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Visual Realism Enhances Realistic 

Response in an Immersive Virtual 

Environment
Mel Slater, Pankaj Khanna, Jesper Mortensen, and Insu Yu ■ University College London 

Participants in an immersive virtual environ-

ment interact with the scene from an egocen-

tric point of view—that is, where there bodies 

appear to be located—rather than from outside as if 

looking through a window. People interact through 

normal body movements, such as head-turning, 

reaching, and bending, and—within the tracking 

limitations—move through the environment or ef-

fect changes within it in natural ways. 

A major application of such sys-

tems is rehearsal or training for 

situations too dangerous or im-

practical to carry out in real life, 

such as vehicle simulators. An-

other major application is in psy-

chotherapy, where patients might 

experience anxiety-provoking 

events with the knowledge that 

nothing real is happening but their normal anxiety 

responses are still induced and ultimately reduced 

through repeated exposure. In these scenarios, the 

application’s success relies on participants respond-

ing to situations within the virtual environment 

as if these were real. If not, they couldn’t transfer 

what they learned to the real world. Such “response 

as if real” provides an operational de�nition of the 

concept of presence,1 where response is considered 

at multiple levels: subjective, behavioral, and physi-

ological (such as changes in heart rate).

In this article, we consider the impact of visual 

realism on presence. Visual realism has two compo-

nents—geometric realism (the virtual object looks 

like the real object) and illumination realism (re-

ferring to the �delity of the lighting model). Both 

types have static and dynamic aspects. An object 

might look statically realistic, but over time its dy-

namic changes may not. For example, an object 

representing a human might look realistic but not 

behave realistically. Similarly, good static lighting 

might be achieved with a method such as radiosity, 

which precomputes all diffuse interre�ections in 

the environment, but shadows might not move in 

conjunction with the corresponding objects. Here 

we focus on the impact of illumination, such as 

that achieved by real-time ray tracing.

One hypothesis says that visual realism isn’t 

important for presence. This is based on the idea 

that the human perceptual system works in a 

top-down manner, building apparently complete 

environmental representations from a few mini-

mal cues.1 For example, in principle we should re-

spond appropriately even in the case of wire-frame 

rendering—provided that there is high frame rate, 

wide �eld of view, low latency, stereo, and a head-

tracked system. Indeed, some have argued that 

should the level of displayed realism improve “too 

much,” this could lead to degradation in response, 

because human observers would be more likely 

to notice small imperfections. This is Masahiro 

Mori’s 1970 “Uncanny Valley” (UV) hypothesis—

that improvements in quality might result in im-

provements in response up to a point after which 

there might be a sudden dip in response due to 

defect magni�cation.2

However, the UV hypothesis is convenient 

where, at least in the context of real-time render-

ing for immersive virtual environments (VEs), it 

hasn’t been feasible until recently to produce high-

quality visual rendered environments. Moreover, 

evidence hasn’t been clear regarding the impact of 

A study comparing real-time 

recursive ray tracing with 

ray casting in an immersive 

visual environment shows how 

greater visual realism induces 

greater participant presence.
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visual quality on presence. In this article, we show 

that when recursive real-time ray tracing is used to 

render an immersive VE, participants experience 

signi�cantly higher appropriate anxiety than when 

the same environment is rendered with ray casting 

(ray tracing, but with single eye-to-object rays). 

We used an environment that displays a precipice, 

a pit that the participant looks over—an environ-

ment frequently used in presence evaluations.

Background
Early papers that addressed the impact of visual re-

alism on presence compared environments which 

have different levels of visual detail and pictorial 

realism. Claudia Hendrix and Woodrow Bar�eld3 

describe the fact that many researchers have found 

greater reported presence with higher visual realism 

in both senses. By reported presence we mean the 

sense of being in the virtual environment as assessed 

by questionnaires. Another study compared reported 

and behavioral presence across rendering styles that 

didn’t support shadows, supported static shadows, 

or supported dynamically changing shadows. Mel 

Slater and his colleagues found greater behavioral 

and reported presence for static shadows compared 

to no shadows and for dynamic shadows compared 

to static shadows.4 The dynamic shadows were 

computed using an adaptation of the Binary Space 

Shadow Volume Binary Space Partition algorithm.

In a questionnaire-based study using two levels 

of radiosity and �at shading, Katerina Mania and 

Andrew Robinson found no difference in reported 

presence among the three conditions.5 Finally, 

in an experiment set in the “pit room” environ-

ment, similar to the one used in our experiment, 

the scene was displayed at various levels of illu-

mination realism (wire frame, without and with 

textures, and with radiosity).6 In that experiment, 

Paul Zimmons and Abigail Panter recorded physi-

ological measures and questionnaire responses. 

Subjects in every condition exhibited signi�cantly 

increased heart rate when they encountered the 

pit, although there were no signi�cant differences 

in heart rate or reported presence between differ-

ent rendering conditions.

Results to date show no clear message regarding 

the impact of the visual realism level on reported 

or behavioral presence. Evidence supports conclu-

sions that the type of rendering might or might not 

impact presence. Moreover, we believe many previ-

ous studies were �awed, because they were based 

on within-group designs (see the “Between-Groups 

vs. Within-Groups” sidebar) in which participants 

would experience all experimental conditions (dif-

ferent levels of visual realism) and therefore real-

ize the purpose of the experiment. It’s important 

to note that this doesn’t apply to the study most 

directly comparable with the one reported here.6

Our study differs in three important ways from 

those reported previously. First, we use real-time 

recursive ray tracing. Although it’s not full global 

illumination, it correctly simulates light trans-

port between specular surfaces and therefore 

generates dynamically changing re�ections and 

shadows for point light sources. In particular, it 

A between-group design is where each participant experiences 

only one condition so that the comparisons are between 

the different groups rather than within individuals. Each group 

is drawn from the same population so that they are matched 

on the average. In addition, data can be recorded about their 

demographic situation (age, gender, status), and this information 

can further statistically equalize the groups in the later analysis. A 

between-group design has the advantage that participants don’t 

learn the purposes of the experiment because they experience 

only one condition. It has the disadvantage that typically more 

people are needed than for within-group designs to achieve good 

statistical results. A within-group design is one in which each par-

ticipant experiences every condition and the order of presentation 

is randomized across participants. This has the advantage that each 

person is compared to himself or herself, and fewer participants 

are needed than with a between-groups design to achieve good 

statistical results.

In general, the problem with within-groups designs in vir-

tual reality experiments is that conditions are not symmetric. In 

other words, it’s certain that the experience of one condition 

(for example, ray tracing) will affect the experience of the other 

condition (ray casting), and presenting the conditions in differ-

ent orders makes no difference to this. A second problem is that 

the participants obviously realize, or might think they realize, the 

purpose of the experiment, because they see all conditions. This 

could also bias their responses, especially if they feel that they 

should give the kinds of answers that they believe would please 

the experimenters. Finally, there is a question of adaptation. 

Having experienced the precipice once, a participant’s response 

might be different on the second exposure. In our earlier brief re-

port of some aspects of this experiment’s results,1 we showed that 

responses were not symmetric comparing the between-group 

conditions only and the within-group conditions with regard 

to subjectively reported presence. In this article we report only 

on the between-group condition, from which the most reliable 

results can be obtained.
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generates re�ections and shadows of the virtual 

body that represent the participant immersed in 

the (head-mounted-display-generated) virtual re-

ality. Although one study had dynamic shadows, 

these were limited to a single object on a �ying 

trajectory and didn’t include shadows from the 

participant’s virtual body.4 Second, although we 

use questionnaires to assess the subjective ele-

ment of presence (the sense of “being there” in 

the place depicted by the VE), we also analyze the 

physiological responses of the participants. In 

particular, we carry out electrocardiogram (ECG) 

analysis to determine stress levels. Third, our 

study is between-groups, which means the results 

are based on each participant’s experience of only 

one condition (recursive ray tracing or ray cast-

ing) and therefore can’t be biased by participants’ 

understanding the study’s purposes.

The Pit Room Environment
The scene in our experiment was a variation of 

the pit room (see Figure 1). In such scenarios the 

participant enters a virtual training room. This is 

typically an ordinary room with some furniture 

where the participant gets accustomed to the en-

vironment and learns to carry out tasks relating 

to the particular experiment. Then he or she is 

required to move into an adjoining room through 

an open door. This room seems normal at �rst, but 

then the participant sees that it has no �oor apart 

from a narrow ledge adjoining the walls. The par-

ticipant stands on a plank over the precipice and 

looks down to another room that is approximately 

6 meters below and sees some furniture. The util-

ity of this environment is that the expected re-

sponses are clear—people should show signs of 

anxiety. Because presence is operationally the ex-

tent to which people respond realistically, anxiety 

in this context is a sign of presence.

The pit environment was inspired by the famous 

“visual cliff” experiments of Eleanor Gibson and 

Richard Walk,7 who investigated depth perception 

in different animals, in particular human babies. 

This was to examine whether they learn to avoid 

precipices through experience or whether it’s an 

innate property of how the visual system inter-

prets the patterns of light associated with depth—

evidence, especially from animal trials, suggests 

the latter interpretation.

Mel Slater and his colleagues �rst used such an en-

vironment in virtual reality for an experiment that 

tested a method of locomotion based on walking-in-

place.8 Michael Meehan and his colleagues also used 

this experiment with physiological measures.9 Most 

relevant to the work reported in this article was its 

use in a study of the impact of rendering quality.6

Rendering the Pit Room
In our new implementation, the room consisted 

of 1,535 polygons. The VE was displayed in stereo 

through a Virtual Research V8 head-tracked head-

mounted display (HMD), which had 2 × 640 × 480 

resolution. We used a Polhemus Fastrack tracking 

system for the head and handheld wand.

We rendered the VE using a parallel ray-tracing 

implementation run across a cluster of �ve dual-

processor Xeon 3.2-GHz workstations; four were 

used as a rendering cluster and one as a master. 

We rendered the VE using two rendering meth-

ods both implemented through ray tracing (or ray 

casting). The �rst rendering method used an il-

lumination model similar to OpenGL per-pixel lo-

cal illumination without shadow effects (RC), and 

the second method used recursive ray tracing that 

included rendering shadows and re�ections (RT). 

The render cluster performed ray-polygon inter-

sections using a 4-ray SIMD (single instruction, 

multiple data) intersection method. The master 

workstation was responsible for control of the 

rendering cluster, the HMD, and the two trackers 

(head and right hand). The master used basic in-

verse kinematics to determine avatar pose and also 

issued render tasks. The render tasks were created 

by a simple tiling of the display surface across the 

HMD’s two screens. Client workstations requested 

render tasks from the master using demand-driven 

scheduling. The cluster was con�gured to consis-

tently deliver a stable frame rate (15 fps) that was 

kept �xed for the two rendering methods. 

A separate workstation recorded electrodermal 

activity and ECG physiological data from a TTL 

ProComp In�niti encoder during the experiments.

Experimental Design
We recruited 33 participants for the experiment 

via advertising around the University College Lon-

don campus. They were split arbitrarily into two 

groups of RT (n = 17) and RC (n = 16). There were 

15 females, 7 in the RC group and 8 in the RT 

group. Members of RT experienced the pit room 

rendered using RT and then the environment again 

The pit environment was inspired by the 

famous “visual cliff” experiments, which 

investigated depth perception in different 

animals, in particular human babies.
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rendered with RC. Members of RC experienced the 

RC-rendered pit room and then the RT-rendered 

pit room. The experimental design was, there-

fore, both between-groups and within-groups. If 

we consider only the �rst exposure results, then 

it’s between-groups. If we consider both exposures 

and compare between them, it’s between-groups. 

We doubted the validity of a within-groups design. 

Because the �rst exposure has an in�uence on the 

results of the second exposure, we recruited large-

enough sample sizes so that a between-groups in-

terpretation could also be given. We consider only 

the between-groups results here.

Procedures
At the start of the experiment, we gave participants 

an information sheet that explained the experi-

mental procedures, possible dangers of using vir-

tual reality equipment (for example, dizziness), and 

what we expected of them. We gave them a dis-

claimer form to sign, informed them that they were 

free to withdraw from the experiment at any time 

without giving reasons, and informed them that in 

any case they would receive the equivalent of US$10 

for their participation. We invited them to share 

basic information such as age, gender, frequency of 

computer game playing, and prior experience with 

virtual reality. We explained that they would enter 

the virtual environment twice and answer a ques-

tionnaire after each exposure.

We then �tted the participants with equipment 

for physiological recording. They donned the HMD 

and entered the pit room shown in Figure 1 stand-

ing in the doorway, �rst facing away from the room 

with the pit. We told them to look around, gave 

them time to get comfortable with the apparatus, 

and told them they could walk around a small ra-

dius of less than one meter. We then asked them 

to relax for two minutes and made physiological 

baseline recordings. We then invited them to turn 

around and look directly into the pit room for 

three minutes. After this, they took off the HMD 

and completed a questionnaire about presence. 

They then put on the HMD again; the physiologi-

cal recordings were continued, and once again we 

invited them to look into the pit room, seeing it 

rendered with the other rendering method. After 

three minutes, they came out of the environment 

and answered the same questionnaire.

A simple avatar represented each participant 

from an egocentric viewpoint—for example, if they 

looked down they would see their virtual body, legs, 

and feet. More importantly, in the RT condition 

they would see re�ections and shadows of their 

(a)

(c)

(b)

(d)

Figure 1. The 

pit room scene. 

(a) Looking 

into the pit 

room with 

ray casting. 

(b) Looking 

down into the 

pit with ray 

casting.  

(c) Looking into 

the pit room 

with real-time 

recursive ray 

tracing.  

(d) Looking 

down into the 

pit with real-

time recursive 

ray tracing.
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avatar, and these would move dynamically as the 

person moved. Participants held a tracked wand 

in their right hand. As they moved their real arm 

holding the wand, they would see, in re�ections 

and shadows, their virtual arm move in response. 

This was the major difference between RC and RT. 

Figure 1c shows a re�ection of the avatar in a mir-

ror opposite the door to the pit room.

Questionnaire Results
The questionnaire we gave the participants im-

mediately after their experience in the pit room 

consisted of 16 questions, of which 11 related to 

presence (see Figure 2). Each question was on a 

7-point Likert scale, where we asked the partici-

pant to choose a number between 1 and 7 indi-

cating the strength of their agreement with the 

statement in the question. For each question ex-

cept question 4, a higher score means higher re-

ported presence in the pit room. For purposes of 

analysis, we reversed the direction of question 4 so 

that all scores point in the same direction.

We found the mean score of each of the ques-

tions for the RC group (n = 17) and the RT group 

(n = 16) (see Table 1). This results in 11 pairs of 

values, one pair for each of the questions. If we 

look at each question, we �nd that the mean is 

higher for RT in 9 out of 11 questions. For question 

3 the difference is signi�cant using a nonparamet-

ric Kruskal-Wallis test (P = 0.019) and the results 

are similar for question 4 (P = 0.007).

Overall, the evidence suggests that the partici-

pants in RT reported a higher level of presence 

than those in RC. In particular, participants re-

member the pit room as a place they had visited 

(Q3), and their sense of being in the pit room 

was stronger in direct comparison to the real 

world of the laboratory (Q4). It’s noteworthy 

that in earlier work looking at questions that 

best discriminated people’s reported presence in 

virtual and real environments, Q3 was the best 

discriminator and Q4 the second best among 

those questions that had counterparts to the ones 

here.10

Question 1 7

 1. Please rate your sense of being in the pit room, on the following scale from 1 to 7, 

where 7 represents your normal experience of being in a place. 

I had a sense of being there in the pit room ...

At no time Almost all 

the time

 2. To what extent were there times during the experience when the pit room was 

the reality for you? 

There were times during the experience when pit room was the reality for me ...

At no time Almost all 

the time

 3. When you think back about your experience, do you think of the pit room more as 

images that you saw or more as somewhere that you visited? 

The pit room seemed to be more like ...

Images 

that I saw

Somewhere I 

visited

 4. During the experience, which was strongest on the whole, your sense of being in 

the pit room or of being in the real world of the laboratory? 

I had a stronger sense of …

Being in 

the pit 

room

Being in the 

lab

 5. During the experience, did you often think to yourself that you were just in a 

laboratory, or did the pit room overwhelm you? 

During the experience I was thinking that I was really in the VR laboratory ...

Most of 

the time

Rarely

 6. How much did you behave within the pit room as if the situation were real? 

I responded as if the situation were real …

Not at all Very much

 7. How often did you �nd yourself automatically behaving within the pit room as if it 

were a real place? I responded as if it were a real place …

Never Almost all 

the time

 8. How much did you deliberately behave within the pit room as if it were a real 

place? I deliberately responded as if it were a real place…

Never Almost all 

the time

 9. How much was your emotional response in the pit room the same as if it had been 

real? My emotional response in the pit room was the same as if it had been real …

Never Almost all 

the time

 10. How much were the thoughts you had within the pit room the same as if it had 

been a real situation? My thoughts within the pit room were the same as if it had 

been real …

Never almost all 

the time

 11. To what extent were your physical responses within the pit room (for example, 

heart rate, blushing, sweating) the same as if it had been a real situation? (In 

this case, if in such a real situation you would have had no or few such physical 

responses and also within the pit room you had no or few physical responses, then 

your answer should be closer to 7 than to 1). My physical responses within the pit 

room were the same as if it had been real …

Never Almost all 

the time

Figure 2. 

Pit room 

questionnaire. 

Participants 

responded to 

each question 

on a 7-point 

Likert scale.
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Physiological Recordings
Questionnaires provide insight into the partici-

pants’ conscious thoughts and feelings, but they 

can’t reveal what happened at a deeper level. For 

this purpose we employ physiological measures, in 

particular electrodermal activity (EDA) and ECGs 

(see the sidebar “Measuring Electrodermal and 

Cardiac Activity,” next page).

We recorded EDA during the two-minute base-

line and throughout the rest of the experiment, 

and derived the number and amplitude of skin con-

ductance responses (SCR). We collected valid EDA 

data for 27 participants. In Table 2 we compare each 

person’s baseline SCR rate (that is, the number of 

SCRs per 10 seconds) with their rate during the ex-

perimental condition for the RC and RT conditions. 

We made the same comparison for the SCR’s mean 

amplitude. In each case we �nd that for RC there’s 

no signi�cant difference between the baseline and 

experimental condition, but for RT there’s a signi�-

cant difference, with experimental condition values 

on the average higher than baseline values. This in-

dicates that between the baseline and experimental 

condition people’s arousal and orienting responses 

were on the average greater in the case of RT but not 

in the case of RC. 

We computed the signi�cance levels by paired t-

tests (comparing each person’s baseline result with 

their experimental result; see Table 2). This test 

requires the set of differences for each person for 

each comparison to follow a normal distribution. 

Jarque-Bera tests for normality on each set don’t 

reject the hypotheses of normality. The apparent 

difference between the ray casting mean baseline 

and the ray tracing mean baseline isn’t signi�cant 

(P = 0.79 using a nonparametric Wilcoxon rank 

sum test).

The EDA analysis shows a differential impact 

of RC and RT in terms of overall arousal, but it 

does not provide information about correspond-

ing emotional signi�cance. For that we turn to the 

ECG recordings, which were available for all 33 

participants. First we consider heart rate and heart 

rate variability—in particular the heart rate (HR) 

divided by its standard deviation (SDHR). This 

quantity (S = HR/SDHR) increases with higher 

heart rate or lower heart rate variability. We found 

that S was signi�cantly higher for the RT group 

than for the RC group, controlling for other fac-

tors, in particular for S during the baseline period 

and also for gender (see sidebar “Regression Analy-

sis Variables,” page 83).

A second ECG-derived parameter is the number 

of intervals of successive normal-to-normal inter-

vals greater than 50 milliseconds (NN50) score. 

Lower values of NN50 would be a sign of higher 

mental stress. Indeed we �nd that NN50 is sig-

ni�cantly lower for the RT group compared to the 

RC group in the experimental condition (taking 

into account the baseline NN50 scores) but not 

in the baseline condition (see sidebar “Regression 

Analysis Variables”).

Finally, there is evidence of a difference between 

RC and RT with respect to the HFnorm parameter 

(a frequency domain measure). There is no sig-

ni�cant difference between the groups for the 

baseline values (P = 0.17), but with respect to the 

Table 1. Mean ± standard deviation of the 

questionnaire scores for the RC Ray Casting and Ray 

Tracing group.

Question RC n = 17 RT n = 16

1 4.5 ± 1.6 4.6 ± 1.3

2 3.1 ± 1.6 3.2 ± 1.2

3* 2.9 ± 1.2 4.2 ± 1.5

4* 3.8 ± 1.6 5.3 ± 1.3

5 3.6 ± 2.0 3.5 ± 1.9

6 4.1 ± 2.0 3.9 ± 1.5

7 4.1 ± 1.7 4.4 ± 1.5

8 3.5 ± 1.6 3.7 ± 1.7

9 4.2 ± 1.5 4.8 ± 1.3

10 4.2 ± 1.8 4.5 ± 1.5

11 3.6 ± 1.6 3.8 ± 1.6

*Indicates signi�cant difference

Table 2. Rate and mean amplitude of skin conductance responses (SCRs).

Mean number of SCRs 

per 10 seconds

Mean amplitude of 

SCRs (μS)

Ray casting (n = 14)

Baseline 1.16 ± 0.87 0.25 ± 0.11

Experiment 1.35 ± 1.10 0.30 ± 0.19

Signi�cance Level 0.36 0.13

Ray tracing (n = 13)

Baseline 1.00 ± 0.65 0.24 ± 0.12

Experiment 1.38 ± 0.84 0.31 ± 0.17

Signi�cance Level 0.03 0.01

Table 3. Linear regression for Sexp = HR/SDHR. Multiple correlation  

R2 = 0.72, F = 24.51 on (3, 29) d.f., P = 4.2×10–8. A Jarque-Bera test does 

not reject the hypothesis that the residual errors of the �t follow a 

normal distribution (P = 0.22).

Parameter Estimate P

Constant 2.99 —

Sbase 0.75 0.0000

Gender (F = 1, M = 0) –0.24 0.0203

Condition (RC = 0, RT = 1) 2.70 0.0097
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The physiological measures recorded during this experi-

ment were electrodermal activity (EDA)1 and electro-

cardiogram (ECG). We �tted participants with a ProComp 

Infiniti (Thought Technology) physiological recording 

device that recorded the ECG (256 Hz) and skin conduc-

tance (32 Hz). We placed electrodes on the palmar areas of 

the index and middle �ngers of the left hand to record 

electrodermal activity. We also placed electrodes on 

the left and right collar bones and the lowest left rib to 

record ECG.

EDA measures changes in arousal through changes in 

skin conductance caused by sweat levels. Figure A shows 

an example recording during the baseline period for 

an arbitrarily chosen participant. An important derived 

measure of interest is the number of skin conductance re-

sponses (SCR), which re�ect transient sympathetic arousal, 

either spontaneous or in response to events, speci�cally 

responses to changes in the environment and events or 

surprises. Examples of SCRs are shown in Figure A. We 

de�ned SCRs to be local maxima that had amplitude of at 

least 0.1 μS, in a period not exceeding �ve seconds from 

the start of the SCR to its maximal point. (There is no stan-

dard de�nition, and we used these criteria as a compro-

mise among several in the literature.) The amplitude refers 

to the maximum level reached compared to the start of 

the SCR. Of interest are both the number and amplitude 

of SCRs, and we also refer to the SCR rate as the number 

of SCRs per 10 seconds. Such SCRs were identi�ed in an 

of�ine program written in Matlab.

Figure B shows a sample ECG series. From the raw 

ECG, the so-called QRS complexes are computed of�ine. 

These QRS complexes determine the time between heart 

contractions—the RR intervals. An NN interval refers to 

normal-to-normal intervals, where nonnormal beats such 

as extra systoles are not taken into account. From the ECG 

signal and QRS complexes, a number of parameters can 

be derived. In our analysis we used the following time 

domain measures:2

HR—heart rate in beats per minute (bpm) ■

SDHR—heart rate variability as measured by the stan- ■

dard deviation of heart rate (bpm)

NN50—number of intervals of successive NN intervals  ■

greater than 50 milliseconds.

Generally episodic higher HR and lower SDRH indicate 

either exercise or mental stress. NN50 is also another indi-

cator of heart rate variability—lower values indicate lower 

variability.

In the frequency domain, we examined low-frequency 

components (LF, 0.1 Hz) and high-frequency components 

(HF, 0.15–0.4 Hz). These indicate mental stress when the 

LF component increases and the HF component decreases. 

Moreover, during dynamic exercise the heart rate changes 

but the HF component doesn’t change signi�cantly; hence, 

a change in HF together with changes in HR and SDHR 

indicates mental stress.
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Figure A. Skin conductance during the baseline period for one 

participant. The two solid vertical lines indicate two of the detected 

skin conductance responses, and the dashed lines their maxima.
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Figure B. First 10 seconds of electrocardiogram wave form during the 

baseline for one participant. The QRS complexes determine the time 

between heart contractions and are computed of�ine.
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experimental condition HFnorm is lower for RT than 

for RC (P = 0.07). This provides further evidence 

that changes in heart rate and heart rate variability 

were due to mental stress rather than simply physical 

exercise. In any case the participants’ tasks in both 

RC and RT were the same, so it’s unlikely that any 

observed differences would be due to differences in 

physical effort.

The substantial difference between the RC 

and RT conditions was that RT had shadows 

and re�ections (especially shadows of the virtual 

body) and RC did not. Other than that, they both 

used the Phong lighting model and were tex-

ture mapped. The results of our experiment sug-

gest that this difference led to different levels of 

anxiety and different levels of reported presence 

between the two groups. The analysis of physiolog-

ical recordings suggests that participants became 

more aroused relative to their own baseline dur-

ing the RT condition (EDA analysis) and that the 

RT group as a whole became more stressed (allow-

ing for differences in baseline) than the RC group 

(ECG analysis).

We obtained further insight on this from the 

free-form interviews after the conclusion of the 

experiment, when participants re�ected on their 

experiences of both conditions. Of the 24 who 

expressed an opinion on the impact of shadows 

and re�ections on their sense of presence, 17 ex-

pressed positive opinions. Of the seven who said 

the shadows and re�ections had a negative impact, 

the common view was that it was because the re-

�ection didn’t look like themselves. For example, 

one comment was, 

The re�ection was there too, but obviously 

looking at a mirror you expect to see your-

self, not a blue Lego. So I think that it sort of 

spoiled it.” Another participant who thought 

positively of the impact said: “I rather like 

the shadow which kind of loomed into the 

space below me when I looked down…. I re-

acted quite strongly to the �gure, my re�ec-

tion. Although, once I realized what it was, 

I mean, initially my response was mild fear 

as to what it was, and I couldn’t you know, 

and I couldn’t identify it as being a re�ection 

because it didn’t look like that. But once I �g-

ured it out … it did enhance the realism of the 

environment in terms of the re�ection, and 

looking down and being able to see your own 

re�ection, kind of seeping into space, your 

shadow. From that point of view it heightened 

the realism of the space, even though it was 

abstract in itself and quite blocky.

The take-home message of this experiment is that 

improved visual realism might enhance realistic 

We carried out a regression analysis for the response variable 

Sexp, which is S during the experimental period. To eliminate 

the effect of differences between individuals we use Sbase, which 

is S during the baseline period, as an explanatory variable, and 

the experimental condition (C) treated as a binary variable (ray 

casting—RC—as 0, ray tracing—RT—as 1) as the independent 

variable. In addition, we found another explanatory variable, 

gender, to be signi�cant. This three-variable model led to a highly 

signi�cant �t with correlation R2 = 0.72, which means that 72 

percent of the variation in Sexp could be explained by the varia-

tion in Sbase, C, and gender. In particular, Sexp varies positively 

with Sbase, is lower for females, and is higher for the RT condition. 

It’s important to note that there’s no signi�cant difference in Sbase 

between the RT and RC conditions, so the difference in Sexp can 

only be due to the impact of different rendering styles.

NN50 is a count variable that should be modeled by a Poisson 

distribution as events (adjacent NN50 intervals differing by more 

than 50 milliseconds) occurring randomly in time. The appro-

priate regression model to use is Poisson log-linear regression. 

Considering the baseline measurements only, there’s no differ-

ence in NN50 between the RC and RT; however, there is for the 

experimental period, as shown in Table A.

HFnorm is a frequency domain measure, and we tested the differ-

ence between RC and RT. When comparing the baseline measures 

there was no signi�cant difference between the groups (P = 0.14). 

For the experimental period the RT group had a lower score than the 

RC group, just outside the conventional 5 percent limit (P = 0.066), 

in each case using one-way analysis of variance; the hypothesis of 

normality of the residual errors was not rejected in either case by a 

Jarque-Bera test. The best regression model �t is obtained using 

the independent factor C, the explanatory variables NN50 for the 

baseline, and age. This model has R2 = 0.41, and HFnorm has a nega-

tive coef�cient for RT with signi�cance level P = 0.06.
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Table A. Poisson log-linear regression for NN50. Deviance for the 

overall model = 33.1 on 30 d.f. (P = 0.32) based on the method of �t 

described by Norman Breslow.1

Parameter Estimate P

Constant –2.5545

Baseline NN50/baseline time 4.4986 0.0000

Condition (RC = 0, RT = 1) –0.5825 0.0097
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behavioral response. Of course, the results here 

apply to a virtual environment designed to result 

in anxiety, and we don’t know whether the results 

extend to more mundane applications. Moreover, 

although it’s likely that the dynamic shadows and 

re�ections caused the changed responses, we can’t 

disambiguate these from the general improvement 

in visual quality that results from recursive ray 

tracing—though given the results from another 

experiment8 it’s unlikely that visual quality alone 

can account for the differences found here.

In our current experimental work we separate 

the effects of dynamic shadows and re�ections 

from the effect of improved visual realism by em-

ploying a full real-time global-illumination solu-

tion rather than only recursive ray tracing, and 

in a nonstressful environment. In addition, over-

coming one problem discussed previously, we also 

use highly realistic avatars rather than the simple 

blocky avatar used here. 
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