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Visual Servoing of an Under-Actuated Dynamic
Rigid-Body System: An Image-Based Approach

Tarek Hamel and Robert Mahony

Abstract—A new image-based control strategy for visual ser-
voing of a class of under-actuated rigid body systems is presented.
The proposed control design applies to “eye-in-hand” systems
where the camera is fixed to a rigid body with actuated dynamics.
The control design is motivated by a theoretical analysis of
the dynamic equations of motion of a rigid body and exploits
passivity-like properties of these dynamics to derive a Lyapunov
control algorithm using robust backstepping techniques. The
proposed control is novel in considering the full dynamic system
incorporating all degrees of freedom (albeit for a restricted class
of dynamics) and in not requiring measurement of the relative
depths of the observed image points. A motivating application is
the stabilization of a scale model autonomous helicopter over a
marked landing pad.

Index Terms—Image-based visual servo (IBVS), nonlinear con-
trol, rigid-body dynamics, under-actuated systems.

I. INTRODUCTION

V ISUAL servoing algorithms have been extensively devel-
oped in the robotics field over the last ten years. Visual

servo systems may be divided into two main classes [17]:posi-
tion-based visual servo(PBVS) involves reconstruction of the
target pose with respect to the robot and leads to a Cartesian mo-
tion planning problem [33].Image-based visual servo(IBVS)
aims to control the dynamics of features in the image plane di-
rectly [31], [7]. The Cartesian motion planning task is implic-
itly resolved via minimization of an image-based error func-
tion [25], [22]. IBVS methods offer advantages in robustness
to camera and target calibration errors, reduced computational
complexity, and simple extension to applications involving mul-
tiple cameras compared to PBVS methods [11]. However, clas-
sical IBVS suffers from two key problems. Firstly, it is neces-
sary to determine the depth of each visual feature used in the
image error criterion independently from the control algorithm.
Secondly, the rigid-body dynamics of the camera ego-motion
are highly coupled when expressed as target motion in the image
plane. Various approaches to overcoming the relative depth re-
quirement for classical IBVS have been reported, including; es-
timation via partial pose estimation [17], adaptive control [20],
and estimation of the image Jacobian using quasi-Newton tech-
niques [10], [21]. Recent work has tended to concentrate on hy-
brid control methods whereby translational and attitude control
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are treated separately [17], [19], [6], [5]. This approach also ad-
dresses the problems associated with the coupled nature of the
camera ego-motion in the image plane. Classical visual servo
control was principally developed for serial-link robotic manip-
ulators [11]. In such situations, the dynamics of the system are
easily compensated using a computed torque (or high gain) con-
trol design and the visual servo control may be derived from a
first-order model of the image dynamics [7]. Recent applica-
tions in high-performance systems and under-actuated dynamic
systems have lead researchers to consider full dynamic con-
trol design. Coupling of the camera ego-motion dynamics in
the image plane proves to be a significant obstacle in achieving
this goal. Kelly [12] proposed an asymptotically stable method
for position regulation for fixed-camera visual servoing for a
dynamic system. Work by Zergerogluet al. [35] has used ro-
bust backstepping techniques to deal with the full dynamics of
a planar robot for a visual servo control, while Maruyamaet al.
[18] have investigated dissipative control strategies. A further
complication is encountered when an under-actuated dynamic
system is used as the platform for the camera. Zhang and Os-
trowski [36] used a Lagrangian representation of the system dy-
namics to obtain an IBVS control for a blimp, an under-actuated
nonholonomic system. Applications in flight control of UAVs
are a strong driving force in this area and several authors have
investigated PBVS methods for such systems [1], [27]. In addi-
tion to the classical visual servo approach, some work has been
done to apply biomimetic control design to UAVs. Examples are
visual flow-based control algorithms [30], [3] and feature detec-
tion [32].

In this paper, we propose an IBVS algorithm for a class of
under-actuated dynamic systems. The proposed algorithm does
not require accurate depth information for observed image fea-
tures. The closed-loop system displays the robustness to camera
and target calibration errors and reduced computational com-
plexity characteristic of IBVS methods. The design is based on
a theoretical analysis of the dynamic equations of motion of a
rigid body and exploits structural passivity-like properties of
these dynamics to derive a Lyapunov control algorithm using
robust backstepping techniques. This approach overcomes some
of the difficulties associated with the highly coupled dynamics
of the camera ego-motion in the image dynamics. Simulation of
the closed-loop response of the example studied indicates strong
robustness properties derived from the Lyapunov stability crite-
rion and the centroid visual features used. In order to implement
the proposed servo algorithm, separate measurements of linear
and angular velocity are needed. These measurements are not
used in classical visual servo design since the kinematic veloc-
ities are implemented directly as the control variables. In ad-
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dition, the proposed algorithm requires a single inertial direc-
tion to be measured in order to define the image error criterion.
This information must be obtained using a routine separate to
the control algorithm, analogous in a sense to the role of image
depth measurement for classical IBVS control design. In writing
this paper, the authors are strongly motivated by the application
of visual servo control to the regulation of hover maneuvers for
VTOL robotic aircraft. A vision system is a natural choice for a
cheap, passive and adaptable sensor that can be used to regulate
the motion of such UAVs. For these systems, there are a host of
cheap, light INS systems that are being developed that will pro-
vide sufficiently accurate measurements of angular and linear
velocity for implementation of the proposed control. The iner-
tial direction used for most UAV applications requiring hover
maneuvers is the vertical axis. This is often directly supplied by
an INS system or can be obtained by filtering the accelerometer
output.

The paper is arranged into five sections. Section II presents
the fundamental equations of motion for an autonomous robot
with a single rigid component, demonstrates their passivity-like
properties and shows that these properties are present in the
image space. Section III introduces the image space error rep-
resentation and how it can be rewritten in a form that is more
amenable to control design and analysis. Section IV derives a
Lyapunov control for under-actuated systems based on a ro-
bust backstepping design. Section V applies the visual control
strategy to an idealized dynamic model of a reduced scale heli-
copter and presents some simulation results.

II. V ISUAL DYNAMICS OF A POINT TARGET AND

PASSIVITY-LIKE PROPERTIES

In this section, a general dynamic model of a rigid body
evolving in is presented. These dynamics define the
ego-motion of the camera and are used to derive the observed
dynamics of a stationary target.

Denote the rigid body by the letter. Let
denote a right-hand inertial frame such that denotes the
vertical direction downwards into the earth. The position of
the rigid body is measured at the focal point of the camera
rather than the center of mass of the body and is denoted

. Let be a (right-hand)
body fixed frame for (cf. Fig. 1). The attitude of is given
by the rotation , where is an orthogonal
rotation matrix.

Let and denote the body fixed frame linear and
angular velocities of the rigid body. Let denote the mass of

and let denote the constant inertia matrix around
the focal point of the camera (expressed in the body fixed frame

). Newton’s equations of motion (cf. for example [8]) yield
the following dynamic model for the motion of a rigid object:

(1)

(2)

(3)

(4)

where combines all the external linear forces acting
on (including gravity) and combines all external torques.

Fig. 1. Rigid body with force and torque control.

The notation denotes the skew-symmetric matrix such
that for the vector cross-product and any
vector .

The class of under-actuated dynamic systems considered are
those for which the force input incorporates a single indepen-
dent actuator while full actuation of the torqueis available.
The force may be written

(5)

where is a constant unit vector in the body fixed frame
representing the fixed orientation of the thruster or actuator and

is the gravitational force. The control input
represents the magnitude of thrust applied. Section V presents
the structure for an idealized helicopter.

Equations (1)–(4) have an important cascade structure. Ex-
pressing (1) and (2) in the inertial frame where and

the translation dynamics are a simple linear cascade

These linear dynamics, along with the attitude dynamics equa-
tions (3) and (4), form a cascade system in triangular form [14].
Such systems may be feedback linearized and are in a suitable
form for the application of backstepping and other nonlinear
design techniques. This structure is the basis of many of the
nonlinear tracking control algorithms developed for the heli-
copter [29], [13], [28], [16]. The cascade structure of the system
leads to internal passivity-like properties (from virtual input to
the backstepping error) typical of each iteration of backstepping
control designs [14]. A key contribution of this paper is to show
that these passivity-like properties can be recovered for a cen-
troid image feature as long as a spherical camera geometry is
used.

Let for represent stationary point
targets. Let denote the coordinates of each in the
body fixed frame

The geometry of the camera is modeled by its image surface
relative to its focal point. The image feature observed by the
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Fig. 2. Image dynamics for spherical camera geometry.

camera is denoted and is the projection of onto in the
body fixed frame (cf. Fig. 2)

(6)

where is the relative depth of the target.
For a typical digital camera with a flat image plane thenis

given by the perspective projection

(7)

where , and is the focal length of
the camera. Since the third entry ofis constant it is common
to use only the first two coordinates (corresponding to pixel po-
sition) to represent image points. In the following development
the spherical projection is used extensively. If the image sur-
face is spherical, then which rescales the point

onto the sphere of radius. An arbitrary rescaling function
, (6) enables one to consider general camera geometry.

Let

be the differential of the scaling function. Applying the chain
rule, one has

Note that is a level surface of and that is normal to the
surface for .

Define to be the observed velocity of the target point
represented in the body fixed frame

Note that (the body fixed frame velocity of the object)
if and only if the inertial velocity of the target point is
zero. The dynamics of the image point are

(8)

Due to the rotational ego-motion of the camera, (8) involves
the angular velocity as well as the velocity . This depen-
dence destroys the explicit triangular cascade structure of rigid
body motion expressed in the inertial frame. However, under
certain conditions on the camera geometry, it is possible to re-
cover a passivity-like property (from virtual input to the back-
stepping error) sufficient to apply a backstepping control design
[14]. The storage function considered is and a (bilinear)
supply rate is used where is positive semi-defi-
nite. Section IV shows how this structure can be exploited in a
backstepping control design.

In order that the image dynamics display the desired pas-
sivity-like properties it is necessary that the first two terms on
the right-hand-side of (8) do not contribute to the derivative of
the storage function. Thus, one requires that

for all . This will hold only if for all and
imposes the constraint

(9)

where is some scalar function. Moreover, the vector
is obtained as the gradient of a functional and in-
tegrability results ensure that the only scaling functionwhich
satisfies (9) is , where is a constant. That is,
the only image geometry that preserves the passivity-like prop-
erties of the body fixed frame dynamics of a rigid object in the
image space are those of a spherical camera. Without loss of
generality we choose . In this case, . The dynamics
of an image point for a spherical camera of image surface radius
unity are

where is the projection onto
the tangent space of the sphereat the point .

Remark II.1: It is not necessary to physically implement a
spherical camera. It is sufficient to numerically compute the
spherical projection of the observed image coordinates. For ex-
ample, in the case of a pinhole camera, the data available for
a point image are
expressed in the perspective projection of the coordinates of a
point [cf. (7)]. The spherical coordinates for this image point
are given by the algebraic transformation

(10)

Motivated by the preceding discussion, we make the fol-
lowing assumptions.
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Assumption II.2:

1) The image surface of the camera is spherical with unit
image radius ( ).

2) The target points are stationary in the inertial frame.
Given assumptions II.21) and II.22), the dynamics of an en-

semble of observed image points are given by

for (11)

where is the velocity of the rigid object and
.

III. I MAGE SPACE ERRORCRITERIA

In this section, the image space error considered is defined.
Intuitively, the objective of a visual servo algorithm in image

space is to match the observed image to a known “model”
image of the target. Define a set of desired visual features

which correspond to the expected image of
the target if the camera were placed in the desired position
and attitude. Thus, are a set of points on the
spherical image plane. The full image space error term is a

-dimensional vector

(12)

In classical visual servo algorithms, the desired visual fea-
tures are chosen to be fixed relative to thebody fixed frame.
As long as there are at least four point targets visible, mini-
mizing ensures a particular attitude of the camera relative to
the target [24], [9].In this paper, we choose the orientation of
the desired visual features to be fixed relative to the inertial
frame. Since the orientation of the desired features is fixed in
the inertial frame they inherit dynamics in the body fixed frame
due to the rotational ego-motion of the camera

(13)

The advantage of choosing the orientation of the desired vi-
sual targets to be fixed in the inertial frame is seen when the first
order dynamics of the error are computed. Let

...

Note that the matrix depends on the unknown values. The
dynamics of are

(14)

Note that (14) replicates the passivity-like structure seen in (11).
A combination matrix approach [7] is used to combine the

full image error into a reduced error

(15)

that leads to a nonredundant formulation of the control problem.
The combination matrix must be chosen to preserve the pas-
sivity-like properties of the image dynamics in the reduced error

dynamics. Premultiplying (14) by the combination matrix
the following two conditions are obtained:

1) ,
2) .

Assuming that the matrix is full rank, it follows that

(16)

for , for all . Note that
relies on the fact that . Let for a given
set of weights and note thatthe exact value of remains
unknown! Under and over bounds on are required for the
control design in Section IV

The bounds and may be estimated from over and
under bounds on the target range . These bounds
replace the exact estimates of depth information that is neces-
sary to apply existing IBVS algorithms.

Remark III.1: For the class of under-actuated dynamic sys-
tems considered, it is physically necessary to use the attitude dy-
namics to control the orientation of the force input to the linear
dynamics in order to stabilize the position of the system. It is
impossible to separately stabilize the attitude and position of
the camera as is done in classical IBVS. The error criterion pro-
posed regulates only the position of the rigid body. The attitude
control is derived from the backstepping errors derived from
the proposed error propogated through the system dynamics (cf.
Section IV).

It is of interest to consider the reduced errorin closer detail.
Recalling (12), it follows that

Define

(17)

The vector is the principal visual “feature” that is used
in the proposed algorithm. It may be interpreted as a weighted
centroid of the observed image. Using centroid information is
an old technique in visual servoing [2], [26], [15], [34]. Many of
the applications considered that used centroid features involved
highly dynamic systems. Historically, this may be due to the
simple and fast image processing algorithms needed to extract
the centroid of an observed image and consequent improvement
in the dynamic response of a closed-loop system based on this
information. Although processing limitations are becoming less
important in modern applications, centroid image features are
still one of the most robust and cheap image features to extract
from a scene.

Define

(18)

Thus, is a known vector with fixed orientation relative
to the inertial frame, expressed in the body-fixed-frame. As a
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consequence inherits dynamics from the rotational ego-mo-
tion of the camera

Note that the dynamics of are independent of the linear ve-
locity of the rigid body since is an inertial direction, not a
vector position.

The visual error considered may be interpreted as the vecto-
rial distance between a weighted centroid feature and a fixed
inertial direction . As a consequence, minimizing

regulates the inertial position of the camera and regulates
those degrees of freedom in the attitude dynamics that affect
the orientation of the force input. If there are additional de-
grees of freedom in the attitude dynamics that are not regu-
lated by the dynamic constraints of the system, then a secondary
control error (cf. Sections IV-A and IV-B) may be introduced.
If the weighting factors are chosen to be equal, ,

, then the proposed image feature is co-linear with
the accepted image centroid. This particular case is the simplest
to implement and has several advantages.

1) It is not necessary to match observed image points di-
rectly to desired features. An algorithm based on a con-
struction of this nature will operate without precise target
information. As long as the observed target is roughly
the same as the expected target then the centroid

will be a reasonable representation of the true
target centroid.

2) The proposed design is not restricted to a finite number
of image points . The proposed error criterion may be
extended to solid targets by replacing the summation of
separate image points with integration over image sur-
face. Some care must be taken in order that the centroid
of the observed target is inversely weighted by the ob-
served area of the image in order that relative depth infor-
mation is correctly incorporated into the error criterion.
The weighted centroid used is

using spherical camera geometry and whereis the area
of image as a subset of the camera image surface.

IV. CONTROL DESIGN METHODOLOGY

In this section, an IBVS control derived using robust back-
stepping techniques [14] for an “eye-in-hand” camera with
under-actuated rigid body dynamics.

Deriving and recalling (16), it follows that

(19)

Recalling (16), Assumption II.2, and the rigid-body dynamics
equations (2)–(4), the full dynamics of the error may be
written

(20)

(21)

(22)

(23)

Initially we consider only the error dynamics equation (20). De-
fine a storage function as

(24)

Taking the time derivative of and substituting for (20) yields

(25)

Note that the passivity-like structure of (20) ensure that (25) is
independent of the angular velocity.

As discussed in Section III, the matrix is not exactly
known, however, the fact that it is positive definite ensures that
a choice is sufficient to stabilize if the velocity
were available as a control input (kinematic control). The virtual
control chosen for (25) is

(26)

where is a positive constant. If , then
is negative definite in .

With this choice, one has

(27)

where defines the difference between the desired “virtual
control” and the true velocity

(28)

and will form the new error term used in the next step of the
backstepping. With the above definitions, one has

(29)

Deriving and recalling (21) and (27) yields

(30)

Let be the second storage function using this control algo-
rithm

(31)

Taking the derivative of , it follows that

(32)

The positive semi-definite matrix is not exactly known,
however, there are upper and lower bounds on the eigenvalues
of . Thus, choosing

where (33)

is sufficient to stabilize the position of system. Since the
rigid-body system considered is under-actuated, the force
input is unable to assign the desired dynamics directly. It is
necessary to use the above definition as virtual force inputs in
a further stage of the backstepping procedure. Set

(34)

A new error term is defined to measure the scaled difference
between the virtual and the true force inputs

(35)
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The derivative of of (30) becomes

(36)

and the derivative of the second storage function is now

(37)

Deriving and recalling (30) yields

(38)

Analogously to the previous case and following standard
backstepping procedures, let denote the virtual
control used in the next iteration of the backstepping. The full
vectorial term is assigned rather than dealing
explicitly with the dependence on the actual control inputs.
This avoids some complications in the development due to
conflicting contributions from both force and torque control
inputs. In practice it is a simple matter to compute the actual
control inputs from the vectorial control design (cf. Section V).
The virtual control assigned is

(39)

The expression for the derivative of may now be written

(40)

Here is the last error term used in the backstepping procedure
defined by

(41)

Let be a third storage function defined by

(42)

Taking the derivative of and recalling (40), one obtains

(43)

The derivative of is

(44)

At this stage, the actual control inputs enter into the equations
via and . The exact manner in which the control inputs enter
depends on each individual application and the arrangements of
thrust etc. that generate the force. The application discussed
in Section V indicates the manner in which this calculation is
done in practice. It is assumed that the term

may be arbitrarily assigned. To achieve the desired control, one
chooses

(45)

Substituting the control into the dynamics forleads to

(46)

Consequently, choosing

(47)

as the final storage function, one obtains

(48)

Following the above development, define a candidate Lya-
punov function as

(49)

The derivative of is

Lemma IV.1: Consider the dynamics defined by (20)–(23).
Let and be bounds on the maximal and minimal
eigenvalues of . Let the vectorial controller be given by (45).
If the control gains satisfy

and

then the error signals

converge exponentially to zero.
Proof: As the matrix is positive definite, its norm can

be lower bounded by . In this case, the Lyapunov function
derivative can be bounded by

(50)

By completing the square four times to dominate the cross
terms, it may be verified that the choice of control gains given
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in the theorem ensures that the right-hand side is negative
definite in all the error signals , . Classical
Lyapunov theory may be applied and the result is proved.

The error coordinates regulate the position of the camera.
The error regulates the linear velocity of the camera and en-
sures that it comes to rest. The additional error coordinates
and incorporate information on the attitude of the camera.
This is natural for an under-actuated system since the desired
motion can only be obtained by exploiting the attitude dynamics
to control the orientation of the force. If the position and linear
velocity are regulated then the total external force must be zero,

. Recalling (5), one has

(51)

It follows that any rotation of the rigid body that would affect
the orientation of is directly stabilized via the backstepping
errors and .

In certain situations, the errors and may provide suffi-
cient information to fully stabilize the attitude of the rigid body.
For example, consider the case of an airplane which is tracking a
visual target moving with constant velocity (and stationary with
respect to an inertial frame chosen to move at the velocity of the
target). The proposed control law may be used to design a con-
trol that will stabilize the airplane to fly with constant velocity
at fixed offset from the moving target. The aerodynamics of the
airplane will in turn force the airframe to be aligned in the di-
rection of flight. Thus, in such a case the underlying dynamics
of the rigid body motion provide a further stabilizing force that
will asymptotically stabilize the attitude of the rigid body. Math-
ematically, the asymptotic convergence of such a system may
be proved by appealing to La Salles principal in the proof of
Lemma IV.1.

In other situations, stabilization of the error termsand
will not determine the full attitude of the device considered. In
the case of a helicopter hovering directly over a target, then both
pitch and roll components of its attitude are regulated by the
errors and , however, a yaw rotation around the main rotor
axis will leave the orientation of fixed. In the example given in
Section V, a simple proportional control is used to stabilize the
yaw angular velocity. It may be of interest, however, to stabilize
the remaining degree of freedom in the attitude dynamics using
an additional error criteria. Two control laws to deal with this
situation are presented in Section IV-A and IV-B.

A. Stabilization of Remaining Orientation Dynamics With
Reference to Visual Data

It is often difficult to obtain even a single inertial direction
reliably (necessary to define the inertial target vector[see
(18)]) in order to define the error [see (15)] and obtaining a
second may be impossible. In such a situation, the remaining
degree of freedom in the attitude dynamics may be stabilized
using only visual information derived from the target.

To control the remaining attitude of a camera via an error in
image space, it is necessary to consider error criteria that de-
pend on vector directions fixed in the body fixed frame. A key
observation for the proposed control design is that such an error
is chosen and minimized after the regulation of the visual error

. Thus, regulation of a position is guaranteed independently of

the secondary control task involving regulation of the remaining
attitude. In this manner, the cascaded control design proposed
allows one to overcome some of the pitfalls of visual servoing
associated with the coupling of position and attitude errors in
the image plane [11].

The desired attitude of the camera may be characterized by
specifying a desired inertial orientation for two linearly inde-
pendent directions in the body fixed frame. Recalling (5), it
is natural to choose as a first unit direction. The fol-
lowing calculations are considerably simpler if the directions
chosen are orthogonal. Thus, choose a second vector
orthogonal to and

Two degrees of freedom in the attitude dynamics are fixed by
the condition [cf. (51)]. The control objective con-
sidered is to align as closely as possible with some visual
feature extracted from the observed target subject to the con-
straint . The simplest case is when the weighted cen-
troid feature can also be used for stabilization of the attitude.
However, if the inertial target direction is congruent with the
inertial axis (such as is the case when one wishes to hover
directly over a target), then stabilizing the errorleads to the
asymptotic relationship

As a consequence, and cannot be used as a
visual feature to stabilize the remaining degree of freedom in the
attitude dynamics. In such a situations it is necessary to define
a new “feature” vector computed from image measurements

where are a set of real constants. It is not required that
and differences between observed points may be used to gen-
erate vectors in any direction even if the observed image
points are clustered some distance from the camera.

The derivative of is

(52)

where

Define

where is a time-varying scalar evolving according to
the O.D.E.

(53)

The operator is the scalar product and is a positive
constant. This is a stable first-order nonlinear system driven by
a positive autonomous signal . Since
is bounded it follows that for all time. It
is theoretically possible that as if (and only if)

. This possibility is avoided in practice
by a suitable choice of .
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Define a cost

A control is proposed that acts to minimize . It is shown
later that this will achieve the desired control objective. The
derivative of yields

(54)

where is the projection matrix .
Note that assigning corresponds to assigning the two

degrees of freedom of that control the orientation of . It
is exactly these degrees of freedom ofthat are fixed by the
backstepping error . The component denotes the re-
maining degree of freedom in the attitude dynamics. This de-
gree of freedom is decoupled from the rotation assigned
by the backstepping procedure and may be used explicitly as a
virtual control input for the remaining attitude dynamics.

A complication for the stabilization of the attitude dynamics
is that there must always exist a singularity in any stabilizing
control defined on a sphere. This singularity usually occurs at
the point diametrically opposite to the desired set point. In the
proposed design this topological constraint is manifested as a
factor that premultiplies the virtual control in (54).
The term is zero both at the desired set point ( maxi-
mally positive) and at the antipodal point ( maximally neg-
ative). There are two implications of this property in the control
design: Firstly, it is necessary to consider a (globally) discon-
tinuous control in order to drive the system into a neighborhood
of the desired set point and avoid unwanted complications due
to the antipodal singularity. Secondly, the control design must
exploit the relationship between and in the limit to
obtain exponential convergence. The first difficulty is overcome
using a switching control law described below. The second is
linked to the role of the time-varying constantin (53).

Let be a small positive number. Choose a virtual control

if

(55)

where the function is any
real valued function such that for (where
is some small arbitrary number) then and such that the
switch between the control algorithms is at least once differen-
tiable. The function is a smoothly varying function introduced
to allow the backstepping procedure to be undertaken over the
entire domain. The details of the convergence on that part of
the domain where is not of particular in-
terest. It suffices to note that any transient of the system will
be forced to converge to the domain in finite
time. Within the domain it is necessary to an-
alyze the asymptotic convergence properties of the closed-loop
system. For , the backstepping error is

Since the triple of vectors forms a basis for ,
then

Using this along with the above derivation, one may write

Here both the translation dynamics and the existing attitude dy-
namics act as perturbations to the convergence of the storage
function .

A classical backstepping procedure is used to derive the con-
trol. Since the switching control used is differentiable, a back-
stepping procedure generates a valid control over the entire do-
main (excluding the anti-stable point and ).
Only the case where is studied in detail as this
regime will govern the asymptotic behavior of the closed-loop
system. On the domain then a suitable control
is chosen based on the standard backstepping procedure.

Define

(56)

Then

To simplify the torque control due to the input, it convenient
to linearize the attitude dynamics [see (23)]. Define

(57)

Since is full rank, then this is a bijective control input trans-
formation between and . With this definition, then .
For , set

(58)

Let

Then, for , one has

(59)

Theorem IV.2:Consider the system dynamics equations
(20)–(23) and let the force be given by (5). Let and

be bounds on the maximal and minimal eigenvalues of
and be a bound on the maximal eigenvalue of .

Let be a suitably small positive constant. Let the
vectorial controller be given by (45). Set the remaining degree
of freedom in the torque control to be given by (58) along
with the control transformation (57) for and the
standard backstepping control law for . Choose
gains , then

and
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Set

and choose

Assume that the thrust magnitude

is always at least half the gravitational force and that the visual
feature satisfies

Then the error coordinates [see (15)], [see (28)], [ see
(15)], [see (28)], and and converge exponentially to
zero. Furthermore,

Sketch of Proof:It may be directly verified that the
switching control chosen will drive the system to satisfy the
condition in finite time. Since the possible
perturbations due to the linear dynamics are exponentially
decaying, then there exists a finite time such that for all

one may assume . Define

Premultiplying (41) by , using (5), and bounding the thrust
yields

From (28), one has

Substituting these expressions into (59), one obtains bilinear
cross terms between the errors and and the errors

. The value of may be calculated from (50) and
(59). To ensure that all the cross terms are dominated, it is
simply a case of completing the square ten times. The approach
taken was to divide the negative definite terms in into
three parts, the first to provide a negative definite term for
the final stability argument, the second to dominate the cross
terms for , and the third part divided equally to help
dominate the cross terms . The term was divided
into five parts to cover cross terms in the errors
and leave a part negative definite while the term need
only be divided in three. It is from this procedure that the
bounds stated in the Theorem are obtained (note the difference

from Lemma IV.1 due to the need to use some control action
in the linear dynamics to bound perturbations in the attitude
dynamics). The full procedure leads to

where

It follows from classical Lyapunov theory that the errors
converge to zero exponentially.

Furthermore, from La Salles principalconverges to an in-
variant set. Firstly, implies . Secondly,
it is easily verified that converges to zero and hence

asymptotically. Combining these two points it follows that
in the limit. The result follows.

Theorem IV.2 provides a complete characterization of the sta-
bilization of the body fixed frame. The final orientation in align-
ment is achieved by noting that the conditions of Theorem IV.2
result in

and . Thus, specifying a suitable attitude is simply
a case of choosing a suitable vectorbased ona priori knowl-
edge of the target and desired set point pose. An important ob-
servation is that the constantused in the proof of Theorem IV.2
is the worst case lower bound on the control margin available to
stabilize the remaining attitude dynamics. In practice, there will
be considerably more control authority than this available for
the asymptotic convergence of the system. Thus, the estimate
of the exponential stability constant derived in the the-
orem is likely to be considerably smaller than the true stability
margin for the system. Finally, it should be mentioned that The-
orem IV.2 is intended as a proof of concept and the that the gains
used are not optimized. In practice, the gains would be opti-
mized based on the particular configuration considered. A gain
schedule based on estimated values of , ,

may be used to improve the overall performance of
the closed-loop system.

B. Stabilization of Remaining Orientation Dynamics with
Reference to an Inertial Measurement

If a second inertial direction is available (similar in nature to
), then there is no need to resort to visual data to regulate the

attitude and a simple error based on the state rotation matrix may
be used.

Denote the new inertial direction by and assume
without loss of generality that and that .
This guarantees that, in the limit . As a conse-
quence, it is unnecessary to introduce a scaling factor such as

[cf. (53)] and the error considered is simply

where is a fixed direction in , the body fixed frame orthog-
onal to the direction .
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Apart from a slightly simpler form due to the fact thatdoes
not depend on visual data, the derivation of the attitude control
law is analogous to that presented in Section IV-A. Note that
the attitude control in this case will only depend on the signals

since the errors only entered into Theorem IV.2
due to the derivative of . It is still necessary to use the stability
of the position dynamics to prove stability of the final attitude
dynamics. The details are somewhat tedious and are omitted due
to space constraints.

V. APPLICATION TO A SCALE MODEL

AUTONOMOUSHELICOPTER

In this section, the procedure presented in Section IV is ap-
plied to an idealized model of the dynamics of a scale model
autonomous helicopter.

An important control task for an autonomous helicopter is to
achieve stable hover over a target. This task forms the first stage
of any landing maneuver. Rough position may be obtained from
a GPS unit but accurate positioning must be done using local
measurement systems such as a vision system. The remaining
system variables required for the proposed control design may
be derived from external systems. For example, the velocity
may be derived from an extended Kalman filter based on differ-
ential GPS data and accelerometer data. The angular velocity
may be obtained by a “three axis rate gyro” assembly while a
three axis linear accelerometer, along with some basic filtering,
will give a good approximation of the gravitational direction.
The gravitational direction is the only inertial direction that is
necessary for the proposed control.

A helicopter has four control inputs available.

• : The principal rotor provides a strong lift force termed
“heave,” oriented along the vertical axis of the helicopter
body frame. It is the main force responsible for sustaining
the helicopter in flight and used for forward propulsion.

• : Torque control for the attitude dynamics including the
aerodynamic effects is obtained via the tail rotor collective
pitch and cyclic pitch to the main rotor.

A helicopter has six degrees of freedom, the dynamic model
has twelve states, and there are only four control inputs. The
idealized dynamics of a model helicopter expressed in terms of
the motion of a target in the visual plane are given by (20)–(23)
with the force defined by

(60)

where is the total mass of the helicopter andis the gravita-
tional constant. For more details on the modeling procedure, the
interested reader is directed to any number of texts on helicopter
modeling and control (cf., for example, [23]).

For the case of an idealized helicopter [see (60) and full
torque control] then the control law defined in (45) becomes

(61)

Note that the second derivative of the heave controlenters
into this expression. To implement this design procedure, it is
necessary to dynamically extend the heave control

(62)

where is a new control input and the dynamics are
computed within the control structure. Using the control input
transformation (57), the dynamics equation (62), and knowing
that is of rank two with entries only in the first and second
columns, one obtains

(63)

It remains only to observe that, as long as , the control sig-
nals , , and are uniquely determined by the visual servo
control equation (45). This is certainly the case in hover condi-
tions since must counteract the gravitational force.

The above control design leaves free to stabilize
the yaw angle to a desired value. In this example, a simple pro-
portional stabilizing feedback

(64)

for , a suitable constant, is applied. Due to the decoupled
nature of the attitude dynamics (using the transformed control

), one has

and Lyapunov theory ensures that the yaw velocity converges
to zero and that the helicopter (at least the simulated helicopter)
will stabilize in hover using visual data.

A. Simulation

In this subsection, a simulation is presented to illustrate the
performance of the proposed control law. The simulation con-
siders the case of stabilization of the helicopter already in hover
flight to a new set point several meters distance from the ini-
tial condition. Consider the case where one wishes to position
the camera parallel to a plan target characterized by a square.
In the case of a pin-hole camera, the visual measurements avail-
able are the projective coordinates of the four points defining the
square . These coordi-
nates are transformed into spherical coordinates using the trans-
formation equation (10). The desired target vectoris chosen
such that the camera set point is located 6 m above the square.
It is defined by where
represents the ratio between the vertex length and the final de-
sired range. In this experiment the parameterhas been chosen
to be equal to 0.4851. The weightsare all taken to be equal to
unity. Using the above specification, the desired featurewill
be defined in the body fixed frame as follows:

The parameters used for the dynamic model are based on
preliminary measurements for a VARIO 23cc scale model he-
licopter owned by HeuDiaSyC (CNRS Laboratory, Université
de Technologie de Compiègne). The values used are ,

and . The magnitude of the
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Fig. 3. Positioning of the helicopter with respect to the target.

Fig. 4. Evolution of the attitude and position of the helicopter in “roll, pitch,
and yaw” Euler angles and Cartesian space coordinates.

initial force input is chosen to be , corresponding
to the fact that the helicopter is initially in hover flight. The ini-
tial position is

and

The center of the targetis chosen to be the origin of the inertial
frame.

Assuming that is a function of initial conditions
and that is a function of the desired location, i.e.,

is always decreasing, we choose

and

From the assumed values of and , we have used the
following control gains: , , , and
that satisfy the conditions of Lemma IV.1.

Fig. 5. Evolution of the image features in the spherical image space.

Fig. 6. Evolution of the image features in the image plan.

Simulation results of the closed-loop behavior of the idealized
helicopter model considered equipped with the proposed control
are shown in Figs. 3–6.

VI. CONCLUSION

This paper has provided a rigorous derivation of an IBVS
control design for a class of under-actuated dynamic systems.
The algorithm is novel in considering the full dynamics of the
rigid-body motion of the camera fixed frame and leading to a
control design in which only bounds on the relative depths of
the image points are required. An interesting aspect of the design
is the use of the spherical projection for the camera geometry.
The simulation of the control of a scale-model autonomous he-
licopter shows the nature of potential applications of this work.

The authors would like to acknowledge the important issue
associated with the discrete sampling involved in using any
camera system. Corkeet al. [4] showed that the dynamics asso-
ciated with the camera sampling rate in a sampled-data visual
servo system may lead to significant performance degradation
and even instability of an IBVS closed-loop system. This issue
is beyond the scope of the present paper or indeed most of the
recent work in visual servoing. This issue must not be ignored
in any real-world application of visual servo systems.
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