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Visual Servoing of Quadrotors for Perching by

Hanging from Cylindrical Objects
Justin Thomas, Giuseppe Loianno, Kostas Daniilidis, and Vijay Kumar

Abstract—This paper addresses vision-based localization and
servoing for quadrotors to enable autonomous perching by hang-
ing from cylindrical structures using only a monocular camera.
We focus on the problems of relative pose estimation, control, and
trajectory planning for maneuvering a robot relative to cylinders
with unknown orientations. We first develop a geometric model
that describes the pose of the robot relative to a cylinder. Then,
we derive the dynamics of the system, expressed in terms of the
image features. Based on the dynamics, we present a controller
which guarantees asymptotic convergence to the desired image
space coordinates. Finally, we develop an effective method to
plan dynamically-feasible trajectories in the image space, and we
provide experimental results to demonstrate the proposed method
under different operating conditions such as hovering, trajectory
tracking, and perching.

Keywords—Aerial Robotics, Visual Servoing

I. INTRODUCTION

M ICRO Aerial Vehicles (MAVs) are becoming ubiquitous
and are being employed and considered for a wide range

of tasks such as aerial photography, environmental monitoring,
and disaster response. We see increasing autonomy in such
areas, but the effectiveness of multi-rotor MAVs is, nevertheless,
significantly limited by flight time. This is because the expensive
power demands for hover as well as the limited energy density
of batteries combine to limit flight durations, for example, to
10 to 20 minutes if the battery mass is 30% of the total mass
[1]. However, there are many persistent operations requiring
monitoring that do not require vehicles to be actively flying once
a target location has been reached. Therefore, it is appealing to
develop solutions that might allow robots to perch to conserve
energy and/or recharge their batteries.

In this article, we propose a novel approach to perching
by hanging for an autonomous quadrotor equipped with only
a single camera and an onboard Inertial Measurement Unit
(IMU). We focus on the problem of vision-based control to
enable grasping a cylinder with an overhead gripper, allowing
a robot to hang from branches, poles (see Fig. 1), or power
lines, opening up possibilities for energy saving and inductive
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Fig. 1. A sample outdoor perch location for a quadrotor on a cantilevered
cylindrical light post. Note that the axis of the cylinder can generally oriented.

charging. Specifically, we consider the problem of obtaining
reliable pose estimates relative to a cylinder and the synthesis
of a control law that allows the vehicle to converge to stable
perching positions using the apparent contour of the cylinder
as feedback.

Many other research groups have recognized the benefits of
pairing a camera with an IMU. In particular, the two sensors
have complementary characteristics, are lightweight, and are
relatively inexpensive. In [2], a stereo camera configuration
is employed for autonomous navigation and mapping of the
environment while in [3], a monocular approach is used.
Estimation using stereo cameras has proven to be effective [2],
but requires heavy processing capabilities and a pair of
calibrated cameras, which increases the weight and cost of the
vehicle while decreasing the agility. Recent work has shown the
feasibility of using a single monocular camera and an IMU for
real-time localization [4]–[6] and autonomous flight [3], [7]–[9].
In these papers, information from the two sensors is fused using
an Extended Kalman Filter (EKF) or an Unscented Kalman
Filter (UKF) in order to provide localization that is viable for
real-time control. These estimates include the positions and
velocities of the robots in the inertial frame and possibly the
3-D positions of features observed by the camera.

However, common visual odometry techniques do not provide
the ability to control the vehicle with respect to a specific object
and therefore are not directly applicable to scenarios such as
perching. Thus, it is necessary to leverage different approaches.
In this paper, we are concerned with the direct control relative
to commonly occurring objects such as cylinders, and not with
the control of absolute position and orientation.

There is a foundational body of literature covering control
using monocular vision for visual servoing applications, which
discusses the differences between Position Based Visual Servo-
ing (PBVS) and Image Based Visual Servoing (IBVS) [10]–[12].
The key difference between these approaches is that with PBVS,
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the pose of the robot is estimated based on the image features,
and the control law exists in the cartesian space. On the other
hand, with IBVS, the control law is computed directly from
features observed in the image [12]. Each has its benefits; for
example, PBVS systems can use common filters in the MAV
literature for the pose estimate while IBVS is considered to be
more robust to camera calibration errors, making it appealing
for low cost and low quality systems.

In the IBVS literature, most research analyzes first order
systems [13] and proves stability for fully actuated systems [14].
Recently, a Port-Hamiltonian approach has been used to formu-
late a general IBVS approach [15], however an improvement in
accuracy over traditional IBVS approaches is not demonstrated.
Further, works such as [16]–[19] use a backstepping approach
for control, while [20] and [21] use a geometric-based control
approach. However, with backstepping, it is necessary to assume
that the inner control loops are significantly faster than the
outer ones. Furthermore, it is possible to design controllers for
quadrotor MAVs which do not require these assumptions and
can guarantee convergence from almost any point on SE(3),
the Euclidean motion group [22].

Position-based Visual Servoing is directly related to computer
vision work on recovering pose from the projection of known
structures, which is widely used in 3D-tracking and augmented
reality. In the context of this paper, approaches trying to recover
pose from conics, cylinders, or quadrics are closely related.
An extensive survey can be found in [23], but the closest and
most specialized treatment is in [24] and [25]. The projection
geometry of conics and the decomposition of conic projections
in intrinsic and extrinsic parameters is introduced in [26],
[27], and Augmented Reality based tracking using circles and
cylinder projections was accomplished in [28].

The authors in [29] leverage a Structure from Motion (SFM)
approach to estimate the parameters of a cylinder if the velocity
of the camera is known, and in [30], an IBVS approach is
presented for visual inspection of vertical cylinders at fixed
distances, but requires a pilot or magnetometer to control the
yaw and an additional sensor to estimate the height. Grasping
of cylindrical objects is considered in [20] and [21], where
the cylinder’s axis is assumed to be perpendicular to gravity
and an external motion capture system is used (in addition to
onboard sensing) to control the motion along the cylinder axis.

In this paper, we develop the first fully autonomous vision-
based quadrotor for perching, providing experimental results
and a formulation of control and second order system dynamics
in the image plane. We address the full 3D visual servoing
problem of grasping a cylinder with an overhead gripper,
allowing the robot to hang from branches or poles. Specifically,
several key contributions are presented:

• A second order dynamic model of features in a virtual
image plane is derived using a diffeomorphism between
image features and robot’s location in 3D space.

• An IBVS control law is proposed in which the stability
is proved via Lyapunov theory.

• The system is shown to be differentially flat with respect
to a set of given outputs in a virtual image space,
which enables a simple method for planning dynamically
feasible trajectories directly in the image space.

• The control law and trajectory planning method are
demonstrated through successful perches of a quadrotor
on real-world objects.

The paper is organized as follows: in Section II and Section III,
the geometric and dynamic models are developed, respectively.
An IBVS control law is presented in Section IV, and a method
for trajectory planning is developed in Section V. Finally,
experimental results are reported in Section VI, and Section VII
concludes the paper.

II. GEOMETRIC MODEL

Consider a cylinder with a known radius, r, and an unknown
axis, a ∈ S

2 defined in the camera frame, C. In this section,
all vectors will be defined with respect to the camera frame
unless otherwise noted with a superscript. We assume that the
radius of the cylinder is known (perhaps using the approach
in [29]), and we focus on the problem of estimating the pose
of the cylinder in a camera fixed frame. The closest concise
treatment of a relative cylinder pose can be found in [25].

A. Projection of Quadric

Let X ∈ R
3, M ∈ R

3×3, and

XTMX+mTX+ µ = 0 (1)

be the equation of a quadric surface in R
3 expressed in the

coordinate system of a camera. Its projection x = (x, y, 1) to
the image plane Z = 1 of a calibrated camera can be obtained
by letting X = λx be the ray of projection and requiring that
this ray is tangent to the surface. This means that the equation

λ2xTMx+ λmTx+ µ = 0 (2)

must have exactly one solution for λ. For this to happen, the
discriminant must vanish

(mTx)2 − 4µxTMx = 0. (3)

Then, for any point x (recall that λx is tangent to the surface)
satisfying (3), we can recover its depth as

λ = −
mTx

2xTMx
. (4)

Let us find the equation of a cylinder of arbitrary pose in
camera coordinates. Let the cylinder be expressed as

X2
o + Y 2

o = r2 (5)

in the object coordinates (Xo, Yo, Zo) ∈ R
3. Then, in the

camera frame, let the axis of the cylinder be the unit vector
a, and let the direction perpendicular to the plane spanned by
the origin and the axis be the unit vector b as displayed in
Fig. 2. Finally, let the vector from the origin to the closest
point on the axis be βc with ‖c‖ = 1. Choosing the closest
point of the axis as the origin of the object coordinate system,
the transformation from the object to the camera becomes

X = (c b a)

(

Xo

Yo
Zo

)

+ βc (6)
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Fig. 2. The geometry of the camera-cylinder system. The coordinate systems
of the camera, cylinder object, and world are given by (xc,yc, zc), (b, c,a),
and (xw,yw, zw), respectively. The axis of the cylinder a and the point on
the axis closest to the camera, βc, can be estimated directly from the lines
representing the boundaries of the cylinder in the image. Further, we assume
that the projection d of a ray passing through the camera and tangent to the
cylinder at the aTX = δ plane can be observed.

or, rearranging,

(

Xo

Yo
Zo

)

=





cTX− β
bTX

aTX



 . (7)

Then, the cylinder can be expressed in camera coordinates as

(cTX− β)2 + (bTX)2 = r2 (8)

and following (3), we obtain the projection and factorize

0 = (βcTx)2 − (β2 − r2)((cTx)2 + (bTx)2) (9)

= (
√

β2 − r2b+ rc)Tx (
√

β2 − r2b− rc)Tx, (10)

which shows that the projection of a cylinder is the union of
two lines. Let us write these two lines as

nT1 x = 0 and nT2 x = 0 (11)

with ni=1,2 being the unit vectors

n1,2 =
1

β

(

√

β2 − r2b± rc
)

. (12)

We see that n1,2 contains all the information about the
orientation of the cylinder:

a ∼ n1 × n2, b ∼ n1 + n2, c ∼ n1 − n2, (13)

and the distance of the camera to the closest point β can be
recovered from the inner product

nT1 n2 = 1− 2
r2

β2
, (14)

which has a plausible geometric interpretation as cosφ =
1− 2 cos2 φ2 where φ/2 is the angle between c and the radial
vector to the tangential point in the same plane.

1) A World-Fixed Point: The main objective is to determine
the relative position of the robot, but also considering translation

along the axis of the cylinder relative to some fixed point in
the inertial frame. Thus, we are interested in determining the
location of a fixed point, P, that lies on the axis of the cylinder.
Note that a tangent point cannot be used as the fixed point
because it would move in the inertial frame based on the
relative pose. We could, however, use points from features on
the surface of the cylinder, but would then have to be concerned
about preventing the feature from becoming occluded.

If we are given the projection d of a tangent point Pt as in
Fig. 2, we first recover the depth α of the point from (4)

α =
βcTd

(cTd)2 + (bTd)2
(15)

The plane that is perpendicular to the cylinder axis and
passes through δa and Pt can be represented by

aTX = δ. (16)

Since αd is known from eq. (15), we can obtain δ from

δ = aT (αd) =
(aTd)βcTd

(cTd)2 + (bTd)2
. (17)

Knowing δ, it is possible to compute P as

P = βc+ δa. (18)

2) An Attitude Estimate: To control the robot, it is important
to know the orientation relative to a fixed frame. We assume
that we can estimate the gravity vector, gB, in the robot body
frame using the onboard IMU. The transformation from the
robot frame to the camera frame is fixed and known by design,
so we can determine the gravity vector in the camera frame, gC .
In addition, we have already concluded that we can estimate
the axis of the cylinder, a, also in the camera frame, which
provides an anchor for the rotation about the vertical axis. If
the cylinder is not vertical (i.e. gC × a 6= 0), then the rotation
between the camera frame and the world frame is

RC

W =
[

xC
W

yC
W

zC
W

]

(19)

where RC
W

rotates vectors with coordinates in W to C and

zCW = −
gC

‖gC‖
, yC

W =
zC
W

× a
∥

∥zC
W

× a
∥

∥

, xC

W = yC

W × zCW . (20)

B. Image Features in a Fixed-Orientation Virtual Frame

The observed features are in the camera frame, but we are
interested in a fixed-orientation frame located at the Center
of Mass (COM) in order to simplify the control and planning
problems. In practice, this could be achieved using a gimbal
that would keep the camera at a fixed orientation in the world
frame or, as in this case, we can re-project the observed cylinder
onto a virtual image based on the known orientation of the
robot.

The virtual image plane is parallel to the axis of the cylinder,
and its orientation can be expressed as

RC

V =
[

a yC
W

a× yC
W

]

. (21)

In this case, we have formulated the virtual image plane as
being in the a-yW plane. However, if the user would prefer
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ρ1
ρ2

u

Fig. 3. The features in the virtual image are the coordinates (ρ1 and ρ2) of the
two lines and the coordinate, u, representing the projection of the aTX = δ
plane.

to operate beside (in contrast to above or below) the cylinder,
a vertical plane would be more appropriate (e.g. the a-zW
plane). The translational offset of the camera from the COM
of the system is known in the camera frame, which allows us
to determine

PV = TV

C (P) (22)

where TV
C

is a known transformation. The feature vector in the
virtual image (see Fig. 3) is

s ≡

[

ρ1
ρ2
u

]

= Γ
(

PV , r
)

(23)

where ρ1 and ρ2 can be computed from the lines of the cylinder
and

u =
eT1 P

V

eT3 P
V

(24)

where ei denotes the ith standard basis vector. Now that we
have computed the image features in the virtual image, we will
explore their dynamics to provide insight for control.

III. DYNAMIC MODEL IN THE VIRTUAL FRAME

As the robot moves, the image features will also move in
the virtual image. Since we are ultimately interested in driving
the features to a desired goal, it is important to understand how
the control inputs of the system influence the dynamics and
can be used to manipulate the image features. This will enable
simulations as well as provide insight for the development of
an image based control law.

The velocities of the image features are (see [12])

ṡ =
∂Γ
(

PV
)

∂PV
ṖV . (25)

Let the position of the robot in the world frame be xq so that
the velocity of P can be computed to be

ṖV = −RV

CR
C

W ẋq. (26)

Then, we can express the image feature velocities in terms of
the robot velocity and PV

ṡ = −
∂Γ
(

PV
)

∂PV
RV

CR
C

W ẋq ≡ J ẋq. (27)

We assume that RV
W

is constant (i.e. the cylinder’s orientation
is fixed in the world) and known since RC

W
is known from

(19) and RV
C

is known from (21). Since we have assumed that
r > 0 and that the robot can not pass through the cylinder, it
can be shown that the Jacobian is nonsingular.

The translational dynamics of a quadrotor in the world frame
can be expressed as

mẍq = −mge3 + fRW

B e3 (28)

where m is the mass of the vehicle, g is gravitational

acceleration, e3 = [0 0 1]
T

, f is the net thrust, which only
acts vertically (i.e. in the e3 direction) in the body frame of
the robot, and RW

B
is the orientation of the vehicle’s body with

respect to the word frame. Further, the angular dynamics are
given by

ṘW

B = RW

B Ω̂ (29)

IΩ̇+Ω× IΩ = M (30)

where Ω ∈ R
3 is the body-frame angular velocity of the robot,

I is the inertial tensor, M ∈ R
3 is the control moments,

·̂ : R3 7→ so(3) is the “hat” map defined such that âb = a×b,
and so(3) is the Lie algebra of SO(3), the 3D rotation group.
The control inputs are related to the rotor speeds through

[

f
M

]

=







kf kf kf kf
0 lkf 0 −lkf

−lkf 0 lkf 0
km −km km −km













ω2
1

ω2
2

ω2
3

ω2
4






(31)

where kf and km are the thrust and moment coefficients of the
rotors, respectively, l is the length from the COM to the rotors,
and ωi is the angular speed of the ith rotor [31]. Since this is
invertible, the rotor speeds can be computed directly from the
desired control inputs.

Using (27), the acceleration of the robot can be expressed
in terms of J , J−1, s, and their derivatives

m
(

J−1s̈+ ˙J−1ṡ
)

= fRW

B e3 −mge3. (32)

Rearranging, the dynamics of the image features are

s̈ =
1

m
J
(

fRW

B e3 −mge3 −m ˙J−1ṡ
)

(33)

and can be used for simulation and the development of the
control law in the next section.

IV. AN IMAGE-BASED CONTROL LAW

The goal of our controller is to drive observed image features,
s, to desired values, sdes. In our case, we want to allow the
desired values to change with time (i.e. sdes (t)) so that the
robot can transition smoothly from one state to another. From
the dynamics in (33), we propose the following control law.
Let the desired thrust vector in the world frame be

fdes = m
(

ge3 + J−1 (kxes + kvės + s̈des) + ˙J−1ṡ
)

(34)

where
es = sdes − s, ės = ṡdes − ṡ (35)

are the position and velocity errors in the image coordinates, and
kx and kv are positive gains. Note that RW

B
can be computed

as RW
B

= RW
C
RC

B
where RC

B
is a known, constant rotation and

RW
C

can be determined from the real image as in (19). For
ease of notation, in the rest of this section, let R ≡ RW

B
.
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Proposition 1: Let the commanded thrust and moments be

f = fdes ·Re3, (36)

M = −KReR −KΩeΩ +Ω× IΩ (37)

where KR and KΩ are positive gains. Also, eR and eΩ represent
the attitude errors (see [22])

eR =
1

2

(

RTdesR−RTRdes
)∨
, eΩ = Ω−RTRdesΩdes (38)

where ·∨ : so(3) 7→ R
3 is the opposite of the hat map and the

subscript “des” indicates a desired value. Then, the closed loop
system is asymptotically stable.

Proof: A sketch is given below. For the full proof, see [32].
Stability of the Attitude Dynamics: For the attitude controller,

let a Lyapunov candidate be

VR =
1

2
eΩ · IeΩ +KRΨ(R,Rdes) + c2eR · eΩ, (39)

with Ψ(R,Rdes) =
1
2 tr
[

I −RTdesR
]

(for properties, see [22])
and c2 a positive scalar. Also, recall that I is the inertial tensor.
Then, it can be shown that

zTθMθzθ ≤ VR ≤ zTθMΘzθ, (40)

V̇R ≤ −zTθWθzθ ≤ 0, (41)

where zθ = [‖eR‖ , ‖eΩ‖]
T

, and Mθ,MΘ, and Wθ are positive
definite, guaranteeing the asymptotic stability of the attitude
dynamics.

Translational Dynamics: Using (27), we can determine the
image errors

ës = s̈des −
1

m
J
(

fRe3 −mge3 −m ˙J−1ṡ
)

. (42)

Let a Lyapunov candidate be, with c1 > 0,

Vs =
1

2
kx ‖es‖

2
+

1

2
m ‖ės‖

2
+ c1es · ės. (43)

Then, it is possible to show that

V̇s ≤ −zTsWszs + zTsWsθzθ, (44)

where zs = [‖es‖ , ‖ės‖]
T

and Ws is positive definite.
Stability of the Underactuated System: Now, we consider

the combined Lyapunov candidate for the translational and
rotational error dynamics, V = Vs + VR. From (40) and (44),

zTsMszs + zTθMθzθ ≤ V ≤ zTθMΘzθ + zTsMSzs (45)

where the matrices are positive definite, and it holds that

V̇ ≤ −zTsWszs + zTsWsθzθ − zTθWθzθ ≤ 0, (46)

which guarantees that the entire underactuated system exhibits
asymptotic stability. For the complete proof, see [32].

V. TRAJECTORY PLANNING

While the controller does guarantee stability, perching
performance can be further improved by varying the desired
setpoints in time (sdes (t)) in a feasible manner. For a dynamic
system, it is expected that a smooth transition between states

(e.g. not a step input) is required, but with the state vector
represented by image features, the exact requirements are not
obvious. In the rest of this section, we present a planning
method that clarifies the requirements for a dynamically feasible
trajectory in the image feature space and also provides a method
for minimizing the inputs to the system after being expressed
as a differentially flat system.

A system is called differentially flat if there exists a change
of coordinates which allows the state and control inputs to be
written as functions of the flat outputs and their derivatives

(Y , Ẏ , Ÿ , . . .) [33]. One of the key benefits of the differential
flatness property is that the task of trajectory planning for
underactuated, dynamic systems can be simplified greatly, as
will be demonstrated in the rest of this section. For more details
regarding differentially flat systems, we refer the reader to [33],
which provides examples and further explains the benefits of
such systems.

For our system, let

Y =







ρ1
ρ2
u
ψ






=

[

s
ψ

]

(47)

where s is the image feature vector and ψ is the yaw angle
describing a rotation about the vertical axis of the inertial frame,
zw. We will show that Y is a valid set of flat outputs for our
system and that trajectories can be planned for Y(t) such that
they are dynamically feasible. From a given trajectory, the
thrust can be expressed considering (32) as

f =
∥

∥

∥mge3 +m
(

J−1s̈+ ˙J−1ṡ
)∥

∥

∥ (48)

which is dependent only on Y since J is a function of Y
(assuming RV

W
is known and constant). Since the orientation

of the robot can be expressed as

RW

B =
[

xW
B

yW
B

zW
B

]

, (49)

the RW
B
e3 term in (32) is equal to zW

B
and the dynamic model

can be rewritten accordingly. Since f ∈ R and, by definition,
∥

∥zW
B

∥

∥ = 1, we can solve for zW
B

:

zWB =
m
(

J−1s̈+ ˙J−1ṡ
)

+mge3
∥

∥

∥m
(

J−1s̈+ ˙J−1ṡ
)

+mge3

∥

∥

∥

. (50)

Defining a vector in the world, xψ = [ cosψ sinψ 0 ]
T

, we

can write the other two components of the rotation matrix RW
B

as
yW

B =
zW
B

× xψ
∥

∥zW
B

× xψ
∥

∥

, xW

B = yW

B × zWB . (51)

Since zW
B

and xψ are dependent on the flat outputs and
the corresponding derivatives, we have shown that the body
orientation is dependent on those quantities.

Next, we demonstrate that the angular velocity in the body
frame is also dependent on the chosen set of flat outputs. Taking
the derivative of (32), we obtain

m
(

2 ˙J−1s̈+ J−1s(3) + ˙J−1ṡ
)

= ΩW × fzWB + ḟzWB , (52)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/LRA.2015.2506001

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2015

and an inner product with zB reveals that

ḟ = m
(

2 ˙J−1s̈+ J−1s(3) + ˙J−1ṡ
)

· zWB . (53)

Similarly, solving (52) for the ΩW×zW
B

term and independently
projecting onto xW

B
and yW

B
provides the first two terms of

ΩB by leveraging the circular shift property of the scalar triple
product and the fact that ΩW = RW

B
ΩB. Then, the third

component of ΩB can be determined using an appropriate

parameterization of RW
B

and because ψ̇ is known.

With another derivative, the angular acceleration of the robot
appears as a function of Y (and higher derivatives) and allows
for the computation of the control moments from (30). Thus, the

control inputs are dependent on s(2), s(3), s(4), ψ̇, and ψ̈, and
the dynamic system could be rewritten as a chain of integrators
for each of the elements of Y with the appropriate derivative as
the input to the flat system. For this reason, we plan trajectories
that minimize the fourth derivative (i.e. snap) of the image
features and of the second derivative of the yaw, ψ.

The trajectory planning problem can be formulated as
a Quadratic Program (QP) with the requirement that the
trajectories are C4 (or C2 for ψ) and solved using the method
outlined in [31], which allows for the implementation of
constraints formulated in terms of the flat outputs.

VI. EXPERIMENTAL RESULTS

The experiments were conducted in the GRASP Lab [34]
at the University of Pennsylvania using an Ascending Tech-
nologies Hummingbird quadrotor. An onboard computer
(ODROID-XU3 from Hardkernel) handles all image processing
and control, and the onboard sensors compose of the quadrotor’s
IMU and a Matrix Vision mvBlueFOX-MLC camera with a
98◦ horizontal and a 73◦ vertical field of view. The image
processing and control use ROS, and the ODROID-XU3 is
able to provide a rectified 752 × 480 image at frame-rate.
A schematic and more detailed description of the system
is provided in Fig. 4. As depicted in the figure, all of the
visual processing, control, estimation, and planning is done
onboard without human intervention or an external motion
capture system. The user can remotely change navigation and
visualization settings from a base station.

We have intentionally pointed the camera upwards because it
more naturally keeps the cylinder within the field of view (see
Fig. 5). Additionally, the robot is equipped with an upwards
facing 1-DOF gripper, depicted in Fig. 6, which is actuated
using a small servo.

A. Visual Processing

Efficient image processing is crucial since the algorithm must
run at a sufficient rate for closed loop control. A sample of the
result is given in Fig. 7. The image processing algorithm is
mainly divided into two steps: 1) Line detection and 2) Line
tracking.

1) Line Detection: The goal of the first task, which is
executed only at the first frame, is to reliably identify the

Fig. 5. Consider the case when the goal is to keep the robot aligned with
the cylinder, but the robot starts slightly to the left (gray). Then, the robot
must rotate clockwise to accelerate towards the right (blue). The red arrow
indicates the desired direction of the thrust and also the desired direction of
the zB axis. The left hand side depicts the camera and field of view if the
camera is facing downwards. When the camera faces the same direction as
the thrust (i.e. upwards), the robot more naturally keeps the cylinder in the
field of view (right). In particular, this is important when maneuvering close
to a cylinder such as when perching.

Upwards-Facing	

Gripper	

Upwards-Facing	

Camera	

Fig. 6. The robot has an upwards facing camera and gripper to enable
perching on objects above the robot.

lines representing the image of the cylinder. To accomplish
this, the detection algorithm leverages the OpenCV library and
a Hough transform [35] to detect lines in the image. From the
set of lines detected, we identify two with similar length and
orientation while enforcing a minimum distance between the
two lines.

2) Line Tracking: In the second task, the two detected lines
are tracked in the image. We use the Visual Servoing Platform
(ViSP) [36] library to track the moving edges identified in the
previous step. Each sample point along a line is tracked from
one image to another along the normal to the edge passing
through the point. To improve real-time image processing and
control, two threads are instantiated to simultaneously track
the two lines, which leverages multiple processor cores. If
the tracking is lost, the two steps are repeated again. The
cylinder tracking code runs onboard at 75 Hz, and the computed
parameters in the virtual plane are filtered to obtain velocity
estimates.

B. Trajectory Planning and Perching

Now, we leverage the trajectory planning in Section V to
smoothly transition between states. For experimental results of
a sample trajectory, see Fig. 8. The image coordinates track the
desired values using the control law proposed in Section IV.
These results demonstrate the effectiveness of the proposed
control law.

In many situations for aerial robots, it will beneficial for
the robot to perch. Similar to the motivation for an upwards-
facing camera, we also use an upwards facing gripper. In this
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Robot 

Trajectory	

Planning	

Image-based	

Controller	

A8tude	

Controller	
Plant	

Feature	Detec<on	

and	Tracking	

Ground Station 

Visualiza<on	and		

Naviga<on	Se8ngs	

fdes

Y
d
, Ẏ

d
, Ÿ

d
, . . .

s, ṡ

eψ

IMU	q

M, f

Fig. 4. The architecture for planning, control, and estimation. The ground station is only responsible for visualization and sending high level commands. A

desired trajectory (Yd, Ẏd, Ÿd, . . .) is computed and sent to the IBVS controller. The controller uses IMU feedback at 200 Hz (in the form of a quaternion, q)
and image feature feedback at 75 Hz to compute a desired force fdes and a yaw error eψ , which are sent to the attitude controller. Finally, the attitude controller
computes the necessary moment control inputs M and the thrust f .

Fig. 7. A sample image sequence from the onboard camera while perching. The time increases from left to right. As the robot gets closer to the cylinder, the
cylinder becomes larger in the image. The blue (left) and red (right) lines indicate the detected lines.
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Fig. 8. A sample trajectory starting below and to the side of the cylinder,
passing directly underneath, and ending on the other side of the cylinder. The
desired trajectory is denoted by a “d” superscript.
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Fig. 9. A sample trajectory starting below and to the side of the cylinder
and ending in a perch. The desired trajectory is denoted by a “d” superscript.

way, corrections of the robot position keep the gripper facing
towards the target. Using this setup, the robot can successfully
perch as displayed in Fig. 6 using a trajectory in the first three
components of Y as in Fig. 9. The estimate of βc in the camera
frame provides the distance of the vehicle from the cylinder
and can be used to determine when to close the gripper. The
estimate of xV

q throughout the trajectory is shown in Fig. 10,
and Table I shows the Root Mean Square Error (RMSE) of the
vehicle with respect to the desired values. The first component
is the largest because, in this maneuver, xV is closely aligned
with the axis of the cylinder, and the measurement of the end
of the cylinder is noisy. The average Euclidean error is 2.1 cm
for the position confirming the effectiveness of the controller.
Finally, a video of the experimental results is provided in
the supplementary multimedia material and online (see [32]),
showing that the vehicle can hover, perch from different initial
configurations, and handle various cylinder orientations.

Coordinate in frame V Position Root Mean Square Error (m)

x 0.020
y 0.008
z 0.009

TABLE I. POSITION RMSE DURING A PERCHING MANEUVER.

0 2 4 6 8
−0.4

−0.2

0

0.2

Time (s)

P
o

si
ti

o
n

(m
)

xdq ydq zdq xq yq zq

Fig. 10. The desired (computed from ρd
1

, ρd
2

, and ud) and computed estimate
of the quadrotor’s position in the virtual frame V for a perching maneuver.

VII. CONCLUSION

In this work, we presented the first vision-based control
approach enabling a quadrotor, without the aid of GPS or a
motion capture system, to perch on generally-oriented cylin-
drical objects. We developed a geometric model to determine
the pose relative to a cylinder, used a virtual camera frame to
simplify the image feature space, expressed the dynamics of the
robot in terms of the image features, developed an image-based
controller, and presented a method to plan dynamically feasible
trajectories directly in the image plane. Finally, we provided
experimental results, demonstrating the success of our methods
using a fully autonomous platform with all computation and
sensing onboard.

There are still opportunities for further development. Our
future work will include a sensitivity analysis of the control
law, subject to radius uncertainty estimates, and will include a
comparison between the current IBVS approach and a PBVS
approach. The gripper will accommodate perching using a
smaller contact area, not by caging the cylinder, which will
enable perching on larger cylinders using a smaller gripper. We
also will improve the cylinder detection to consider objects
that are cylindrical in only some sections, such as a crooked
tree branch. Finally, we aim to achieve vision-based perching
on smooth, inclined surfaces, such as windows (see, for
example, [37]), which will require the development of a new
control law and detection algorithm.
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