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Abstract

In this paper, we present two techniques to reveal image features
that attract the eye during visual search: thediscrimination image
paradigmandprincipal component analysis.In preliminary exper-
iments, we employed these techniques to identify image features
used to identify simple targets embedded in1/ f noise. Two main
findings emerged. First, the loci of fixations were not random but
were driven by local image features, even in very noisy displays.
Second, subjects often searched for a component feature of a target
rather that the target itself, even if the target was a simple geomet-
ric form. Moreover, the particular relevant component varied from
individual to individual. Also, principal component analysis of the
noise patches at the point of fixation reveals global image features
used by the subject in the search task. In addition to providing in-
sight into the human visual system, these techniques have relevance
for machine vision as well. The efficacy of a foveated machine vi-
sion system largely depends on its ability to actively select ‘visually
interesting’ regions in its environment. The techniques presented in
this paper provide valuable low-level criteria for executing human-
like scanpaths in such machine vision systems.
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1 Introduction

The eyes are not like cameras in that, despite a large field of view,
only a tiny central region is processed in detail. The decrease in
resolution from the fovea towards the periphery is attributed to the
distribution of the ganglion cells on the retina. The ganglion cells
are packed densely at the center of the retina (i.e. the foveola), and
the sampling rate drops almost quadratically as a function of eccen-
tricity. In order to build a detailed representation of the image, the
human visual system therefore uses a dynamic process of actively
scanning the visual environment using discrete fixations linked by
saccadic eye movements. The eye gathers most information during

the fixations while little information is gathered during the saccades
(due to saccadic suppression, motion blurring, etc.).

Not surprisingly, there has been significant interest in inves-
tigating image features that attract the human eye. A few re-
ported studies on automatic visual search have examined fixation
selection based on features like contrast, edges, object similarity
[Moghaddamand and Pentland 1995] or combinations of random-
ized saliency and proximity factors [Klarquist and Bovik 1998].
These ideas however are based on high level intuition. [Privitera
and Stark 2000] propose a computational model for human scan
paths based on intelligent image processing of digital images. The
crux of their methodology is to identify image-processing algo-
rithms that mimic the eye in detecting points of interest. Their basic
idea is to define algorithmic regions of interest (aROI) generated by
the image processing algorithms and compare the results with hu-
man regions of interest (hROI). The comparison of the aROI and
hROI is accomplished by analyzing their spatial/structural binding
(location similarity) and temporal/sequential binding (order of fixa-
tions). The results indicate that the fixation point prediction coher-
ence is about 0.54 for different subjects looking at the same image
i.e. about half the predictions made are accurate. Another approach
to analyze of regions-of-interest is to investigate the statistics of
some simple image features like contrast and pixel intensity cor-
relation at the point of gaze. Exploiting these statistics of images
to predict fixation points seems to be a promising direction since
the eye evolved using these statistics and the visual neurons may be
optimized for their inputs. It has been demonstrated [Reinagel and
Zador 1999] that subjects tend to fixate high-contrast regions and
that the intensities of nearby image pixels at the fixation regions are
less correlated than in image regions selected at random i.e. the
eye fixates on regions rich in spatial structure. Another plausible
reason is that this reflects the attempt of the eye to maximize the
information it can gather at each fixation [Barlow 1961].

The active nature of looking as instantiated in the human visual
system promises to have advantages in both speed and reduced stor-
age requirements in artificial vision systems as well. The develop-
ment of foveated artificial vision systems, depends on the ability to
model the eye movement mechanisms that automatically determine
areas of interest in the image. Thus, a fundamental question in the
emerging field of foveated, active artificial vision is therefore ‘How
do we decide where to point the cameras?’ Early work [Zelinsky
1996; Kowler et al. 1995]on the determination of gaze emphasized
cognitive factors and, while interesting, was not scientific in that
it did not produce theories that could make accurate predictions in
novel situations, and certainly did not provide the basis for cam-
era movement algorithms in artificial visual systems. Obviously,
such a theory is needed in order to understand biological vision and
it is also, by definition, the most fundamental component of any
foveated, active artificial vision system. The instantiation of auto-
matic fixation models into the next generation of efficient, foveated,
active vision systems can then be applied to a diverse array of prob-
lems including automated pictorial database query and data min-
ing; image understanding; automated visual search in, for example,
cancer detection, autonomous vehicle navigation; and real-time,



foveated video compression [Lee 2000].
The human visual system has evolved multiple mechanisms for

controlling gaze. These mechanisms differ in the amount of image
processing and interpretation they require, and the relative impor-
tance of each of them is situation-dependent. Since mechanisms
that require relatively little image interpretation are likely to be
most relevant for current work in artificial vision, our goal is to
develop an image-based theory of human eye movements to isolate
and understand the data-driven mechanisms that guide eye move-
ments. In this paper we present novel applications using two statis-
tical techniques: the discrimination image paradigm and principal
component analysis, to extract fundamental image features used in
a search task. In our approach, we record human eye movements
in a visual search task in which subjects look for targets embedded
in noise. Image patches at the subject’s point of gaze are then ex-
tracted from the noise background to create a bank of image patches
that the subject found ‘interesting.’ We then use the statistical image
analysis techniques mentioned earlier to extract image properties
that are most common in these interesting patches. Our approach
is unique in that we exploit statistics inherent in the noise image
patches to reveal what the eye finds interesting. This approach has
two fundamental advantages. First, it extracts low-level features de-
rived directly from the linear contribution of each stimulus pixel in
attracting gaze. Second, since the stimuli are composed of random
noise, there are no high-level features of cognitive or emotional in-
terest to interfere with the image-based mechanisms determining
gaze position.

The paper is organized as follows. In Section 2 we discuss in de-
tail the discrimination image paradigm and the principal component
analysis techniques. Section 3 discusses the experimental method-
ology. Section 4 describes the results obtained using the data anal-
ysis routines and finally Section 5 concludes by summarizing the
results obtained .

2 Algorithms for Data Analysis

2.1 Discrimination Image Paradigm (DIP)

The discrimination image paradigm was originally developed to de-
termine exactly what information was being used in simple visual
discriminations [Beard and Ahumada, Jr. 1998]. The idea is to
embed in a discrimination task a sufficient amount of visual noise
so that the overall signal-to-noise ratio, and hence the outcome of
the discrimination task, is largely determined by the external added
noise. This task is repeated many times with different added noise
on each trial. The noise from each trial when the observer makes a
given response is then saved and averaged together. Over many tri-
als, the resulting ‘discrimination image’ represents the linear con-
tribution (or weight) of each pixel in determining that particular
response from the subject.

For illustration purposes, assume that two bars should ideally be
in vertical alignment but, are in practice always offset one way or
the other as shown in the left panel of the Fig. 1. On each trial, the
bars are embedded in noise to limit performance, randomly offset
top-leftward or -rightward (center panel of figure), and then briefly
presented to the subject. The discrimination image paradigm is de-
signed to reveal image features the human visual system uses to
decide if the bars are shifted right or to the left. If the subject re-
sponded ‘rightward’ or ‘leftward,’ the noise for that trial is averaged
into the ‘right’ or ‘left’ image, respectively. At the end of the exper-
iment (generally 10,000 trials run over several sessions), definite
filter properties begin to emerge in the two average images. Finally,
the images are differenced and thresholded for statistical signifi-
cance (pixels within 2 standard deviations of the mean can be set
to gray, for example). A discrimination image from a nearly identi-
cal experiment (one using a windowed-sinusoid instead of a sharp

Figure 1: Discrimination Images for vertical bar set up

bar) is shown in the rightmost panel. The subject seems to be using
elongated, vertical, odd-symmetric ‘filters’ sensitive to the horizon-
tal shift of the bars to make the decision, which clearly reflects a
plausible stratagem for this task. We extend this basic methodology
to eye movements for the first time.

2.2 Principal Component Analysis (PCA)

PCA [Duda et al. 2000] is a technique for extracting inter-pixel rela-
tionships. It is also referred to as the Hotelling transform [Hotelling
1933] or the Karhunen-Loeve transform [Jayant and Noll 1984].
The main idea behind PCA is to represent maximum information
(in the minimum mean square sense [Duda et al. 2000]) about a
given data set using the least number of uncorrelated linear de-
scriptors: the principal components. The principal components are
found by projecting the data set onto a new set of orthogonal bases
vectors. Given a set of observations of the random column vector
~x, it can be shown [Jayant and Noll 1984] that the orthogonal basis
vectors are given by the eigenvectors obtained by the eigenvalue de-
composition [Strang 1988] of the correlation matrixC =~x~xt where
~xt is the transpose of~x. The eigenvalues corresponding to the eigen-
vectors represent the variance captured by each vector. The new or-
thonormal basis vectors thus found can be ordered according to the
variance captured by each basis vector so that the component that
accounts for the most variation in the data is represented first and
hence captures the fundamental structure of the data set. PCA has
been used for image analysis in face recognition [Turk and Pentland
1991b] and natural image statistics [Hancock et al. 1992].

To better understand the use of PCA in image feature extraction
consider the following illustration. In Fig. 2, the left hand panel
shows four synthetic images from a set of 40. Each has a vertical
Gabor patch of fixed phase and a lower-amplitude horizontal Ga-
bor patch of variable phase embedded in noise. The middle panel
shows the first four components generated by the PCA, and the right
panel shows their associated weights. As can be readily seen, the
PCA was quite effective at extracting out the underlying functions,
with the phase-varying Gabor represented by the second and third
components in roughly quadrature phase such that a linear combi-
nation could yield a Gabor of any phase. The fourth and remaining
36 components are basically noise and have correspondingly low
weights.

While there are many techniques to compute PCA, one of the
simplest is to compute the eigenvalue decomposition as described
before. Assume that we haveT observations of anN- dimen-
sional random variable~x: X = [~x1, ~x2, ~x3, ...~xT ]. TheN ∗N covari-
ance matrixC = XXt can become intractable for vector dimensions
that we are concerned with. For example, a64∗ 64 image patch
produces a covariance matrix with220 entries. Hence, a simpli-
fied way of calculating the eigenvalue decomposition is adopted
[Turk and Pentland 1991a]. Assuming that the number of obser-
vationsT is usually less than the dimensions of the sample, there
will be only T, instead ofN meaningful eigenvectors. There-
fore, the principal components are computed by first finding the



Figure 2: PCA for Gabor patches example

Figure 3: Examples of targets used for DIP

eigenvectorsV = [~v1, ~v2, ~v3, ...~vT ] of the T ∗ T covariance matrix
L = XtX. The eigenvectorsU = [~u1, ~u2, ~u3, ...~uT ] corresponding to
C are represented as a linear combination of the input vectors given
by U = XV.

3 Methods

3.1 Observers

Three observers, two of them familiar with the experiments and one
naive subject, were used for the experiment. Two of the subjects
were corrected for normal vision.

3.2 Stimuli and Tasks

The experiments used synthetic images of targets embedded in
noise, and the subject’s task was simply to find the target. In our
preliminary experiments, we have been using simple targets such
as circles, dipoles and triangles as show in Fig. 3. The noise we
used had a Fourier amplitude that was inversely proportional to the
frequency, since this mimics the average spectrum of natural images
[Field 1987] and thus making it an effective type of noise for ob-
scuring (or ‘masking’) targets. Such noise is generally referred to as
‘1/ f noise.’ The size of the target was64∗64 pixels and that of the
noise matrix was640∗ 480 pixels. The MATLAB psychophysics
toolbox [Brainard 1997; Pelli 1997] was used for stimulus presen-
tation.

The subject was shown a target and instructed to search for the
target in each subsequent stimulus display. Blocks of 50 trials with
the target embedded randomly in 1/f noise backgrounds were used.
10 different patterns of 1/f noise were selected randomly during
each block of trials to discourage the subject from remembering
the structure from previous noise stimuli presentations. The signal-
to-noise ratio was set such that the subject generally made many
fixations (∼ 20) to find the target. On finding the target, the subject
pressed a button and proceeded to the next image. Periodic verifi-
cations (every 10 trials) of the calibration was done by displaying a
dot on the display at the position of gaze in real-time and, if neces-
sary, recalibration was done (although this was rarely required).

Figure 4: Example scan path while searching in 1/f noise

3.3 Eye Tracking

Human eye movements were recorded using an SRI Generation V
Dual Purkinje eye tracker. It has an accuracy of< 10′ of arc, pre-
cision of∼ 1′ of arc, a response time of under1ms, and bandwidth
of DC to > 400Hz. The output of the eye tracker (horizontal and
vertical eye position signals) was sampled at200Hz by a National
Instruments data acquisition board in a Pentium IV host computer,
where the data was stored for offline data analysis.

A bite bar and forehead rest was used to restrict the subject’s
head movement. A 21-inch monitor with a gamma corrected dis-
play was used to display the stimulus at a distance of 180cm from
the subject. The screen resolution was set to640∗480correspond-
ing to about 34 pixels/degree of visual angle.

The subject was first positioned in the eye tracker and a positive
lock established onto the subject’s eye. A linear interpolation on a
3∗3 calibration grid was then done to establish the transformation
between the output voltages of the eye tracker and the position of
the subject’s gaze on the computer display.

3.4 Image data acquisition

The sampled voltages from each trial were converted to gaze posi-
tion on the image. Next, the path of the subject’s gaze was divided
into fixations and the intervening saccadic eye movements using
spatio-temporal criteria derived from the known dynamic properties
of human saccadic eye movements [Applied Science Laboratories
1998]. The resulting patterns for a single trial are shown in Fig. 4.
Eventually, the subject found (or thinks they found) the target, an
example of which is outlined by the solid box in Fig. 4 (It was a
dipole, and is very difficult to see on this particular trial). We de-
fined a ‘region of interest’ (ROI) of128∗ 128 pixels around each
fixation, two examples of which are shown by the dashed boxes. To
avoid edge effects, each region was masked by a radially symmetric
Butterworth filter shaped window whose fall off was chosen so that
it tapered to zero rapidly near the edges of each region. The ensem-
ble of these ROIs around the fixation points were then subjected to
DIP and PCA algorithms as discussed in Section 2. MATLAB was
used for all offline analysis.



Figure 5: Discrimination Images for Dipole search

Figure 6: Discrimination images for all targets

4 Results

4.1 DIP on fixation regions

To form a discrimination image, all the images in the ROI ensemble
were averaged and thresholded for statistical significance. The re-
sulting discrimination image for a dipole search is shown in the left
panel in Fig. 5. Gray denotes a value of zero, white corresponds
to positive values and black to negative values. The right panel
shows the result of selecting an equal number of randomly posi-
tioned ROIs for comparison. Clearly, this image is tending towards
an image with no specific structure. This discrimination image rep-
resents the feature that, when seen in the periphery of the visual
field, draws the gaze for closer inspection. The observer, unlike the
random fixation case, seemed to attend to a small, central portion
of dipole, perhaps weighting the lower white portion more. Fig. 6
describes the discrimination images for additional targets. For the
case of a circle, the subject seemed to be fixating at points which
have a bright region with a dark background while for the triangle,
the subject seemed to be searching for a white region and the sharp
diagonal right edge of the triangle. What makes this technique truly
intriguing is that the structure discovered by the DIP algorithm is
obtained from the noise structure alone. Since the target features
vary in their position in each fixation patch (the subject need not
fixate exactly at the same spot in the feature), it is possible that
many interesting features in the images are getting swamped in the
averaging process. In the following section, we describe the re-
sults of applying PCA, which looks for global image properties and
hence can potentially reveal more image structure.

4.2 PCA on fixation regions

Before computing the PCA, the columns of each ROI were con-
catenated to convert the matrix into a column vector. The algorithm
described in 2.2 was used to compute the basis vectors. Shown in
Fig. 7 are the results of a PCA for two different targets on the same
visual search task described before. The eigenvalues shown in the
bottom panel of Fig. 7 correspond to the eigenvectors shown in he
upper panel and were used to select and order the first 15 significant

Figure 7: Comparing PCA results for circle vs. dipole

principal components. In addition to being interesting in their own
right, they provide a good illustration of the usefulness of the eigen-
values. The data on the left were generated by the subject searching
for the circle in noise, while those on the right were generated by
searching for the dipole. The first principal component reflects the
structure of the mask used and is of no computational significance
to us. The first bar on the eigenvalue plot therefore corresponds to
the second eigenvector and not that of the mask extracted by the
first component. A glance at the eigenvalues for the circle reveals
that the second and third components are about evenly weighted,
indicating that edges at all orientations (i.e. linear combinations
of the first two components) were about equally attractive to the
subject. The eigenvalues for the dipole, however, show a marked
preference for horizontal edge information which means that, even
in the periphery where visual acuity is poor, the visual system was
actively seeking out potential edges, rather than just searching for a
bright or dark blob, or casting the eyes about randomly in hopes of
fortuitously acquiring the target.

5 Discussion

We have clearly shown, as a proof of principle, the effectiveness
of discrimination images as a novel and powerful way of investi-
gating visual search tasks. PCA was also used to illustrate the use
of this familiar statistical technique at points of fixation. The emer-
gence of structure from noise is truly intriguing and gives an insight
into what an observer might be looking for while searching for tar-
gets. The selection of 1/f noise is instrumental in this experiment.
While most of the DIP type of experiments [Beard and Ahumada,
Jr. 1998] need about 12,000 or so trials, the structure in the 1/f
noise made it possible to reveal structure in a matter of a few thou-
sand fixations.

Both of the above techniques, discrimination image and PCA,
share the following feature: their outputs can be used as linear ker-
nels with which to filter input images. The result of this filtering
can be considered a likelihood map in image space that reflects the
probability of the eye fixating on any given pixel. This likelihood
can be used to probabilistically predict human fixation patterns,
both alone and in conjunction with other known rules of viewing,
and these predictions will be tested in further experiments as we to



continue to refine our models.
It should be emphasized again that in the discrimination image

paradigm, we need not confine ourselves to averaging in the pixel
domain. Much more could be learned by, for example, deriving
‘discrimination spectra.’ Consider the case in which the subject
was searching for a complex target or, alternatively, either of two
targets which, if averaged, would cancel each other out (the above
dipole and it’s negative for example.) In this case, averaging the
Fourier amplitude spectra rather than the pixels themselves would
probably yield more informative results.

Principal component analysis, while elegant in its own right,
does not capture local image features [Bell and Sejnowski 1996].
We are investigating the application of a more recent tool: Indepen-
dent Component Analysis [Hyvärinen et al. 2001] to extract funda-
mental structure at points of gaze both in search tasks like the one
described in this paper and in free gazing of natural scenes.

Overall, we feel that even though we are just beginning to apply
the PCA and DIP type analysis to the specific search task described
above the results are very promising. With a unique combination
of eye tracking capability and image analysis tools we have been
able generate some very interesting preliminary results, which may
reflect low-level features used in search tasks. This line of research
with more controlled experiments might help reveal results that will
be fundamental to the design of active artificial foveated machine
vision systems.
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HYV ÄRINEN, A., KARHUNEN, J., AND OJA, E. 2001. Indepen-
dent Component Analysis, 1 ed. John Wiley & Sons, May.

JAYANT , N. S.,AND NOLL , P. 1984.Digital coding of waveforms
: principles and applications to speech and video. Prentice-Hall,
Englewood Cliffs, New Jersey, ch. 12, 535–546.

KLARQUIST, W., AND BOVIK , A. C. 1998. Fovea: a foveated ver-
gent active stereo system for dynamic three-dimensional scene
recovery. IEEE Tran. on Robotics and Automation 14, 5 (Octo-
ber), 755–770.

KOWLER, E., ANDERSON, E., DOSHER, B., AND BLASER, E.
1995. The role of attention in the programming of saccades.
Vision Research 35, 1897–916.

LEE, S. 2000. Foveated Video Compression and Visual Commu-
nications over Wireless and Wireline Networks. PhD thesis, The
University of Texas at Austin, Austin,TX.

MOGHADDAMAND , B., AND PENTLAND , A. 1995. Probabilistic
visual learning for object detection.Fifth Int. Conf. Computer
Vision(June), 786–793.

PELLI , D. G. 1997. The videotoolbox software for visual psy-
chophysics: Transforming numbers into movies.Spatial Vision
10, 437–442.

PRIVITERA , C. M., AND STARK , L. W. 2000. Algorithms for
defining visual regions-of-interest: comparison with eye fixa-
tions. IEEE Trans. on Pattern Analysis and Machine Intelligence
Volume: 22, Issue:9 (Sept), 970–982.

REINAGEL, P.,AND ZADOR, A. M. 1999. Natural scene statistics
at the center of gaze.Network: Computation in Neural Systems
10, 1-10.

STRANG, G. 1988.Linear Algebra and its Applications. Harcourt
Brace Jovanovich, San Diego.

TURK, M., AND PENTLAND , A. 1991. Eigen faces for recognition.
J. Cognitive Neuroscience 3(March), 71–86.

TURK, M., AND PENTLAND , A. 1991. Face recognition using
eigenfaces.Proc. IEEE Computer Society Conf. on Computer
Vision and Pattern Recognition, 586–591.

ZELINSKY, G. J.1996. Using eye saccades to assess the selectivity
of search movements.Vision Research 36, 14 (July), 2015–2228.


