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How do we know that a kitchen is a kitchen by looking? Traditional models posit that scene categori-

zation is achieved through recognizing necessary and sufficient features and objects, yet there is little

consensus about what these may be. However, scene categories should reflect how we use visual

information. Therefore, we test the hypothesis that scene categories reflect functions, or the possibilities

for actions within a scene. Our approach is to compare human categorization patterns with predictions

made by both functions and alternative models. We collected a large-scale scene category distance matrix

(5 million trials) by asking observers to simply decide whether 2 images were from the same or different

categories. Using the actions from the American Time Use Survey, we mapped actions onto each scene

(1.4 million trials). We found a strong relationship between ranked category distance and functional

distance (r � .50, or 66% of the maximum possible correlation). The function model outperformed

alternative models of object-based distance (r � .33), visual features from a convolutional neural network

(r � .39), lexical distance (r � .27), and models of visual features. Using hierarchical linear regression,

we found that functions captured 85.5% of overall explained variance, with nearly half of the explained

variance captured only by functions, implying that the predictive power of alternative models was

because of their shared variance with the function-based model. These results challenge the dominant

school of thought that visual features and objects are sufficient for scene categorization, suggesting

instead that a scene’s category may be determined by the scene’s function.
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The question “What makes things seem alike or different?” is one so

fundamental to psychology that very few psychologists have been

naïve enough to ask it (Attneave, 1950).

Although more than half a century has passed since Attneave

issued this challenge, we still have little understanding of how we

categorize and conceptualize visual content. The notion of simi-

larity, or family resemblance, is implicit in how content is con-

ceptualized (Wittgenstein, 2010), yet similarity cannot be defined

except in reference to a feature space to be operated over (Good-

man, 1972; Medin, Goldstone, & Gentner, 1993). What feature

spaces determine environmental categories? Traditionally, it has

been assumed that this feature space is comprised of a scene’s

component visual features and objects (Biederman, 1987;

Bulthoff, Edelman, & Tarr, 1995; Marr, 1982; Riesenhuber &

Poggio, 1999; Stansbury, Naselaris, & Gallant, 2013). Mounting

behavioral evidence, however, indicates that human observers

have high sensitivity to the global meaning of an image (Fei-Fei,

Iyer, Koch, & Perona, 2007; Greene & Oliva, 2009a, 2009b;

Potter, 1976), and very little sensitivity to the local objects and

features that are outside the focus of attention (Rensink, 2002).

Consider the image of the kitchen in Figure 1. If objects determine

scene category membership, then we would expect the kitchen

supply store (left) to be conceptually equivalent to the kitchen.

Alternatively, if scenes are categorized (labeled) according to

spatial layout and surfaces (Bar, 2004; Oliva & Torralba, 2001;

Torralba, Fergus, & Freeman, 2008), then observers might place

the laundry room (center) into the same category as the kitchen.

However, most of us share the intuition that the medieval kitchen

(right) is in the same category, despite sharing few objects and

features with the top image. Why is the image on the right a better

category match to the modern kitchen than the other two?

Here we put forth the hypothesis that the conceptual structure of

environments is driven primarily by the scene’s functions, or the

actions that one could perform in the scene. We assert that repre-

senting a scene in terms of its high-level functions is a better
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predictor of how humans categorize scenes than state-of-the-art

models representing a scene’s visual features or objects.

Figure 2 illustrates our approach. We constructed a large-scale

scene category distance matrix by querying over 2,000 observers

on over 63,000 images from 1,055 scene categories (Figure 2A).

Here, the distance between two scene categories was proportional

to the number of observers who indicated that the two putative

categories were “different.” We compared this human categoriza-

tion pattern with an function-based pattern created by asking

hundreds of observers to indicate which of several hundred actions

could take place in each scene (Figure 2B). We can then compute

the function-based distance for each pair of categories. We found

a striking resemblance between function-based distance and the

category distance pattern. The function model not only explained

more variance in the category distance matrix than leading models

of visual features and objects, but also contributed the most

uniquely explained variance of any tested model. These results

suggest that a scene’s functions provide a fundamental coding

scheme for human scene categorization. In other words, of the

models tested, the functions afforded by the scene best explains

why we consider two images to be from the same category.

Method

Creating Human Scene Category Distance Matrix

The English language has terms for hundreds of types of environ-

ments, a fact reflected in the richness of large-scale image databases

such as ImageNet (Deng et al., 2009) or SUN (Xiao, Ehinger, Hays,

Torralba, & Oliva, 2014). These databases used the WordNet (Miller,

1995) hierarchy to identify potential scene categories. However, we

do not know how many of these categories reflect basic- or entry-level

scene categories, as little is known about the hierarchical category

structure of scenes (Tversky & Hemenway, 1983). Therefore, our aim

was to discover this category structure for human observers at a large

scale.

To derive a comprehensive list of scene categories, we began with

a literature review. Using Google Scholar, we identified 116 articles

in human visual cognition, cognitive neuroscience, or computer vision

matching the keywords “scene categorization” or “scene classifica-

tion” that had a published list of scene categories; 1,535 unique

category terms were identified over all articles. Our goal was to

identify scene categories with at least 20 images in publically avail-

able databases. We removed 204 categories that did not meet this

criterion. We then removed categories describing animate entities

(e.g., “Crowd of people,” N � 44); specific places (e.g., “Alaska,”

N � 42); events (e.g., “forest fire,” N � 35); or objects (e.g., “playing

cards,” N � 93). Finally, we omitted 62 categories for being close

synonyms of another (e.g., “country” and “countryside”). This left us

with a total of 1,055 scene categories. To obtain images for each

category, 722 categories were found in the SUN database (Xiao et al.,

2014), 306 were taken from ImageNet (Deng et al., 2009), 24 from the

Corel database, and three from the 15-scene database of (Fei-Fei &

Perona, 2005; Lazebnik, Schmid, & Ponce, 2006; Oliva & Torralba,

2001).

We will refer to the 1,055 scene categories as putative categories.

Good categories have both high within-category similarity (cohesion),

as well as high between-category distance (distinctiveness; Iordan,

Greene, Beck, & Fei-Fei, 2015; Rosch, Mervis, Gray, Johnson, &

Boyes-Braem, 1976). We performed a large-scale experiment with

over 2,000 human observers using Amazon’s Mechanical Turk

(AMT). In each trial, two images were presented to observers side by

side. Half of the image pairs came from the same putative scene

category, while the other half were from two different categories that

were randomly selected. Image exemplars were randomly selected

within a category on each trial. To encourage participants to catego-

rize at the basic- or entry-level (Jolicoeur, Gluck, & Kosslyn, 1984;

Tversky & Hemenway, 1983), we gave participants the following

instructions: “Consider the two pictures below, and the names of the

places they depict. Names should describe the type of place, rather

than a specific place and should make sense in finishing the following

sentence ‘I am going to the . . .’,” following the operational definition

applied in the creation of the SUN database (Xiao et al., 2014). To

ensure that the instructions were understood and followed, partici-

pants were also asked to type in the category name that they would

use for the image on the left-hand side. These data were not analyzed.

Participants were not placed under time pressure to respond, and

images remained on screen until response was recorded.

Potential participants were recruited from a pool of trusted observ-

ers with at least 2,000 previously approved trials with at least 98%

approval. Additionally, participants were required to pass a brief

scene vocabulary test before participating. In the vocabulary test,

potential participants were required to match 10 scene images to their

appropriate category name (see Supplementary Material for names

and images). There were 245 potential participants who attempted the

qualification test and did not pass. Trials from 14 participants were

omitted from analysis for inappropriate typing in the response box.

Trials were omitted when workers pasted the image URL into the

category box instead of providing a name (N � 586 trials from three

workers), for submitting the hit before all trials were complete (N �

559 trials from four workers), for typing category names in languages

other than English (N � 195 trials from two workers), typing random

character strings (N � 111 trials from two workers), or for typing in

words such as “same,” “left,” or “pictures,” implying that the instruc-

tions were not understood (N � 41 trials from three workers). Work-

Figure 1. The top image depicts a kitchen. Which of the bottom images

is also a kitchen? Many influential models of visual categorization assume

that scenes sharing objects, such as the kitchen supply store (left), or

layout, such as the laundry room (middle) would be placed into the same

category by human observers. Why is the medieval kitchen also a kitchen

despite having very different objects and features from the top kitchen? See

the online article for the color version of this figure.
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ers were compensated $0.02 for each trial. We obtained at least 10

independent observations for each cell in the 1,055 � 1,055 scene

matrix, for a total of over 5 million trials. Individual participants

completed a median of five hits of this task (range: 1–36,497). There

was a median of 1,116 trials in each of the diagonal entries of the

matrix, and a median of 11 trials in each cell of the off-diagonal

entries.

From the distribution of same and different responses, we cre-

ated a dissimilarity matrix in which the distance between two

scene categories was defined as the proportion of participants who

indicated that the two categories were different. From the 1,055

categories, we identified 311 categories with the strongest within-

category cohesion (at least 70% of observers agreed that images

were from the same category). In general, categories that were

omitted were visually heterogeneous, such as “community center,”

or were inherently multimodal. For example, “dressing room”

could reflect the backstage area of a theater, or a place to try on

clothes in a department store. Thus, the final dataset included 311

scene categories from 885,968 total trials, and from 2,296 individ-

ual workers.

Creating the Scene Function Spaces

To determine whether scene categories are governed by func-

tions, we needed a broad space of possible actions that could take

place in our comprehensive set of scene categories. We gathered

these actions from the lexicon of the American Time Use Survey

(ATUS), a project sponsored by the US Bureau of Labor Statistics

Figure 2. (A) We used a large-scale online experiment to generate a distance matrix of scene categories. Over 2,000

individuals viewed more than 5 million trials in which participants viewed two images and indicated whether they

would place the images into the same category. (B) Using the LabelMe tool (Russell, Torralba, Murphy, & Freeman,

2008) we examined the extent to which scene category similarity was related to scenes having similar objects. Our

perceptual model used the output features of a state-of-the-art convolutional neural network (Sermanet et al., 2013)

to examine the extent to which visual features contribute to scene category. To generate the functional model, we took

227 actions from the American Time Use Survey. Using crowdsourcing, participants indicated which actions could

be performed in which scene categories. See the online article for the color version of this figure.
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that uses U.S. census data to determine how people distribute their

time across a number of activities. The lexicon used in this study

was pilot tested over the course of 3 years (Shelley, 2005), and

therefore, represents a complete set of goal-directed actions that

people can engage in. This lexicon was created independently from

any question surrounding vision, scenes, or categories, therefore,

avoiding the potential problem of having functions that were

designed to distinguish among categories of visual scenes. Instead,

they simply describe common actions one can engage in in every-

day life. The ATUS lexicon includes 428 specific activities orga-

nized into 17 major activity categories and 105 midlevel catego-

ries. The 227 actions included in our study included the most

specific category levels with the following exceptions:

1. The superordinate category “Caring for and Helping

Non-household members” was dropped as these actions

would be visually identical to those in the “Caring for and

Helping Household members” category.

2. In the ATUS lexicon, the superordinate-level category

“Work” contained only two specific categories (primary

and secondary jobs). Because different types of work can

look very visually different, we expanded this category

by adding 22 categories representing the major labor

sectors from the Bureau of Labor Statistics.

3. The superordinate-level category “Telephone calls” was

collapsed into one action because we reasoned that all

telephone calls would look visually similar.

4. The superordinate-level category “Traveling” was simi-

larly collapsed into one category because being in transit

to go to school (e.g.) should be visually indistinguishable

from being in transit to go to the doctor.

5. All instances of “Security procedures” have been unified

under one category for similar reasons.

6. All instances of “Waiting” have been unified under one

category.

7. All “Not otherwise specified” categories have been

removed.

The final list of actions can be found in the Supplemental

Materials.

To compare this set of comprehensive functions to a human-

generated list of functions applied to visual scenes, we took the 36

function/affordance rankings from the SUN attribute database

(Patterson, Xu, Su, & Hays, 2014). In this set, observers were

asked to generate attributes that differentiated scenes.

Mapping Functions Onto Images

To test our hypothesis that scene category distance is reflected

in the distance of scenes’ functions, we need to map functions onto

scene categories. Using a separate large-scale online experiment,

484 participants indicated which of the 227 actions could take

place in each of the 311 scene categories. Participants were

screened using the same criterion described above. In each trial, a

participant saw a randomly selected exemplar image of one scene

category along with a random selection of 17 or 18 of the 227

actions. Each action was hyperlinked to its description in the

ATUS lexicon. Participants were instructed to use check boxes to

indicate which of the actions would typically be done in the type

of scene shown.

Each individual participant performed a median of nine trials

(range: 1–4,868). Each scene category—function pair was rated by

a median of 16 participants (range: 4–86), for a total of 1.4 million

trials.

We created a 311-category by 227-function matrix in which

each cell represents the proportion of participants indicating that

the action could take place in the scene category. Because scene

categories varied widely in the number of actions they afford, we

created a distance matrix by computing the cosine distance be-

tween all possible pairs of categories, resulting in a 311 � 311

function-based distance matrix. This measures the overlap between

actions while being invariant to the absolute magnitude of the

action vector.

Function Space MDS Analysis

To better understand the scene function space, we performed a

classical metric multidimensional scaling (MDS) decomposition of

the function distance matrix. This yielded an embedding of the

scene categories such that inner products in this embedding space

approximate the (double-centered) distances between scene cate-

gories, with the embedding dimensions ranked in order of impor-

tance (Buja et al., 2008). To better understand the MDS dimen-

sions, we computed the correlation coefficient between each action

(across scene categories) with the category coordinates for a given

dimension. This provides us with the functions that are the most

and least associated with each dimension.

Alternative Models

To put the performance of the function-based model in perspec-

tive, we compared it to nine alternative models based on previ-

ously proposed scene category primitives. Five of the models

represented visual features, one model considered human-

generated scene attributes, and one model examined the human-

labeled objects in the scenes. As with the function model, these

models yielded scene category by feature matrices that were con-

verted to distance matrices using cosine distance, and then com-

pared to the category distance matrix. The object and attribute

models, like the functional model, were created from human

observers’ scene labeling. Additionally, two models measured

distances directly, based either on the lexical distance between

scene category names (the Semantic Model), or simply by whether

scenes belonged to the same superordinate level category (indoor,

urban or natural; the Superordinate-Category Model). We will

detail each of the models below.

Models of Visual Features

A common framework for visual categorization and classifica-

tion involves finding the necessary and sufficient visual features to

perform categorization for example, (Fei-Fei & Perona, 2005;

Lazebnik et al., 2006; Oliva & Torralba, 2001; Renninger &

Malik, 2004; Vogel & Schiele, 2007). Here we constructed dis-
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tance matrices based on various visual feature models to determine

how well they map on the human categorization (i.e., the category

dissimilarity matrix) and in particular compare their performance

to our functional category model.

Convolutional Neural Network

To represent the state-of-the-art in terms of visual features, we

generated a visual feature vector using the publicly distributed

OverFeat convolutional neural network (CNN) (Sermanet et al.,

2013), which was trained on the ImageNet, 2012 training set

(Deng et al., 2009). These features, computed by iteratively ap-

plying learned nonlinear filters to the image, have been shown to

be a powerful image representation for a wide variety of visual

tasks (Razavian, Azizpour, Sullivan, & Carlsson, 2014). This

seven-layer CNN takes an image of size 231 � 231 as input, and

produces a vector of 4,096 image features that are optimized for

1,000-way object classification. This network achieves top-five

object recognition on ImageNet, 2012 with approximately 16%

error, meaning that the correct object is one of the model’s first

five responses in 84% of trials. Using the top layer of features, we

averaged the features for all images in each scene category to

create a 311-category by 4,096-feature matrix.

Gist

We used the Gist descriptor features of (Oliva & Torralba,

2001). This popular model for scene recognition provides a sum-

mary statistic representation of the dominant orientations and

spatial frequencies at multiple scales coarsely localized on the

image plane. We used spatial bins at four cycles per image and

eight orientations at each of four spatial scales for a total of 3,072

filter outputs per image. We averaged the gist descriptors for each

image in each of the 311 categories to come up with a single

3,072-dimensional descriptor per category.

Color Histograms

To determine the role of color similarity in scene categorization,

we represented color using LAB color space. For each image, we

created a two-dimensional histogram of the a� and b� channels

using 50 bins per channel. We then averaged these histograms over

each exemplar in each category, such that each category was

represented as a 2,500 length vector representing the averaged

colors for images in that category. The number of bins was chosen

to be similar to those used in previous scene perception literature

(Oliva & Schyns, 2000).

Tiny Images

Torralba and colleagues (Torralba et al., 2008) demonstrated

that human scene perception is robust to aggressive image down-

sampling, and that an image descriptor representing pixel values

from such downsampled images could yield good results in scene

classification. Here, we downsampled each image to 32 � 32

pixels (grayscale). We created our 311-category by 1024 feature

matrix by averaging the downsampled exemplars of each category

together.

Gabor Wavelet Pyramid

To assess a biologically inspired model of early visual process-

ing, we represented each image in this database as the output of a

bank of multiscale Gabor filters. This type of representation has

been used to successfully model the representation in early visual

areas (Kay, Naselaris, Prenger, & Gallant, 2008). Each image was

converted to grayscale, down sampled to 128 � 128 pixels, and

represented with a bank of Gabor filters at three spatial scales (3,

6, and 11 cycles per image with a luminance-only wavelet that

covers the entire image), four orientations (0, 45, 90 and 135

degrees) and two quadrature phases (0 and 90 degrees). An iso-

tropic Gaussian mask was used for each wavelet, with its size

relative to spatial frequency such that each wavelet has a spatial

frequency bandwidth of 1 octave and an orientation bandwidth of

41 degrees. Wavelets were truncated to lie within the borders of

the image. Thus, each image is represented by 3�3�2�4 �

6�6�2�4 � 11�11�2�4 � 1,328 total Gabor wavelets. We created

the feature matrix by averaging the Gabor weights over each

exemplar in each category.

Object-Based Model

Our understanding of high-level visual processing has generally

focused on object recognition, with scenes considered as a structured

set of objects (Biederman, 1987). Therefore, we also consider a model

of scene categorization that is explicitly built upon objects. To model

the similarity of objects within scene categories, we used the LabelMe

tool (Russell et al., 2008) that allows users to outline and annotate

each object in each image by hand. 7,710 scenes from our categories

were already labeled in the SUN 2012 release (Xiao et al., 2014), and

we augmented this set by labeling an additional 223 images. There

were a total of 3,563 unique objects in this set. Our feature matrix

consisted of the proportion of scene images in each category contain-

ing a particular object. For example, if 10 out of 100 kitchen scenes

contained a “blender,” the entry for kitchen-blender would be 0.10. To

estimate how many labeled images we would need to robustly rep-

resent a scene category, we performed a bootstrap analysis in which

we resampled the images in each category with replacement (giving

the same number of images per category as in the original analysis),

and then measured the variance in distance between categories. With

the addition of our extra images, we ensured that all image categories

either had at least 10 fully labeled images or had mean SD in distance

to all other categories of less than 0.05 (e.g., less than 5% of the

maximal distance value of 1).

Scene-Attribute Model

Scene categories from the SUN database can be accurately

classified according to human-generated attributes that describe a

scene’s material, surface, spatial, and functional scene properties

(Patterson et al., 2014). To compare our function-based model to

another model of human-generated attributes, we used the 66

nonfunction attributes from (Patterson et al., 2014) for the 297

categories that were common to our studies. To further test the role

of functions, we then created a separate model from the 36

function-based attributes from their study. These attributes are

listed in the Supplementary Material.
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Semantic Models

Although models of visual categorization tend to focus on the

necessary features and objects, it has long been known that most

concepts cannot be adequately expressed in such terms (Wittgen-

stein, 2010). As semantic similarity has been suggested as a means

of solving category induction (Landauer & Dumais, 1997), we

examined the extent to which category structure follows from the

semantic similarity between category names. We examined seman-

tic similarity by examining the shortest path between category

names in the WordNet tree using the Wordnet::Similarity imple-

mentation of (Pedersen, Patwardhan, & Michelizzi, 2004). The

similarity matrix was normalized and converted into distance. We

examined each of the metrics of semantic relatedness implemented

in Wordnet::Similarity and found that this path measure was the

best correlated with human performance.

Superordinate-Category Model

As a baseline model, we examined how well a model that groups

scenes only according to superordinate-level category would pre-

dict human scene category assessment. We assigned each of the

311 scene categories to one of three groups (natural outdoors,

urban outdoors, or indoor scenes). These three groups have been

generally accepted as mutually exclusive and unambiguous

superordinate-level categories (Tversky & Hemenway, 1983; Xiao

et al., 2014). Then, each pair of scene categories in the same group

was given a distance of 0 while pairs of categories in different

groups were given a distance of 1.

Model Assessment

To assess how each of the feature spaces resembles the human

categorization pattern, we created a 311 � 311 distance matrix

representing the distance between each pair of scene categories for

each feature space. We then correlated the off-diagonal entries in

this distance matrix with those of the category distance matrix

from the scene categorization experiment. Because these matrices

are symmetric, the off-diagonals were represented in a vector of

48,205 distances.

Noise Ceiling

The variability of human categorization responses puts a limit

on the maximum correlation expected by any of the tested models.

To get an estimate of this maximum correlation, we used a boot-

strap analysis in which we sampled with replacement observations

from our scene categorization dataset to create two new datasets of

the same size as our original dataset. We then correlated these two

datasets to one another, and repeated this process 1,000 times.

Hierarchical Regression Analysis

To understand the unique variance contributed by each of our

feature spaces, we used hierarchical linear regression analysis,

using each of the feature spaces both alone and in combination to

predict the human categorization pattern. In total, 15 regression

models were used: (1) all feature spaces used together; (2) the top

four performing features together (functions, objects, attributes

and the CNN visual features); (3–6) each of the top four features

alone; (6–11) each pair of the top four features; and (12–15) each

set of three of the top four models. By comparing the r2 values of

a feature space used alone to the r2 values of that space in

conjunction with another feature space, we can infer the amount of

variance that is independently explained by that feature space. To

visualize this information in an Euler diagram, we used EulerAPE

software (Micallef & Rodgers, 2014).

Results

Human Scene Category Distance

To assess the conceptual structure of scene environments, we

asked over 2,000 human observers to categorize images as belong-

ing to 311 scene categories in a large-scale online experiment. The

resulting 311 � 311 category distance matrix is shown in Figure 3.

To better visualize the category structure, we have ordered the

scenes using the optimal leaf ordering for hierarchical clustering

(Bar-Joseph, Gifford, & Jaakkola, 2001); allowing us to see what

data-driven clusters emerge.

Several category clusters are visible. Some clusters appear to group

several subordinate-level categories into a single entry-level concept,

such as “bamboo forest,” “woodland,” and “rainforest” being exam-

ples of forests. Other clusters seem to reflect broad classes of activities

(such as “sports”) that are visually heterogeneous and cross other

previously defined scene boundaries, such as indoor-outdoor (Fei-Fei

et al., 2007; Henderson, Larson, & Zhu, 2007; Szummer & Picard,

1998; Tversky & Hemenway, 1983), or the size of the space (Greene

& Oliva, 2009a; Oliva & Torralba, 2001; Park, Konkle, & Oliva,

2014). Such activity-oriented clusters hint that the actions that one can

perform in a scene (the scene’s functions) could provide a fundamen-

tal grouping principle for scene category structure.

Function-Based Distance Best Correlates With Human

Category Distance

For each of our feature spaces, we created a distance vector (see

Model Assessment) representing the distance between each pair of

scene categories. We then correlated this distance vector with the

human distance vector from the previously described experiment.

To quantify the performance of each of our models, we defined a

noise ceiling based on the interobserver reliability in the human scene

distance matrix. This provides an estimate of the explainable variance

in the scene categorization data, and thus provides an upper bound on

the performance of any of our models. Using bootstrap sampling (see

Methods), we found an interobserver correlation of r � .76. In other

words, we cannot expect a correlation with any model to exceed this

value.

Function-based similarity had the highest resemblance to the hu-

man similarity pattern (r � .50 for comprehensive set, and r � .51 for

the 36 functional attributes). This represents about 2/3 of the maxi-

mum observable correlation obtained from the noise ceiling. As

shown in Figure 4A, this correlation is substantially higher than any

of the alternative models we tested. The two function spaces were

highly correlated with one another (r � .63). As they largely make the

same predictions, we will use the results from the 227-function set for

the remainder of the article.

Of course, being able to perform similar actions often means

manipulating similar objects, and scenes with similar objects are
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likely to share visual features. Therefore, we compared function-

based categorization patterns to alternative models based on per-

ceptual features, nonfunction attributes, object-based similarity,

and the lexical similarity of category names.

We tested five different models based on purely visual features.

The most sophisticated used the top-level features of a state-of-the-art

CNN model (Sermanet et al., 2013) trained on the ImageNet database

(Deng et al., 2009). Category distances in CNN space produced a

correlation with human category dissimilarity of r � .39. Simpler

visual features, however, such as gist (Oliva & Torralba, 2001), color

histograms (Oliva & Schyns, 2000), Tiny Images (Torralba et al.,

2008), and wavelets (Kay et al., 2008) had low correlations with

human scene category dissimilarity.

Category structure could also be predicted to some extent based

on the similarity between the objects present in scene images (r �

.33, using human-labeled objects from the LabelMe database (Rus-

sell et al., 2008), the nonfunction-based attributes (r � .28) of the

SUN attribute database (Patterson et al., 2014), or the lexical

distance between category names in the WordNet tree (Huth,

Nishimoto, Vu, & Gallant, 2012; Miller, 1995; Pedersen et al.,

2004; r � .27). Surprisingly, a model that merely groups scenes by

superordinate-level categories (indoor, urban or natural environ-

ments) also had a sizable correlation (r � .25) with human dis-

similarity patterns.

Although each of these feature spaces had differing dimensionali-

ties, this pattern of results also holds if the number of dimensions is

equalized through principal components analysis. We created mini-

mal feature matrices by using the first N PCA components, and then

correlated the cosine distance in these minimal feature spaces with the

human scene distances, see Figure 5. We found that the functional

features were still the most correlated with human behavior.

Independent Contributions From Alternative Models

To what extent does function-based similarity uniquely explain

the patterns of human scene categorization? Although function-

Figure 3. The human category distance matrix from our large-scale online experiment was found to be sparse.

Over 2,000 individual observers categorized images in 311 scene categories. We visualized the structure of this

data using optimal leaf ordering for hierarchical clustering, and show representative images from categories in

each cluster. See the online article for the color version of this figure.
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based similarity was the best explanation of the human categori-

zation pattern of all the models we tested, CNN and object-based

models also had sizable correlations with human behavior. To

what extent do these models make the same predictions?

To assess the independent contributions made by each of the

models, we used a hierarchical linear regression analysis in which

each of the three top-performing models was used either separately

or in combination to predict the human similarity pattern. By

comparing the r2 values from the individual models to the r2 values

for the combined model, we can assess the unique variance ex-

plained by each descriptor. A combined model with all features

explained 31% of the variance in the human similarity pattern (r �

.56). This model is driven almost entirely by the top four feature

spaces (functions, CNN, attribute, and object labels), which ex-

plained 95% of the variance from all features, a combined 29.4%

of the total variance (r � .54). Note that functions explained 85.6%

of this explained variance, indicating that the object and perceptual

features only added a small amount of independent information

(14.4% of the combined variance). Variance explained by all 15

regression models is listed in Table 1.

Although there was a sizable overlap between the portions of the

variance explained by each of the models (see Figure 4B), around

half of the total variance explained can be attributed only to

functions (44.2% of the explained variance in top four models),

and was not shared by the other three models. In contrast, the

independent variance explained by CNN features, object-based

features, and attributes accounted for only 6.8%, 0.6%, and 0.4%

Figure 5. Robustness to dimensionality reduction. For each feature space,

we reconstructed the feature matrix using a variable number of PCA

components and then correlated the cosine distance in this feature space

with the human scene distances. Although the number of features varies

widely between spaces, all can be described in �100 dimensions, and the

ordering of how well the features predict human responses is essentially the

same regardless of the number of original dimensions. See the online

article for the color version of this figure.

Figure 4. (A) Correlation of all models with human scene categorization

pattern. Function-based models (dark blue, left) showed the highest resem-

blance to human behavior, achieving 2/3 of the maximum explainable

similarity (black dotted line). Of the models based on visual features

(yellow), only the model using the top-level features of the convolutional

neural network (CNN) showed substantial resemblance to human data. The

object-based model, the attribute-based model, the lexical model and the

superordinate-level model all showed moderate correlations. (B) Euler

diagrams showing the distribution of explained variance for sets of the four

top-performing models. The function-based model (comprehensive) ac-

counted for between 83.3% and 91.4% of total explained variance of joint

models, and between 45.2% and 58.1% of this variance was not shared

with alternative models. Size of Euler diagrams is approximately propor-

tional to the total variance explained. See the online article for the color

version of this figure.
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of the explained variance, respectively. Therefore, the contribu-

tions of visual, attribute, and object-based features are largely

shared with function-based features, further highlighting the utility

of functions for explaining human scene categorization patterns.

Functions Explain All Types of Scene Categories

Does the impressive performance of the functional model hold

over all types of scene categories, or is performance driven by

outstanding performance on a particular type of scene? To address

this question, we examined the predictions made by the three

top-performing models (functions, CNN, and objects) on each of

the superordinate-level scene categories (indoor, urban, and natu-

ral landscape) separately. As shown in Table 2, we found that the

function-based model correlated similarly with human categoriza-

tion in all types of scenes. This is in stark contrast to the CNN and

object models, whose performance was driven by performance on

the natural landscape scenes.

Examining Scene Function Space

To better understand the function space, we performed clas-

sical multidimensional scaling on the function distance matrix,

allowing us to identify how patterns of functions contribute to

the overall similarity pattern. We found that at least 10 MDS

dimensions were necessary to explain 95% of the variance in

the function distance matrix, suggesting that the efficacy of the

function-based model was driven by a number of distinct func-

tion dimensions, rather than just a few useful functions. We

examined the projection of categories onto the first three MDS

dimensions. As shown in Figure 6, the first dimension appears

to separate indoor locations that have a high potential for social

interactions (such as “socializing” and “attending meetings for

personal interest”) from outdoor spaces that afford more soli-

tary activities, such as “hiking” and “science work.” The second

dimension separates work-related activities from leisure. Later

dimensions appear to separate environments related to trans-

portation and industrial workspaces from restaurants, farming,

and other food-related environments, see Figure 7 for listing of

associated categories and functions for each MDS dimension. A

follow-up experiment demonstrated that functions that are

highly associated with a particular object (e.g., “mailing” is

strongly associated with objects such as mailboxes and enve-

lopes) are equally predictive of categorization patterns as func-

tions that do not have strong object associates (e.g., “helping an

adult”), see Supplementary Materials for details.

Why does the function space have higher fidelity for predict-

ing human patterns of scene categorization? To concretize this

result, we will examine a few failure cases for alternative

features. Category names should reflect cognitively relevant

categories, so what hurts the performance of the lexical distance

model? This model considers the categories “access road” and

“road tunnel” to have the lowest distance of all category pairs

(possibly because both contain the term “road”), while only

10% of human observers placed these into the same category.

By contrast, the function model considered them to be rather

distant, with only 35% overlap between functions (intersection

over union). Shared functions included “in transit/traveling”

and “architecture and engineering work,” while tunnels inde-

pendently afforded “rock climbing and caving” and access

roads often contained buildings, thus affording “building

grounds and maintenance work.” If objects such as buildings

can influence both functions and categories, then why do not

objects fare better? Consider the categories “underwater kelp

forest” and “underwater swimming pool.” The object model

considers them to be very similar given the presence of water,

but 80% of human observers consider them to be different.

Similarly, these categories share only 17% overlap in functions,

with the kelp forest affording actions such as “science work,”

while the swimming pool affords “playing sports with chil-

dren.”

Of course, certain failure cases of the function model should

also be mentioned. For example, while all human observers

agreed that “bar” and “tea room” were different categories, the

function model considered them to be similar, given their

shared functions of “socializing,” “eating and drinking,” “food

preparation and serving work,” and so forth. Similarly, the

function model considered “basketball arena” and “theater” to

be similar, while human observers did not. Last, the function

model also frequently confused scene categories that shared a

particular sport, such as “baseball field” and “indoor batting

cage,” while no human observers placed them in the same

category. However, it should be noted that human observers

also shared this last trait in other examples, with 55% of

observers placing “bullpen” and “pitcher’s mound” into the

same category.

Table 1

Variance Explained (r2) by 15 Regression Models

Model r2

Attribute .08
Object .11
CNN .15
Function .25
Object � Attribute .11
Attribute � CNN .15
Object � CNN .16
Object � Function .27
Attribute � Function .27
CNN � Function .29
Object � Attribute � CNN .16
Object � Attribute � Function .27
Attribute � CNN � Function .29
Object � CNN � Function .29
Attribute � Object � CNN � Function .29

Table 2

Correlation of Top-Four Models in Each of the Three

Superordinate-Level Scene Categories

Indoor Urban Natural

Functions .50 .47 .51
CNN .37 .43 .59
Attributes .15 .20 .41
Objects .19 .27 .44

Note. The function-based model performs similarly in all types of scenes,
while the CNN, attribute, and object-based models perform poorly in
indoor environments.
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Discussion

We have shown that human scene categorization is better explained

by the action possibilities, or functions, of a scene than by the scene’s

visual features or objects. Furthermore, function-based features ex-

plained far more independent variance than did alternative models, as

these models were correlated with human category patterns only

insofar as they were also correlated with the scene’s functions. This

suggests that a scene’s functions contain essential information for

categorization that is not captured by the scene’s objects or visual

features.

The current results cannot be explained by the smaller dimen-

sionality of the function-based features, as further analysis re-

vealed that function-based features outperformed other feature

spaces using equivalent numbers of dimensions. Furthermore, this

pattern was observed over a wide range of dimensions, suggesting

that each functional feature contained more information about

scene categories than each visual or object-based feature. Criti-

cally, the function-based model performed with similar fidelity on

all types of scenes, which is a hallmark of human scene perception

(Kadar & Ben-Shahar, 2012) that is not often captured in compu-

tational models. Indeed, indoor scene recognition is often much

harder for computer models than other classification problems

(Quattoni & Torralba, 2009; Szummer & Picard, 1998) and this

was true for our visual and object-based models, while the function

model showed high fidelity for explaining indoor scene categori-

zation.

The idea that the function of vision is for action has permeated the

literature of visual perception, but it has been difficult to fully opera-

tionalize this idea for testing. Psychologists have long theorized that

rapid and accurate environmental perception could be achieved by the

explicit coding of an environment’s affordances, most notably in J.J.

Gibson’s influential theory of ecological perception (Gibson, 1986).

This work is most often associated with the direct perception of

affordances that reflect relatively simple motor patterns such as sitting

or throwing. As the functions used in the current work often reflect

higher-level, goal-directed actions, and because we are making no

specific claims about the direct perception of these functions, we have

opted not to use the term affordances here. Nonetheless, ideas from

Gibson’s ecological perception theory have inspired this work, and

thus, we consider our functions as conceptual extensions of Gibson’s

idea.

In our work, a scene’s functions are those actions that one can

imagine doing in the scene, rather than the activities that one

reports as occurring in the scene. This distinguishes this work from

that of activity recognition (Aggarwal & Ryoo, 2011; Hafri, Pa-

pafragou, & Trueswell, 2013; Wiggett & Downing, 2011; Yao &

Fei-Fei, 2010), placing it closer to the ideas of Gibson and the

school of ecological psychology.

Previous small-scale studies have found that environmental func-

tions such as navigability are reflected in patterns of human catego-

rization (Greene & Oliva, 2009a, 2010), and are perceived very

rapidly from images (Greene & Oliva, 2009b). Our current results

provide the first comprehensive, data-driven test of this hypothesis,

using data from hundreds of scene categories and affordances. By

leveraging the power of crowdsourcing, we were able to obtain both

a large-scale similarity structure for visual scenes, but also normative

ratings of functions for these scenes. Using hundreds of categories,

thousands of observers, and millions of observations, crowdsourcing

allowed a scale of research previously unattainable. Previous research

on scene function has also suffered from the lack of a comprehensive

list of functions, relying instead on the free responses of human

observers describing the actions that could be taken in scenes (Greene

& Oliva, 2009a; Patterson & Hays, 2012). By using an already

comprehensive set of actions from the American Time Use Survey,

we were able to see the full power of functions for predicting human

categorization patterns. The current results speak only to categoriza-

tion patterns obtained from unlimited viewing times, and future work

will examine the extent to which function-based categorization holds

for limited viewing times, similar to previous work (Greene & Oliva,

2009a, 2009b).

Given the relatively large proportion of variance indepen-

dently explained by function-based features, we are left with the

question of why this model outperforms the more classic mod-

Figure 6. (Top): Distribution of superordinate-level scene categories

along the first MDS dimension of the function distance matrix, which

separates indoor scenes from natural scenes. Actions that were positively

correlated with this component tend to be outdoor-related activities such as

hiking while negatively correlated actions tend to reflect social activities

such as eating and drinking. (Middle) The second dimension seems to

distinguish environments for work from environments for leisure. Actions

such as playing games are positively correlated while actions such as

construction and extraction work are negatively correlated (Bottom). The

third dimension distinguishes environments related to farming and food

production (pastoral) from industrial scenes specifically related to trans-

portation. Actions such as travel and vehicle repair are highly correlated

with this dimension, while actions such as farming and food preparation

are most negatively correlated. See the online article for the color version

of this figure.
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els. By examining patterns of variance in the function by

category matrix, we found that functions can be used to separate

scenes along previously defined dimensions of scene variance,

such as superordinate-level category (Joubert, Rousselet, Fize,

& Fabre-Thorpe, 2007; Loschky & Larson, 2010; Tversky &

Hemenway, 1983), and between work and leisure activities

(Ehinger, Torralba, & Oliva, 2010). Although the variance

explained by function-based similarity does not come directly

from visual features or the scene’s objects, human observers

must be able to apprehend these functions from the image

somehow. It is, therefore, a question open for future work to

understand the extent to which human observers bring nonvi-

sual knowledge to bear on this problem. Of course, it is possible

that functions can be used in conjunction with other features for

Figure 7. Principal components of function matrix. MDS was performed on the scene by function matrix, yielding

a coordinate for each scene along each MDS dimension, as well as a correlation between each function and each

dimension. The fraction of variance in scene distances explained by each dimension was also computed, showing that

these first four dimensions capture 81% of the function distance model. See the online article for the color version of

this figure.
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categorization, just as shape can be determined independently

from shading (Ramachandran, 1988), motion (Julesz, 2006), or

texture (Gibson, 1950).

Some recent work has examined large-scale neural selectivity

based on semantic similarity (Huth et al., 2012), or object-based

similarity (Stansbury et al., 2013), finding that both types of

conceptual structures can be found in the large-scale organization

of human cortex. Our current work indeed shows sizable correla-

tions between these types of similarity structures and human

behavioral similarity. However, we find that function-based sim-

ilarity is a better predictor of behavior and may provide an even

stronger grouping principle in the brain.

Despite the impressive predictive power of functions for explaining

human scene categorization, many open questions are still left about

the nature of functions. To what extent are they perceptual primitives

as suggested by Gibson, and to what extent are they inherited from

other diagnostic information? The substantial overlap between func-

tions and objects and visual features (Figure 4B) implies that at least

some functions are correlated with these features. Intuitively, this

makes sense as some functions, such as “mailing” may be strongly

associated with objects such as a mailbox or an envelope. However,

our results suggest that the mere presence of an associated object may

not be enough: just because the kitchen supply store has pots and pans

does not mean that one can cook there. The objects must conform in

type, number, and spatial layout to jointly give rise to functions.

Furthermore, some functions such as “jury duty,” “waiting,” and

“socializing” are harder to associate with particular objects and fea-

tures, and may require higher-level, nonvisual knowledge. While the

current results bypass the issue of how observers compute the func-

tions, we must also examine how the functions can be understood

directly from images in a bottom-up manner.

These results challenge many existing models of visual categori-

zation that consider categories to be purely a function of shared visual

features or objects. Just as the Aristotelian theory of concepts assumed

that categories could be defined in terms of necessary and sufficient

features, classical models of visual categorization have assumed that

a scene category can be explained by necessary and sufficient objects

(Biederman, 1987; Stansbury et al., 2013) or diagnostic visual fea-

tures (Renninger & Malik, 2004; Vogel & Schiele, 2007). However,

just as the classical theory of concepts cannot account for important

cognitive phenomena, the classical theory of scene categories cannot

account for the fact that two scenes can share a category even when

they do not share many features or objects. By contrast, the current

results demonstrate that the possibility for action creates categories of

environmental scenes. In other words, a kitchen is a kitchen because

it is a space that affords cooking, not because it shares objects or other

visual features with other kitchens.
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