcrccptual quality of such in
terpolated slow-motion videos strongly depends on the w1derlying 
inteq >0lat ion tcchniques. We built a novcl bcnchmark databa ~e 

Chat is specifically taUored for lnterpolated slow-motion vldeos 
(KoSMo-l k). lt consists of 1,350 interpolated video sequences, 
from 30 different contcnt sources, along \\ith their subjective 
quality ratings from up to ten subjective comparisons per video 
pair. Morcover, we cvaluated thc pcr fonnancc of twelve exist
ing full -rcfcrcnce (FR) imagc/video quality assessment (JNQA) 
methods on the bcnchmark. In this way, we are able to show that 
spccifically tailorcd quality a ~ess ment metbods for intertwlated 
slow-motion vidcos are needed, since the evaluated methods -
despite their good pcrfor mance on real-time video databases - do 
not gi\'c satisfying results when it comes to frame ioterpolatioo. 

flldex Terms-visual quality asscssmcnt, slow motion, optical 
ßow, frame intertwlatlon 

1. I NTROOUCTION 

Slow-motion videos have become popular in recent years. 
Howcvcr, not all cameras support the required frame rates 
at high resolutions. Video edi ting software, including pro

fessiona l oncs such as "Adobe Premiere Pro CC"TM, pro
vide mcthods to gcncratc slow-motion videos by synthe
sizing frames, starting from standard frarne-rates. Thereby, 
the quality of the generated videos depends on the applied 
interpolation techniques which typically fill-in image content 

along thc path of motion. The required motion field in the form 
of the so-callcd optical fl ow can be derived in several ways. 
Widely used approaches includc block matching methods [1], 

frequency-based techniques [2], variational methods [3], and 

convolutional neural networks [4]. 
Computation of optical llow is a research topic on its own, 

and there are several bcnchmark datasets to evaluate and 
rank competing algorithms. Only one of these benchmarks 
also allows comparing the quality of interpolated frames: 

the Middlebury benchmark [5]. In this benchmark, the per
fonnance of motion e:.timatiun is evaluated by angular and 
endpoint errors between the estimated ftow and its ground
truth. Besides. it also provides a simple objective evaluation of 

the corresponding motion-compensated interpolalion results, 
given by thc root mcan squarcd error (RMSE) and the gradient 
normalized RMSE between the interpolated frame and the 
ground-truth one. However, since the Middelebury benchmark 
primarily aims at evaluating optical ftow methods, it falls short 

regarding two aspectS when it comes to frame interpolation. 
First, it only offers a small number of image triplets for 
interpolation, each consisting of a frame pair and the in

berween ground-truth. Second, it uses objective RMSE mecrics 
for evaluation that are known to be perceptually inaccurate 
[6]. For frame interpolation. this was confim1ed by subjective 
stud ies on the Middlebury interpolation benchmark in [7] 
and [81. Thus. simple objective measures are insufficient 
for evaluating interpolated frarnes. and this problem may be 

even more prevalent for interpolated video sequences. Due 
10 th e temporal variations contained in a video, inspecting a 
video rather than observing its constituent frames can result 
in different perceptual quality scores. Hence, we propose a 
benchmark speci fically for interpolated s low-motion videos 
alorng with corresponding subjective quality scores. We also 
considcr suitable objective evaluation metrics for comparison. 

We providc 30 vidcos at 120 frames per second (FPS) using 
a high-speed camera. The whole set of videos is diverse in both 
content and motion types. For each original (pristine) video, 
we generate several slow-motion versions by interpolating sub
samplcd frames. For this purpose, we use the same interpo

lation techniquc as adopted in the Middlebury benchmark [9) 
using ten optical fl ow mcthods. Playing the interpolated videos 
at 30 FPS makes them four times slower than their original 
speed. In total , our database contains 1,350 slow-motion video 
versions generated from the 30 source videos. 

L ab studics for subjcctivc quality asscssmcnt arc wcll cs

tabl ished and considercd as a rcliable methodology. However, 
the number of videos that can be assessed in the lab is limited 
duc to the required time and cost. As an alternative, crowd

sourcing studies are less expensive. and sufficiently reliable if 
the results are propcrly post-processed by removing outliers 
[ IOJ. Therefore, we collect subjective scores for the slow
motion videos by crowdsourcing. lnstead of using an absolute 
category ratings (ACR) scale, which is adopted by most of 

the video quality assessment (VQA) dalabases, we perfonn 
paired comparisons (PC) since it is a highly discriminating 
evaluation procedure. Moreover, instead of naively comparing 
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TABLE 1 
VQA DATABASES 

Database Year # SRC* # DSTt FPS Method 
EPFL-PoliMI [ 15] 2009 12 144 25/30 ACR 
LIVE [16] 2010 10 150 25150 ACR 
IVP [1 7] 2011 10 128 25 ACR 
CSIQ 1181 2014 12 216 24-60 ACR 
CVD2014 [19] 2014 234 10-31 ACR 
MCL-V (20] 2015 12 96 24-30 PC 
NFLX [21 ] 2016 9 70 24-30 ACR 
KoNViD- lk ( 13] 2017 1.200 30/60 ACR 
FlickrVid-150k [ 14] 2019 153,84 1 24-120 ACR 
KoSMo- lk [OursJ 2020 30 l,350 120· PC 

* source video 
t distoncd video 
• 120 FPS in real-time. and 30 FPS for playback. 

the full set of video pairs, we use a hybrid active sampling 
procedure [ 1 1], which fu1ther improves the efficiency of our 
quality assessment. 

For a slow-motion video benchmark, obtaining subjeclive 
ratings for each submitted video is not practical ; thus, an ob
jeclive quality assessment method is needed. Since the ground
truth videos are available, we consider four full-reference (FR) 
VQA and eight FR image quality assessment (IQA) methods. 

Our contributions can be summarized as follows: 

L) We create a VQA database, KoSMo- l k, consisting of l,350 
slow-motion videos generated by ten optical ftow methods. 

2) We provide subjective ratings for the slow-motion videos 
obtained via paired comparison with active sampling. In 
total, 18,626 subjective ratings were collected. 

3) We evaluate the pe1formance of twelve l/VQA methods on 
the generated slow-motion videos, accordingly. 

4) T he dataset with ratings is provided in [12]. 

II . R ELATED WORK 

Several VQA databases are available, see Table L The sizes 
of these databases range from 70 to 153,841 videos. Most of 
these databases contain videos degraded by artificially gener
ating distortions, in particular, compression artifacts or trans
mission distortions. Videos in KoNViD-lk [13] and FlickrVid-
150k (14] were collected and sampled from authentic videos 
of different quali ties. All of these databases contain only real
time videos. None of them provides slow-motion videos or 
distorted videos generated by frame interpolation. Regarding 
subjective quality scores, except for MCL-V, which adopted 
PC to derive subjective scores, all other databases !ist mean 
opinion scores fro m ACR. 

Regarding the evalualion of the interpolation quality, both 
the Middlebury benchmark and the other datasets adopt stan
dard metrics (e.g„ MSE, PSNR, and SSIM [6]) to measure 
the differences between the interpolated image and the ground
truth in-between one. However, these metrics have been judged 
tobe insufficient for evaluating interpolated fra mes by subjec
tive studies on the Middlebury benchmark [7] [8). 

Hybrid-MST [ 11] is a hybrid active sampling method aim
ing at aggregating scale values from a sparse PC test. After 
the initial round of a PC test which is randomly sampled, 

Flg. l . Example frames from the videos in the database, soned ac
cord ing to ascending bitrates. From the upper le ft to the lower right: 
482 kbps, 598 kbps, 790 kbps, 2. 14 Mbps, 2.74 Mbps, 4.01Mbps.4. 12 Mbps, 
4.74 Mbps. 5. 19 Mbps and 6.50 Mbps. 

it actively selects the pairs for the next round based on the 
expected information gain (EJG) from the previous round. 
T he pairs for the next round are indicated by the edges of 
the minimum spanning tree, the nodes of which are given by 
the videos and the edges are weighted by the inverses of the 
corresponding EIGs. This sampling procedure iterates until the 
cost reaches the test budget. 

III. SLOW MOTION SOURCE VIDEOS 

A. General Information 

Our 30 source videos were captured using a GoPro HER07 
camera at 120 FPS in MPEG-4 format (encoded with the 
H.265 codec). T he bitrates of these source videos vary from 
30 Mbps to 60 Mbps. In order to allow for subjective com
pari son of two slow-motion videos side-by-side, we manu
ally scaled the videos from HD resolution of 1920 x 1440 
to roughly half the size and cropped them to 480 x 540 
pixels, according to content, see Fig. 3. Furthermore, since 
the interpolated videos are played four times slower than their 
original speed, i.e„ at 30 FPS, we cut the videos into 2-second 
segments such that the slow-motion videos are 8 seconds long. 
T he recommended video duration for subjective studies is 8-
10 seconds (22). T he processed videos were stored in MPEG-4 
fo1111at, encoded using the H.264 codec. 

B. Video Diversity 

The source videos in our database are diverse in respect of 
content and motion types. 

l) Content Diversity: The source videos include Standard 
scenes such as those depicting traffic, birds, landscapes, but 
also scenes designed to be more challenging for optical ftow 
melhods. lt may be more difficult to compute ftow fields 
for waves, clouds, sand, sparkling water (see Fig. 1). The 
dynamics of such scenes go beyond the usual assumption of 

"objects againsl a background". 
2) Motion Diversity: The source videos are diverse in 

motion types as weil. As shown in Table II, we classified 
the motion types into two main classes. One is object motion, 

meaning that the camera is relatively fixed, while the object 

is moving. In this class, the videos can be further grouped 
into lhree sub-classes: (i) normal speed (objects in the scene 
are moving at normal speed), (ii) fast speed (objects in the 



TABLE fl 
MOTION TYPES OF SOURCE VIDEOS IN THE D ATABASE 

Mocion l)'pes of Source Videos # Videos 
'onnal Speed 6 

Objec1 Mocion fa<;I Speed 5 

Special 5 
Zooming --1--,3 

P:lnning 3 
Camcra Mo1ion 1ihing 2 

4 

3 
Dolly 
Tnicking 

TABLE III 
St.OW· MOTION VIDEOS WITH I NTERPOLATED VERSIONS 

Up ro· l ln1erp.7 lnierp.15 lmerp.31 lnterp.63 
# Sourcc Video' 7 9 6 8 
# Slow-modon vidcO' per <0urce 30 40 50 60 
# Slow·motion video< in lotnl 210 360 300 480 

• M;1ximu111 numbcr or friuncs interpolatcd for a source video. For example. lnterp.3 1 

indicatcs thm from each M>Urce video ~low · motion versions with 1. 3. 7. 15. and 3 1 
in1erpola1cd fr.:uuc' be1ween corres1>0nding reference fmmes are i11cluded. 

scene are moving rast, namcly with large displacementS, such 
as Oying seagulls and fast-moving vehicles), and (iii) specia/ 

co11te11t (thc sccnc conlains special conlents, e.g., clouds, 
sparkling watcr). Thc other main class is camera motion, 

which can also be further subdivided according to the motion 
types (23]: :ooming, pa1111i11g, 1i/1i11g, dolly and trucking. 

IV. SLOW-MOTION VIDEO GENERATIO 

Before designing the interpolation strategy for generat
ing slow-motion video , we checked the quality differences 
between 1-frames (which are stored completely) and other 
frames. i.e., non-1-frames (which are predicted from 1-frames) 
by visually in pecting all of the frames as weil as using the 
state-of-the-an no-reference VQA method CORNIA (24] to 
predict their quality scores. Both of these ways confirmed that 
there is no significant quality difference between 1-frames and 
non-1-frames, Lhus the rcfcrcnce frames for the interpolation 
can be frccly choscn. 

We produced slow-motion videos from the source videos 
by applying ten optical ftow methods with the parameters 
recommended by the corresponding implementations, each 
fo llowed by frame interpolation from the corresponding optical 
Aow Acid, using thc i11tcrpolalio11 method that had also been 
applicd in thc Middlcbury benchmark, with code from [9]. 
Sec Tablc V for thc pcrcentile rankings of the corresponding 
performances in the Middlebury benchmark. We interpolated 
1. 3. 7. 15, 31, and 63 frames between every other. 4th, 
8th. 16th. 32nd, and 64th framc (sec Fig. 2), rcsulting in 6 
versions of slow-motion videos, denoted as l 111erp-l , lnterp-3, 

/merp-7, /merp-15, /111erp-3 I, and /111erp-63). However, for 
some of the source vidcos, intcrpolaling too many frames 
resulted in slow-motion vidcos that are severely degraded. 
Therefore, aftcr visual inspection, we discarded the ones that 
are obviously unacceptable for viewing. This way we obtained 
1.350 interpolated slow-motion videos for our database, see 
Table 11 1. We treated the slow-motion videos generated from 
the same source video as onc sct. Overall lhere are 30 sels, 
each with a number of slow-motion videos according to the 
maximum number of frames to be interpolated. 

Soo~vldoo 

(llOfps) 

SoW'<e video 111111111111111111111111111111 l II 
(lOfl>s) 

Slo..,'-motl<>n Vkl- G•n•rtt<d by Optk.al flo•" 
lnterp. 1 fmnc· 1 

ln1'."1p. 3 framcs: 1 

lntcrp. 7 Ü'1llncl: 1 

1 

1 

1 

Fig. 2. J n1erpola1ion Stracegy. 

1# Pairs 
# Judgemenc• per 11air 
# Collcc1cd Judgcmcn1s 
# Reliable Judgcmcnc~ 

TABLE IV 

Round 1 
3.7 17 

2 

# Rcffable Judgcmc1m in 1oml 

Round 2-7 

16.2 18 
15,052 

4.392 
2 

18.626 

1 

1 

Round 8 
1.036 

4 

4,144 
3.574 

V. SUBJECTIVE STUOY OF SLOW-MOTION VIDEOS 

A. S111dy Design 

In order to cale the videos in each of the 30 sets according 
to visual quality. we collected paired comparisons (Fig. 3) 
using the Amazon Mechanical Turk (AMT) (25) platform. We 
applied the active sampling s1ra1egy (ASPC) 10 each of the 
sets in eight rounds, to avoid having to compare each video 
in a set to all the others. In the first round of ASPC, we 
randomly sampled pairs by choosing the edges of a random 
sparse graph with nodes corresponding to videos and a vertex 
degree of 6. Thus, each video is randomly compared (twice) 
10 6 other videos of the samc sct. For all sets together, this 
resulted in 3,7 17 pairs with 7,434 forced choices, see Table IV. 
ln rounds 2 to 7, wc applied the minimal spanning tree strategy 
of ASPC, again collecting two votes per pair. Then, we filtered 
outliers and re-collected the rati ngs for the removed pairs in 
the 8lh round (4 votes for each pair). For all 8 rounds of 
ASPC, 8, 109 pairs of vidcos were compared in total. After 
removing thc outlicrs also for this last round, 18,626 reliable 
subjcctivc ratings rcmaincd. 

r.upeu N '*' Of -ChOOlt' „ video'* 
,,...„„~ 

Wlllch V<leo hM a belter qual1ty? 

Fig. 3. ln1erfoce of crowd..ourcing expcriment. By clicki~g lhe play buuon, 
a pair of videos will bc pluyed ;im~han~ously. Turkers (1.e.: crowd_ workers 
work.ing via AMT) wcrc askcd 10 1den11fy :md sclecl lhe video w11h bener 
quali1y for each video pair (forced binary choice). They can playback lhe pair 
of videos scverul times as 1hcy wam. 



TABLE V 
P ERCENTILE R AN KINGS OF ÜPTI CAL FLOW M ETHODS 

Op1icol Flow M elhod (Abbre•'.) Middlebury SwdyMB 2.0 KoSMo-lk 

Clas.,ic+NL (ClauicNL) 1261 
OAR-Flow (OAR) [271 
Black & Anandan (BA) 128] 129] 
BcyondPixlc.> (ßeyomf) [30] 
Dual-TVLI (Dua/7VLI) [3 IJ 
FFVIMT [321 
LKpyrmnid (LK) [331 
20-CLG (CLG) (34] (35] 
Brox e1 al. (8rox) [36] [37] 
Horn & Schunck (HS) [38] 

[5] f81 
45% 2 1% 

48% 

6% 
2% 

38% 
75% 
9% 

26% 

24% 
6% 

42% 
88% 
13% 

" - " deno1es 1he mclhod is nol cxis1ing in 1hc bcnchmark. 

B. Quality Assurance 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 

Quality control consisted of a session of thorough instruc
tions at the beginning of the crowdsourcing tasks and later on 
of a step that fi lters outlier votes followed by their replacement 
by a renewed collection of PCs. During the outlier removal , 
individual votes were removed, based on the disagreement 
with the currently reconstructed score values of the presented 
stimuli. A vote of a crowd worker was regarded as an outlier 
if the worker assigned a lower score to the video with 
better quali ty and the scores of the two Stimuli in the paired 
comparison differed by at least 0.2, which is approximatly one 
third of the range of the quality scale. 

C. Result 

Based on Thurstone's Case V model [39] with maximum 
likelihood estimation (code provided by [11]), absolute quality 
scale values for each slow-motion video were reconstructed 
using the judgments collected. In our study, there is no cross
content comparison, so the reconstructions in the 30 sets are 
independent of each other. To align the scores in all sets 
together, we introduced two virtual anchors per set. One stands 
for a slow-motion video of the worst quality among all, and 
the other is like the ground-truth, i.e„ its quality is the best 
overall. After the reconstruction of the scores for each of the 
augmented sets, we linearly re-scaled the scale values to the 
interval [O, 1], so that the scale values of the two anchors 
became 0 and 1.1 

From thcsc scalc valucs wc then oomputcd an avcragc 
quality for each optical flow method interpolating a certain 
11umber of frames (denoted as method-number2

) . Thereby the 
average was taken over all such interpolated sequences in 
all 30 sets. Fig. 4 shows these qualities depending on the 
number of interpolated frames for the ten considered optical 
flow methods. The best three performances are DualTVLl-

1, C/assicNL-1, and C/assicNL-3; see lnterp-1 and lnterp-3. 
Fig. 5 shows the qualities depending on motion types. lt can be 
seen that some methods performed especially weil for camera 

motion (e.g„ OAR and CLG), while some failed for most of 
the motion types (e.g„ HS and LK). 

Moreover, Table V lists the overall performance, yielded 
by taking the average over 30 videos of the considered optical 

1 All recons1noc1e<l quali1y values, accompanied by their corresponcling 
rankings will bc shown in iables on our websi1e. 

2E.g„ CLG-3 denotes "optical flow method CLG imerpolmes 3 frames''. 

-+-BA 
Beyond 

- e rox 
-+CLG 
~ c1ass i cNL 

OAR 
+ ouaJTVLl 

lnterp.3 lnterp-7 lnterp.15 lnterp·31 lnterp..63 

F ig. 4. Average scores ovcr 30 vicleos. 
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BA 
Beyond 

6'0• 
CLG 
ClasslcNL 
OAR 
0uan'VL1 
FFVl MT 

HS 
LK 

Fig. 5. Scores average<l over all in1erpola1ed videos of each molion type. 

methods for KoSMo- 1 k. Additionally, interpolation results for 
the Middlebury benchmark and the StudyMB 2.0 are listed. 
While the Middlebury results rely on the root-mean-square 
error, the StudyMB 2.0 uses the perceptual quality of interpo
lated single frames. One can observe notable differences in the 
rankings when comparing lhe three cases. For instance, Brox 

ranked best for both Middlebury and the StudyMB 2.0, and 
only ninth for KoSMo-1 k. In contrast, ClassicNL performed 
best on average in KoSMo- 1 k, but gave rather inferior results 
for Middlebury and the StudyMB 2.0. 

D. Discussion 

As shown in Fig. 4, for two optical flow methods, the perfor
mance of interpolating three frames is better than interpolating 
a si ngle frame (Beyond and OAR). While this appears to be 
counter-intuitive at first glance, it may be explained by the 
generally smoother interpolation results of those methods -
which can be attributed to the recommended parameter settings 
in the corresponding implementations. Smoother interpolation 
results, in turn, may lead to slight flickering if altemated with 
the somewhat sharper reference frames. Not surprisingly, this 
effect is less pronounced, if more frames are interpolated. 

In Fig. 4, there is a clear difference between two groups of 
methods: 1. the upper bundle, consisting of six methods that 
are generally better performing BA , Beyond, ClassicNL, OAR, 

DualTVLI, and FFVIMT; 2. the lower bundle, consisting 
of the other four methods that perform worse on ave.rage 
especially in the mid-range interpolation scenarios (lnterp-
3 to lnterp-31 ), Brox, CLG, HS, and LK. The reason for 
the poor performance of HS and LK is that those classical 
methods, which have been proposed almost 40 years ago, are 
based on simpler assumptions that have an impact on both 
the accuracy and the robustness of the estimation. Regarding 



TAßLE VI 
SROCC OF FR-l/VQA METHODS ON DIFFERENT DATASETS 

FR-VQA' VQEG (40] NFLX [21) LIVE (VQA) [16) KoSMo-lk 
MOVIE [4 lf 0.858 0.427 
ST-MAD (42) 0.824 0.443 
ViS3 (43) 0.816 0.450 
VMAF [44] 0.940 0.515 

FR-IQAt LIVE (IQA) 145] StudyMB 2.0 181 KoSMo-lk 
MAD [46) 0.944 062 1 0.365 
PSNR [47] 0.876 0682 0.409 
GMSD (47) 0.960 0.663 0.469 
VSI (48] 0.952 0.658 0.472 
FSIM 149] 0.963 0.660 0.476 
VIF (50] 0.964 0.422 0.476 
MS-SSIM (51) 0.952 0664 0.478 
SSIM [6] 0.948 0670 0.482 
* For FR-VQA: SROCC for all dawsets but KoSMo-lk were taken from 

their references shown in the first column. 
t For FR-IQA: SROCC for LJVE-IQA were taken from their references 

shown in the first column; resulis for StudyMB 2.0 were taken from 18]. 

the other two melhods in the lower bundle, Brox and CLG, 

we found thal for the videos with large displacements, where 

most of the other methods had problems, they were able to 
achieve visually acceptable results. However, for the videos 
with normal motion, they performed much worse than other 
methods. Also, this could be an effect of the recommended 

default Settings of the corresponding implementations. 

VI. EVALUATION OF FR-1/VQA 

Lastly, we investigated the performance of objective FR

INQA methods to predict the subjective qualities of inter
polated slow-motion videos in KoSMo-lk. For this purpose, 
we considered twelve FR-1/VQA methods, including four for 
VQA (MOVIE, VMAF, ST-MAD, and ViS3) and eight for 
IQA (PSNR, GMSD, MS-SSIM, SSIM, VIF, MAD, FSIM, 
and VSI). Regarding the eight IQA methods, we applied them 
for each frame and took the mean as the final quality score. 

Table VI shows the Spearman's rank-order correlation coef

ficient (SROCC) between the predictions of these FR-1/VQA 
methods on KoSMo-1 k and several other datasets. lt can be 
seen that all of these methods performed quite poorly on 
KoSMo- lk, regardless of how weil they performed on other 

datasets or the Middlebury benchmark. More specifically, ST
MAD and ViSJ, which are VQA methods, performed even 
worse than two IQA methods (i.e., PSNR and MAD). This 

means that some of the FR-VQA methods could not even pre
dict the quality of inlerpolated slow-motion videos as well as 

frame-based FR-IQA methods. This clearly shows that existing 
quali ty assessment methods are not suitable for measuring the 
visual quality of interpolated slow-motion videos. Evidently, 
novel specifically tailored VQA methods are needed. 

VII. LIMITAT!ONS 

One limitation is the small frame size of the side-by-side 
videos, much smaller than during normal video consumption. 

Moreover, we captured the videos with a GoPro camera with 

a wide-angle lens. To reduce lhe wide-angle distortions we 
cropped the videos, however, in some of them 1here are sti ll 
some wide-angle artifacts visible. 

One open question that concerns the comparison of inter
polation results in Fig. 4 and Table V is the selection of 
appropriate parameter settings for the optical tlow methods. 

l n particular, since there is no suitable measure to assess 
the quality of the interpolated videos, there is no obvious 

choice for a loss function that could be used to adjust 
those parameters. Hence, we resotted to those settings that 
are recommended in the respective implementations, which 

in most cases coincide wi th the optimal parameters for the 
Middlebury benchmark. But even in this case, the oplimality of 
the parameters refers only to the quality of the tlow and not the 

quafüy of the interpolated videos. Having a novel specifically 
tailored VQA method would resolve lhis problem. Then the 
parameters could be adjusted such thal the interpolatecl videos 
provide the optimal visual experience. 

VIII. CONCLUSlON AND FUTURE WORK 

In this paper, we made three contributions for visual quality 
assessment of interpolated slow motion videos. First, we 

provided a novel bench-mark database specifically tailored 
for this task. Besides a large number of slow-motion videos 
inte rpolated with different optical flow methods, our database 
also offers a large variety of conlent and motion types. 
Secondly, based on this database, we provided and evaluated 
subj ective ratings for the visual quality of the interpolated 
videos. Our study depicts that there are !arge differences 

in the perceptual quality of the interpolated videos gener
ated by different optical tlow methods. Finally, we evaluated 
the performances of current existing FR-INQA methods on 
such interpolated slow-motion videos. The poor correlations 
between their prediclions and our subjective ratings reveal 
the weakness of FR-1/YQA methods when applied to slow
motion videos, generated from frame interpolation methods. 

l n nhis contexl, some of the FR-VQA methods performed 
even worse than FR-IQA methods. This illustrates the need for 
developing an FR-VQA method that is specifically des igned 
for interpolated slow-motion videos. 

Hence, as future work, we suggest designing an FR-VQA 
model for the quality prediction of interpolated slow-motion 
videos. To this end, the 30 sets of slow-motion videos, along 
with their subjective ratings in KoSMo- 1 k, can be subdivided 
into subsets for training, validation, and testing which allows 
us to apply cross-validation using the leave-one-out strategy. 
Such a FR-VQA model would not only enahle us to adjust 

the parameters of the optical fl ow methods to achieve optimal 
performance. lt would also allow us to rank optical flow 
methods regarding thei r perceptual interpolation quality. 
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