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Visual Servoing Using Model Predictive Control

to Assist Multiple Trajectory Tracking

Nicolas Cazy, Pierre-Brice Wieber, Paolo Robuffo Giordano, and François Chaumette

Abstract— We propose in this paper a new active perception
scheme based on Model Predictive Control under constraints
for generating a sequence of visual servoing tasks. The proposed
control scheme is used to compute the motion of a camera whose
task is to successively observe a set of robots for measuring their
position and improving the accuracy of their localization. This
method is based on the prediction of an uncertainty model (due
to actuation and measurement noise) for determining which
robot has to be observed by the camera. Simulation results are
presented for validating the approach.

I. INTRODUCTION

Visual servoing is a very effective method for control-

ing the robot motion for realizing tasks of all sorts using

feedback from visual sensors [1]. However, an important

constraint of using cameras is their limited field of view.

This constraint is usually mitigated by imposing that the

target features are always kept within the field of view.

Avoiding that visual features leave the camera field of view is

taken into account in [2]. Various works on visual trajectory

planning that take into account occlusions and feature loss

avoidance have also been realized [3]–[7].

However, strictly imposing the visibility of all targets

is not always possible nor desirable. One way to perform

visual servoing when the necessary visual information is

missing is to simply predict how this information would

evolve when no measurement is available [8], [9]. This

solution is limited, however, since the mismatch between

the prediction model and the real measurements is bound to

increase with time. In this respect, we propose in this paper

to monitor this discrepancy for guaranteeing that it stays

between predefined bounds. This requires ensuring that the

necessary visual information can be collected regularly, when

needed. For this, we consider a classical eye-in-hand setup

where the camera view can be modified at will. We model the

drifts between real and modeled positions and predict their

evolution over a future time window. We set bounds on these

drifts, and ensure that they will not be exceeded thanks to

new camera measurements, using a Model Predictive Control

scheme. This control strategy has been already used for

visual servoing handling constraints for different applications

in [10]–[15].
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As an example, we propose to consider one camera carried

by a UAV hovering over ground at a constant height. This

UAV is subject to a drift between its real and its modeled

position. We consider that the only way to correct the

UAV/camera position consists in observing a landmark on

the ground whose position is known. We also consider a set

of mobile ground robots which have to follow some planned

trajectories. These trajectories are far from each other and

from the landmark so that the robots and the landmark cannot

be seen by the flying camera at the same time. The UAV

will then have to decide when to look at which robot and

when to look at the landmark for making sure that the visual

information, necessary for the ground robots to realize their

task, is regularly collected.

A link can be established between our method and the self-

triggered control in the sense that the quantity of information

sent by the camera to the ground robots is intentionally

reduced [16]. Indeed at each sampling instant the knowledge

of the UAV and of the robots dynamics allows to predict the

camera velocity without any measurement. Furthermore, our

proposed method can be considered as an instance of active

perception [17]. As discussed in [18], the proposed control

scheme has to decide online the control inputs and sensor

measurement strategies in order to minimize the uncertainty

in the ground robot localization. Multiple works have already

been conducted in this sense: for instance, in the context

of object search, a mobile robot generates its path thanks

to a web-based knowledge which delivers a customized

execution plan in [19]. A robot path is determined on current

knowledge of the object location encoded by a probability

distribution computed during the search process in [20].

Object recognition is obtained by predicting the optimal

viewpoints in [21], [22]. Finally, a grasping method of

deformable object by a robot arm using depth information

is proposed in [23]. In this paper, we exploit a model of the

uncertainty evolution of the ground robots and UAV position

to determine the sequence of camera visual servoing tasks

to correct model drifts one after the other. The principle of

active perception is thus focused on the control of the camera

such that mobile ground robots and UAV correct their drift.

Section II starts by describing the tasks assigned to mobile

ground robots, as well as the model errors which can

be corrected by camera measures. Section III reviews the

considered Model Predictive Control scheme which is used

to realize the desired camera task. Simulation results are

presented in Sect. IV. Finally, Sect. V concludes the paper

and discusses about future works.



II. MODELING

In this paper, we consider Nr mobile robots that have to

follow some desired trajectories on the ground, one camera

embedded on a UAV stabilized at a constant height, and

a fixed landmark on the ground whose position is known

in the world frame. The robot and camera are modeled as

kinematic systems with velocity inputs. We also assume that

each real position drifts from its respective model because of

non-idealities such as actuation noise. This noise represents

the fact that the robots and the UAV/camera do not react

perfectly to their control schemes due to, e.g., modeling

errors or delays. The UAV and camera are modeled as simple

kinematic systems in order to focus on the the characteristics

of the model predictive control scheme presented in the

Section III. Future extensions of this work will consider more

realistic dynamical models for the considered robots.

In our settings, the only way to rectify these drifts is

to correct the modeled positions by measuring the robots

(for the robot models) and landmark (for the camera model)

positions. The problem is that, in general, only one robot or

the landmark can be seen by the camera at once. Moreover,

we choose to force the camera to stay focused on one robot

or on the landmark as long as the other models do not

need to be corrected. This is meant to minimize the camera

total displacement. To determine which model should be

corrected, the uncertainty of each position is propagated in

order to quantify the amount of drifts. According to these

uncertainties, the camera controller is able to manage the

priority of which model must be corrected.

A. Representation

We consider that the camera and the robots have 2 DOFs

each, namely their Cartesian coordinates on a plane. More

precisely, we set c =
(

cx , cy
)

and ri =
(

rix , riy
)

respec-

tively as camera and robot i (∀i = 1, ..., Nr) coordinates in

a world frame (in red and orange on Fig. 1). We set also

m =
(

mx , my

)

as the motionless landmark used for the

camera model correction, whose coordinates in the world

frame are supposed known (in black in Fig. 1).

We set also cm and rim as the modeled coordinates of

the camera and the robots (in blue on Fig. 1). These models

are introduced for two reasons: the first one lies in the

structure of the employed model predictive control scheme

(see Section III) in wich future positions of the robots and

the camera are determined using a model. The second one

lies in the fact that, when the robots and the landmark are

outside the camera field of view, no measurement is avail-

able to determine precisely the robot and camera position.

Thus, using a model allows to cope with the lack of direct

measurements and approximate the unmeasurable positions.

Obviously, when a measurement becomes available, the

corresponding model can be corrected accordingly.

Fig. 1: Camera with limited field of view monitoring the

trajectory of two robots on the ground (top view).

B. Dynamics

The dynamics of camera and robots is assumed to evolve

according to this simple kinematic model:

{

ċ = uc + nc

ṙi = ui + ni

; (1)

where:

• the velocities applied to the camera allow it to move

parallel to the ground: uc =
(

ucx , ucy

)

.

• the velocities applied to each robot allow them to move

on the ground: ui =
(

uix , uiy

)

.

• nc and ni are additive Gaussian noises applied to the

camera and robots velocities:

n ∼ N (0, σ2), (2)

with σ2 being the variance. They define the error

between the applied and the actual velocity.

As discussed in Sect. II-A, the modeled positions of camera

and robots are the only information always available. Follow-

ing (1), the dynamics of the modeled coordinates are defined

in a discrete time form at each instant tk as:

{

cm(tk+1) = cm(tk) + τuc(tk)

rim(tk+1) = rim(tk) + τui(tk)
(3)

with τ being the sampling time. From (3), the modeled

coordinates can be predicted over a prediction horizon N

as:
{ −→

cm = Acm(tk) +B
−→
uc

−−→
r1m = Arim(tk) +B

−→
ui

(4)

where :

• the sets of the camera and robot positions are:

{ −→
cm =

(

cm(tk+1) , . . . , cm(tk+N )
)

∈ R
2N×1

−−→
rim =

(

rim(tk+1) , . . . , rim(tk+N )
)

∈ R
2N×1

,

(5)

• the sets of the camera and robot inputs are:

{ −→
uc =

(

uc(tk) , . . . , uc(tk+N−1)
)

∈ R
2N×1

−→
ui =

(

ui(tk) , . . . , ui(tk+N−1)
)

∈ R
2N×1

,

(6)

• and
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(7)

This dynamic over a future horizon is used for the model

predictive control scheme (see Section III).

We now describe how the velocities applied to the robots

are computed to allow them to follow their desired trajectory.

C. Robot control

The desired trajectories to be followed by the robots are

represented by a time-varying desired r
∗

i (t) (in green on

Fig. 1). The robots are controlled to track their desired

trajectories by applying the simple control scheme:

ui = k(r∗i − rim) (8)

with a scalar gain k > 0. It therefore appears that the drift

between the real and modeled robot coordinates will also

induce a drift between the real and the desired robot position.

We see now how to correct the modeled position thanks to

camera measurements.

D. Models correction

The camera coordinates in the world frame are given by:

sc = c−m, (9)

while the robot coordinates in the camera frame are:

si = ri − c. (10)

However because of image processing errors, camera mea-

surements are subject to an additive noise ns with same form

as (2). This implies a slight error for each measurement s̄c
and s̄i as

{

s̄c = sc + ns

s̄i = si + ns
. (11)

These coordinates are available as measurement only

when the landmark and the robots appear in the camera

field of view delimited by the visibility range smin =
(

sminx
, sminy

)

and smax =
(

smaxx
, smaxy

)

(orange lines

in Fig. 1). A measurement allows obtaining either the camera

model coordinates cm or one robot model coordinates rim.

Thus, using (9), (10), and (11), we can write:
{

cm ← s̄c +m if smin 6 s̄c 6 smax

rim ← s̄i + cm if smin 6 s̄i 6 smax
(12)

The camera model drift can then be corrected by the land-

mark observation, while the robots and therefore also their

trajectories are corrected by robots observation.

In this section, we discussed the modeling about cam-

era and robots position, and highlighted the importance of

obtaining a camera measurement for correcting the camera

and robot models (and, thus, improving the robot tracking

performance). The main remaining issue is to develop an

appropriate control scheme for the camera moving to the

robots or to the landmark to correct the position models,

which is the goal of the next section.

III. MODEL PREDICTIVE CONTROL SCHEME

In this section we design a model predictive control

strategy for allowing the camera to move towards either the

landmark or one of the robots. Our aim is to force the camera

to switch from one target to another one as a function of the

evolution of the position uncertainties. These uncertainties

are computed from a model characterizing how the drifts

evolve over time. This strategy can be considered as a par-

ticular instance of active perception, since the camera motion

must be optimized online in order to gather information about

the scene.

The use of this approach is justified by the fact that

the camera cannot move instantaneously from one point to

another. It is therefore necessary to anticipate the camera and

robot motion exploiting the evolution of position uncertain-

ties over a prediction horizon. In order to develop this control

strategy, we need to define the overall system dynamics

(which has already been done in Sect. II-B), a suitable

cost function able to capture our control objective, and the

constraints imposed to the system. A proper definition of

these constraints provides the desired behavior of the camera.

A. Cost function

The cost function to be minimized is given by:

min
−→uc∈K

J(−→uc) (13)

where K is the constraint domain described in the next

section III-B, and

J(−→uc) =
(−−→scm −

−−→
s
∗

cm)T (−−→scm −
−−→
s
∗

cm)

+
∑

(−−→sim −
−−→
s
∗

im)T (−−→sim −
−−→
s
∗

im)
, (14)

where −−→scm and −−→sim are the sets of the corresponding models

of −→sc and −→si defined as:
{

scm = cm −m

sim = rim − cm
(15)

Moreover,
−−→
s
∗

cm and
−−→
s
∗

im are the sets of the desired position

of the landmark and the robot models in the camera frame

along the prediction horizon. To obtain the landmark and

robots in the center of the camera field of view, we set s∗cm
and s

∗

im always null.

This cost function has been designed so that the camera

keeps at equal distance from the landmark and the robots.

However, this distance will be strongly disturbed by the

constraints (21). Namely, these constraints will force the

camera to move towards the landmark or one robot (as it

will be explained in Sect. III-B.2.b).



B. Constraints

A great advantage of model predictive control is the

possibility to handle constraints in a principled way. We will

use this characteristic to influence the camera motion.

1) Camera inputs constraints: First, constraints on the

control input are included in the domain K as:

u
−

c 6 uc 6 u
+
c (16)

to ensure the camera velocity will not exceed its physical

limitations, with u
−

c = (u−

cx, u−

cy) and u
+
c = (u+

cx, u+
cy).

Obviously, these constraints are applied for all the set of

inputs −→uc.

2) Relative positions constraints: Secondly, the propa-

gation of the positions uncertainty over a future time is

modeled. This propagation is used to select which model

needs to be corrected. Then, to force the camera to move

to the selected model, constraints on the camera position

relative to the landmark and to the robot positions are

included in the domain K.

a) Uncertainties: As introduced in Sect. II-B, the ve-

locity applied to camera and robots is subject to noise in (1),

which causes a drift between the real and the modeled

position. Knowing the variance of that noise, it is possible to

model the drift propagation over time. For this, we introduce

the position uncertainty pj where j = 0, ..., Nr, and j = 0
represents the camera.

Two situations are involved to determine the uncertainty

propagation. Firstly, when a model is corrected thanks to an

observation by the camera, a minimum value can be assigned

to its uncertainty:

pj(tk) = σ2
s if smin 6 s̄j(tk) 6 smax, (17)

which corresponds to the variance σ2
s of the measurement

error (11). Secondly when a model is not corrected, the

propagation of the uncertainty, exlploiting the dynamics (1),

is defined as [24]:

pj(tk+1) = pj(tk) + τ2σ2
j . (18)

Propagating over the future horizon N , we obtain:

{

pj(tk+N ) = σ2
s if smin 6 s̄j(tk) 6 smax

pj(tk+N ) = pj(tk) +Nτ2σ2
j otherwise

. (19)

By predicting the position uncertainty over the prediction

horizon, we can define which model has to be corrected. For

this, a condition Cj is associated to each uncertainty as:

Cj ⇔
(

pj(tk+N ) > pmaxj

and pj(tk+N )− pmaxj
> pl(tk+N )− pmaxl

)

or
(

pj(tk+N ) < pmaxj

and pj(tk+N ) < pl(tk+N )

)

∀l 6= j, ∀j = 0, ..., Nr

(20)

The uncertainty threshold pmaxj
, which corresponds to the

uncertainty value to not exceeded for allowing the correc-

tion of model j will be described in Sect. III-B.2.c. More

precisely:

• If the uncertainty pj is larger than pmaxj
over the

prediction horizon and if the difference between pj and

pmaxj
is the largest among all the other uncertainties,

the condition is held. This ensures that the model whose

uncertainty exceeds the most the threshold over the

prediction horizon has to be corrected.

• Or if all uncertainties are lower than their threshold, and

if the uncertainty pj is lower than all the other ones

over the prediction horizon, the condition is held. This

ensures that either the landmark or one of the robots

is always corrected even when no uncertainty exceeds

its threshold over the prediction horizon. This choice

minimizes the camera displacement since it will remain

focused on the same target as long as no other target

needs to be corrected.

The prediction of uncertainties allows the control strategy to

determine which model should be corrected by the obser-

vations of the camera. We now describe how to inject this

information in the model predictive control.

b) Tolerances: Tolerances represent the set of distances
−→
δj between the limits of the camera field of view and the

modeled coordinates of the landmark/robot in the camera

frame. The constraints that they define are added to the

domain K:

smin −
−→
δj 6

−−→
sjm 6 smax +

−→
δj , ∀j = 0, ..., Nr. (21)

We set δ− and δ+ as respectively a low and a high tolerance

value. They are assigned to the tolerances
−→
δj following the

conditions defined in (20):
{ −→

δj = δ− if Cj
−→
δj = δ+ otherwise

. (22)

The idea consists in having a low value δ− for moving the

camera to the model that must be corrected. For instance

on the Figure 2a, the tolerance δ1 is low, the camera moves

then to the first robot. However, even if δ− is low, we cannot

guarantee that the real position will be in the camera field of

view at the end of the camera motion because of the drifts

from the models. This is why the value δ− is set to a negative

value to allow the robot or the landmark to be in the camera

field of view despite the drifts (see Figure 2a). Obviously,

the camera can move to only one robot or to the landmark at

a time. This is why a high value of tolerance δ+ is assigned

to the other models for ensuring that the system tolerates

that they keep far from the camera field of view. Thus, on

Figure 2b, while the tolerance assigned to the camera δ0 is

low, the tolerance assigned to the robot δ1 is high, which

allows the camera to move to the landmark and to keep far

from the robot.

The constraints defined by (21) allow the control scheme

to force the camera to move towards the landmark or one



robot when it is needed. δ− and δ+ are assigned according

to the conditions in (20) depending on the evolution of

uncertainties pj and on the uncertainty threshold pmaxj that

is described now.

(a) (b)

Fig. 2: Tolerance principle: The camera field of view is

represented by orange dotted lines. (a) δ1 represented in

magenta is negative. The camera c retrieves the robot r1

in its field of view despite the drift from the model r1m.

(b) δ0 is negative, and δ1 is high. The camera has moved to

the landmark and its model is corrected, while the robot is

allowed to stay far away from the field of view.

c) Uncertainty threshold: As described above, δ− has

to be negative to allow the real robot or the landmark to be in

the camera field of view despite the drifts from the models.

However, whatever the value chosen for δ− the drift distance

between the real and the modeled position will exceed |δ−|
after several iterations. If that would occur, the real position

would be outside the camera field of view and the model

would not be corrected. The solution consists to correct the

model before the distance |δ−| is reached by the drift.

For this, we define Nminj as the number of iterations

required by the drift distance to reach |δ−| from a null value.

Thus, by propagating the uncertainty pj from the minimum

value defined by (17) over Nminj iterations we obtain the

uncertainty threshold pmaxj
, namely the uncertainty reached

when the drift distance attains |δ−| from a null value. Finally,

using this threshold in (20), we ensure that the drift will be

corrected before reaching |δ−|. Using (19), the uncertainty

threshold pmaxj
is given by:

pmaxj
= σ2

s +Nminjτ
2σ2

j . (23)

To understand how we compute Nminj , we firstly introduce

the drift distances of the camera and the robots:
{

e0 = ||c− cm||

ei = ||ri − rim||
∀i = 1, . . . , Nr, (24)

with e0 being the distance of the camera from its model, and

ei the distance between the robot i and its model. Because

both drift ditances of the camera and the robot i increase

together, it appears that the distance |δ−| can be reached

by the sum of these two drifts after a minimal number

of iterations. As an example illustrated in Figure 3, we

considere the worst case which can be considered. Because

δ1 = δ−, the camera represented in orange moves to the

robot in red while this one follows its trajectory represented

in green. We can see the drifts between their real and their

model positions, and that the sum e0+e1 reachs the distance

|δ−| after Nmin1 iterations.

The exact values of e0 and ei cannot be exactly computed,

so we need to further explore the considered model of

noise (2) which represents the drift evolution. As well known,

it follows the normal distribution whose probability density

establishes that 99.7% of noise values are distributed between

−3σj and +3σj . The drift distance can then be confidently

modeled by the propagation of 3σj at each iteration. From

this, the corresponding uncertainty is propagated as 9σ2
j at

each iteration. Nminj is then the ration between the square

of the limit distance |δ−|2 and the uncertainty 9σ2
j .

Finally, two different Nminj are computed. The first

Nmini is linked to the robot i. As we saw at the beginning

of this paragraph, the distance |δ−| is reached by the sum

of drift distances of the camera and the robot i. The corre-

sponding minimal number of iterations can then be quantified

as:

Nmini =
|δ−|2

9τ2(σ2
c + σ2

i )
. (25)

Finally, Nmini is injected in (23) to compute the uncertainty

threshold of the robot i.

The second Nmin0 is linked to the camera. The goal is to

ensure that all models of the robots can be corrected despite

the camera drift. This means that we must ensure that the

model of the camera is corrected as much as the model of

the robot which has the largest drift. Therefore Nmin0 is

equal to the Nmini with the lowest value:

Nmin0 = min(Nmini) (26)

Nmin0 can then be injected in (23) to compute the uncer-

tainty threshold of the camera.

We described in this part how to compute the uncertainty

thresholds pmaxj
in order to use it in the conditions (20).

We now describe how to compute properly the value of the

prediction horizon N to ensure that a satisfactory behavior

will always be obtained.

Fig. 3: The robot r1 in red follows the trajectory represented

in green. The camera c and its field of view are in orange.

At t = tk, both models are corrected. At t = tk+Nmin1, the

robot is in the camera field of view despite the sum of errors

caused by robot and camera drifts e0 + e1.



C. Prediction Horizon

To guarantee that the models can be corrected despite er-

rors introduced by noises, we must ensure that no uncertainty

exceeds its corresponding threshold. This can be completed

by a suitable computation of the prediction horizon N .

The camera cannot move instantaneously from a position

to another. The prediction horizon must thus be greater than

or equal to the number of iterations required to complete the

longest path taken by the camera according to the minimum

of its maximum speed:

N >
dmax

τucmin

(27)

where ucmin = min(|u−

cx|, |u
−

cy|, |u
+
cx|, |u

+
cy|) to ensure that

the lower camera speed is taken into account, and dmax is

the longest path taken by the camera to reach robots and

landmark. It can be seen here that the achievement of the

proposed control scheme does not depend on the number of

robots Nr, but rather on dmax whose value depends on the

considered initial configurations (an example is presented in

Section IV-A.3).

We can then use N computed in (27) to determine if

the desired behavior can be realized without any loss of

information. Indeed, the drift distance (24) could exceed the

distance defined by |δ−| before the camera has time to reach

the position. We can then validate the system settings if:

N > min(Nminj). (28)

IV. SIMULATION RESULTS

Simulations results are presented in this section. All coor-

dinates described in the following are expressed in meters.

A. Parameters

1) Initial configurations: The camera is initially located

at c(t0) =
(

0.7 , 0.6
)

, the landmark at m =
(

0.5 , 0.5
)

and

two robots at r1(t0) =
(

0.5 , 0.7
)

and r2(t0) =
(

1 , 0.7
)

.

We set also the model of the positions as being perfeclty

estimated at the beginning of the simulation: cm(t0) = c(t0),
r1m(t0) = r1(t0) and r2m(t0) = r2(t0). Uncertainties are

at their minimum value at the initialization pj(t0) = σ2
s .

The range of visibility is delimited by smin =
(

−0.08 , −0.08
)

and smax =
(

0.08 , 0.08
)

.

Concerning the noise added to the robots and the camera

motion, the averages are null µc = µ1 = µ2 = 0, and the

standard deviations are σc = 0.07, σ1 = 0.09 and σ2 = 0.08.

The noise added to the measures is defined by µs = 0 and

σs = 0.005. The maximum value for the tolerance is set

to δ+ = 2, while the minimum value is δ− = −0.08 wich

corresponds to the size of the field of view from the center

of the image plane.

As for the camera control, the minimum and maximum val-

ues that can be reached are u
−

c = −2m/s and u
+
c = +2m/s.

And for the robots control, the gain is set at k = 1. The total

simulation time is divided in 375 steps with sampling time

of τ = 0.04s.

2) Desired trajectories: The robot desired trajectories are














−→
r
∗

1 = Ar
∗

1(tk) +BE

(

0.2 cos(tk)
0.2 sin(tk)

)

−→
r
∗

2 = Ar
∗

2(tk) +BE

(

−0.2 cos(tk)
−0.2 sin(tk)

) . (29)

with r
∗

1(t0) = r1(t0), r
∗

2(t0) = r2(t0) and

E =















cos(τ) − sin(τ)
sin(τ) cos(τ)

...
...

cos(Nτ) − sin(Nτ)
sin(Nτ) cos(Nτ)















∈ R
2N×2 (30)

to obtain two circular paths repeated indefinitely. The radii

of the circles are R1 = R2 = 0.2 and their centers are

C1 =
(

0.5 , 0.9
)

and C2 =
(

1 , 0.5
)

.

3) Prediction Horizon: To compute the prediction hori-

zon, we first determine the longest path taken by the camera

to correct the models. With the considered configurations,

the longest path can be defined as:

dmax = dm + dr (31)

with dr the farthest distance between the two robots on their

trajectory:

dr = R1 + R2 +
√

(C1x − C2x)
2 + (C1y − C2y )

2 (32)

and dm the distance between the landmark and the farthest

robot from the landmark on its trajectory:

dm = R2 +
√

(C2x −mx)2 + (C2y −my)2 (33)

Combining (27) and (31) we can then set N = 22. The

condition (28) is then held, which means that the correction

of the model is guaranteed.

B. Small prediction horizon

We first consider our control strategy with a very small

prediction horizon N = 1 (see the first part of the video sub-

mitted as supplementary material). The numerical method

chosen for minimizing J under the constraints K is available

in the function COBYLA (Constrained Optimization BY Lin-

ear Approximation) [25] from the C++ library NLOPT [26].

This function is not the most efficient method to solve

our optimization problem, but nevertheless allows to obtain

simulation results which approach strongly the desired cam-

era behavior. In this first simulation, the computation time

required is approximately 1 ms for each function COBYLA

call.

Figures 4a and 4b show the evolution of real sx, sy and

desired s∗x and s∗y robot coordinates in the camera frame,

while Figure 4c represents the evolution of the landmark

coordinates. The camera field of view is depicted in orange

while the evolution of the tolerances is in magenta (for the

first robot), cyan (for the second robot) and black (for the

landmark). We can thus visualize when the models have

been corrected, that is when the blue and red curves are



between the two orange lines at the same time. Finally,

Figure 4d shows the evolution of uncertainties together with

the uncertainty thresholds.

It can be observed at t = 0 that the uncertainties do

not exceed their thresholds. However, the one related to

the camera is smaller than the other ones on the prediction

horizon. Thanks to the conditions (20), δ− is assigned to

the landmark tolerance while δ+ is assigned to the robots

tolerance. Moreover, we can see on Figure 4c that scx(t0)
and scy(t0) are not located in the interval described by

smin−δ0 and smax+δ0. The camera must therefore move to

the landmark to satisfy the constraint (21). The model of the

camera is then corrected by the observation of the landmark.

In the same way, the camera must move to the first robot

at t = t1, when the prediction of the uncertainty p1(tk+N )
reaches pmax1. We can see that p1 exceeds pmax1 while the

camera moves to the first robot. However, the camera is still

able to recover the robot in its field of view. Indeed, the drift

distance of the first robot and the camera is not large enough

for exceed the distance described by |δ−|.
This limit is however exceeded for the second robot at

t = t2, the minimum tolerance value δ− is fixed to the second

robot tolerance, while δ+ is fixed to the landmark and the

first robot until the end of the simulation. The robots are not

assisted by the camera observations anymore and diverge

from their desired trajectories. Thus, the blue and red curves

diverge from green curves on Figures 4a and 4b.

The solution consists in properly computing the prediction

horizon following the method described in Section III-C.

C. Large prediction horizon

We now apply our method with a prediction horizon set to

N = 22 following the computation presented in Section IV-

A.3 (see the last part of the video submitted as supplementary

material). The computation time required is obviously greater

than in the previous case. To be consistent with the sampling

time τ , and for real-time issue, we have limited the resolution

time of (13) to 40 ms. This is possible with the NLOPT

library but may introduce a loss of accuracy in the solution.

As we can see on Figures 5a, 5b, 5c, the large prediction

horizon allows the camera to switch from a target to another

much earlier than in the previous simulation, resulting in an

increase of the tolerances modification frequency. It causes

a greater number of corrections achieved by the camera to

satisfy the constraint (21).

It can also be observed Figure 5d that the uncertainties

never exceed their threshold. The drift distance is never

large enough for exceed the distance described by |δ−|. The

camera can then always retrieve the robots in its field of

view, resulting in the success of the trajectory tracking of

the robots throughout the simulation thanks to the proper

horizon prediction.

V. CONCLUSION

We introduced in this paper a new camera control scheme

to achieve a succession of visual servoing tasks by following

the principle of active perception. This method is based

(a)

(b)

(c)

(d)

Fig. 4: Small prediction horizon: (a) and (b) show the desired and
real coordinates of robots in the camera image plane, with smin−δi

and smax + δi represented in magenta and cyan. (c) depicts the
real coordinates of the landmark in the camera image plane, with
smin − δ0 and smax + δ0 represented in black. (d) represents the
uncertainties and their thresholds. At t = t2, the camera is not able
to observe the second robot in its field of view because of the small
prediction horizon which does not anticipate the model errors.

on the model predictive control to anticipate the model

errors over a future time horizon and, thanks to constraints,

force the camera to move for correcting these errors. This

method has been used to assist multiple robots subjected

to noises to perform a trajectory tracking task. With the

reported simulation results, we showed the effectiveness of

our method and the importance of the prediction horizon in

the parameters settings.

We applied this method in a 2D configuration. Future

works will consider this method applied in more realistic



(a)

(b)

(c)

(d)

Fig. 5: Large prediction horizon: Compared to Fig. 4, the toler-
ance modification frequency increases thanks to the large horizon
prediction, resulting by a greater number of model correction to
achieve by the camera, which allows to assist indefinitely the robots
trajectory tracking.

applications. This will involve considering more complex

models for the UAV and robotics dynamics, as well as a

more realistic propagation of the state estimation uncertainty.

Morover, we will also consider different possible numerical

solvers for solving the proposed minimization problem in

order to meet real-time constraints.
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