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Chapter 20

Visual Servoing via Nonlinear Predictive Control

Guillaume Allibert, Estelle Courtial, and François Chaumette

Abstract In this chapter, image-based visual servoing is addressed via nonlinear

model predictive control. The visual servoing task is formulated into a nonlinear

optimization problem in the image plane. The proposed approach, named visual pre-

dictive control, can easily and explicitly take into account 2D and 3D constraints.

Furthermore, the image prediction over a finite prediction horizon plays a crucial

role for large displacements. This image prediction is obtained thanks to a model.

The choice of this model is discussed. A nonlinear global model and a local model

based on the interaction matrix are considered. Advantages and drawbacks of both

models are pointed out. Finally, simulations obtained with a 6 degrees of freedom

(DOF) free-flying camera highlight the capabilities and the efficiency of the pro-

posed approach by a comparison with the classical image-based visual servoing.

20.1 Introduction

Visual servoing has lead to many fruitful researches over the last decades. In re-

gard to the kind of feedback information considered, one can distinguish three main

approaches: image-based visual servoing (IBVS) where the feedback is defined in

the image plane, position-based visual servoing (PBVS) where the feedback is com-

posed of 3D data such as the robotic system pose, and the 2-1/2D visual servoing

where the feedback combines both 2D and 3D data. Further details about the dif-

ferent approaches can be found in [5, 6, 15]. Here, we focus our interest on IBVS

strategy. The IBVS task consists in determining the control input applied to the

robotic system so that a set of visual features designed from image measurements
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reaches a desired static reference or follows a desired dynamic reference. Although

IBVS approach is robust to modeling errors, several drawbacks can be mentioned

when the visual features are not correctly chosen. Besides the classical problem of

local minima and singularities in the interaction matrix [4], the constraint handling

is a tricky problem in IBVS. For instance, the 2D constraint, also named visibility

constraint, has to guarantee that the image measurements stay into the camera field

of view. Of course, if the visibility of the target is no longer ensured then the control

algorithm is interrupted. The 3D constraints such as workspace limits have to make

sure that the robot achieves admissible motions in its workspace all along the task.

Among the numerous works which have investigated this critical issue, three

points of view exist. The first one consists in designing adequate visual features.

In [17] for instance, the authors have shown that the system behavior explicitly de-

pends on the kind of features. Consequently, lines, spheres, circles, cylinders but

also moments may be used and combined to obtain good decoupling and linearizing

properties, implicitly ensuring the constraint handling. The control law is generally

a decoupled exponential decreasing law. Another way to deal with constraint han-

dling is to combine path-planning and trajectory tracking [7, 16, 19, 24]. When it is

successful, this solution allows ensuring both an optimal trajectory of the camera in

the Cartesian space and the visibility of the features. Path-planning via linear matrix

inequality (LMI) optimization has recently been proposed in [7] to fulfill 2D and

3D constraints. In the third approach, the effort is done on the control law design.

The visual features considered are generally basic, namely point-like features. Ad-

vanced control laws such as optimal control [14, 22], adaptive control [21], LMIs

[9, 10] and predictive control [2, 3, 12, 13, 23] have been reported in the literature.

In [12, 13], a predictive controller is used for motion compensation in target track-

ing applications. The prediction of the target motion is used to reject perturbation

in order to cancel tracking errors. In [23], the predictive controller is used from

ultrasound images for a medical application.

The strategy proposed in this chapter exploits nonlinear model predictive con-

trol for visual servoing tasks. The IBVS objective is formulated as solving on-line

a nonlinear optimization problem expressed in the image plane [2, 3]. This strategy,

named visual predictive control (VPC), offers two advantages. First, 2D and 3D con-

straints such as visibility constraints, mechanical constraints and workspace limits

can be easily taken into account in the optimization problem. Secondly, the image

prediction over a finite horizon plays a crucial role for difficult configurations. The

image prediction is based on the knowledge of a model. It can be a nonlinear global

model combining the robot model and the camera one. The image prediction can

also be obtained thanks to a linear model using the interaction matrix. The choice

of the model is addressed and discussed in the sequel. The interest of the image pre-

diction is pointed out through many simulations describing difficult configurations

for a free-flying perspective camera.

The chapter is organized as follows. In Section 20.2, the context of the study is

stated and the principle of VPC is presented. The control structure and the mathe-

matical formulation are addressed. Then, in Section 20.3, the choice of the image

prediction model is discussed. In Section 20.4, numerous simulations on a 6 DOF
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free-flying camera illustrate the comparison of the different approaches: classical

IBVS, predictive control laws with local and global model. Difficult configurations

such as large displacements to achieve are tested under constraints. Finally, conclu-

sions are given in the last section.

20.2 Predictive Control for Constrained IBVS

The aim of visual servoing is to regulate to zero an error e(t) between the current

features s(t) and the reference features s⋆. In IBVS, the features are expressed in the

image. The relationship between the camera velocity τ(t) and the time variation of

the visual features ṡ(t) is given by the interaction matrix noted Ls. Thus, specifying

a decoupled exponential decay law for the error e(t), we obtain the control input to

be applied to the camera:

τ(t) = −λL̂s
+
e(t) with λ > 0, (20.1)

where L̂s
+

is the approximate pseudo-inverse matrix of Ls. The classical IBVS is

very easy to implement but its weak points are the constraint handling and its possi-

ble bad behavior for large displacements to achieve as already mentioned in Section

20.1. The control objective of IBVS can also be formulated into an optimization

problem. The goal is to minimize an image error and to take into account con-

straints. When a model of the system is available, control predictive strategies are

well-adapted to deal with this kind of problem. The extension of predictive strategy

to visual servoing tasks is detailed below.

20.2.1 Visual Predictive Control

All predictive strategies are based on four common points: a reference trajectory,

a model of the dynamic process, a cost function and a solving optimization method.

The keystone of the predictive approach is the model used to predict the process

behavior over the future horizon. Its choice will impact on the tracking accuracy

and on the computational time. In VPC case, the process considered is generally

composed of the robotic system and the camera. For instance, the robotic system can

be a nonholonomic mobile robot [2], a drone or a robot arm. The camera system can

be a perspective or catadioptric camera [3] whatever its configuration with respect

to the robot, that is on board or remote. The model used is then a global model

describing the process. The model inputs are the control variables of the robotic

system. The model output are the visual features. The model is used to predict the

values of the features over a prediction horizon in regard to the control variables and

to satisfy the constraint handling. Before discussing the choice of the model, we first

introduce the control structure and then state the mathematical formulation of VPC.
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20.2.2 Internal Model Control Structure

The control structure considered is the well-known internal model control (IMC)

structure [20] (see Fig. 20.1). The process block contains the robotic system and the
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Fig. 20.1 IMC Structure.

camera. The input U is the robotic control variable and the output s is the current

value of the visual features. For IBVS, the reference s∗ is expressed in the image

plane, as the visual features, and can be static or dynamic. The error signal ε rep-

resents all modeling errors and disturbances between the current features and the

values predicted from the model of the system:

ε(k) = s(k)− sm(k). (20.2)

The usual controller is replaced, in the predictive approach, by an optimization al-

gorithm. The latter minimizes the difference between a desired trajectory sd and the

predicted model output sm. Indeed, according to Fig. 20.1, we can write (k is the

current iteration):
sd(k) = s∗(k)− ε(k),

sd(k) = s∗(k)− (s(k)− sm(k)),

sd(k)− sm(k) = s∗(k)− s(k).

(20.3)

Consequently, the tracking of the reference features s∗ by the process output s is

thus equivalent to the tracking of the desired features sd by the model output sm.

The model predicts the behavior of the features over a finite prediction horizon Np.

The difference sd(k)− sm(k) between the desired features and the predicted model

features is used to define the cost function J to be minimized with respect to a

control sequence Ũ. Only the first component U(k) of the optimal control sequence

is really applied to the process. At the next sampling time, due to disturbances and

model mismatches, the measurements are updated, the finite horizon moves one step

forward and the procedure starts again.
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20.2.3 Mathematical Formulation

The cost function J is defined as a quadratic function of the error to be minimized.

Due to the IMC structure, the mathematical formulation of VPC strategy can be

written in discrete-time as:

min
Ũ∈Rm×Np

J(U) (20.4)

with:

J(U) =

k+Np∑

j=k+1

[sd( j)− sm( j)]T Q( j) [sd( j)− sm( j)] (20.5)

subject to:

sd( j) = s∗( j)− ε( j), (20.6)
{

x( j) = f (x( j−1),U( j−1))

sm( j) = h(x( j)).
(20.7)

The variables x ∈ Rn, U ∈ Rm and sm ∈ Rp are respectively the state, the input and

the output of the model. We will see, in the next section, that the state can be differ-

ently chosen in regard to the prediction model used and in regard to the constraints

to be handled. The first nonlinear equation of (20.7) describes the dynamics of the

system where x( j) represents the predicted state at time j, ∀ j ∈ [k+ 1;k+Np]. For

j = k+1, the predicted state sm is initialized with the system state s at time k which

guarantees the feedback of the IMC structure. Moreover, in case of modeling errors

and disturbances, a second feedback is ensured by the error signal ε( j) which modi-

fies the reference trajectory accordingly. The second equation of (20.7) is the output

equation. To compute sd( j), ∀ j ∈ [k+1;k+Np], we need to compute the error ε( j)

defined in (20.2). This error depends on sm( j) that is available but also on s( j) that

is unknown over the prediction horizon. Consequently, the error ε( j) is assumed to

be constant over the prediction horizon:

ε( j) = ε(k) = s(k)− sm(k), ∀ j ∈ [k+1;k+Np]. (20.8)

Finally, Ũ = {U(k),U(k+ 1), ...,U(k+Nc), ...,U(k+Np − 1)} is the optimal control

sequence. From U(k +Nc + 1) to U(k+ Np − 1), the control input is constant and

equal to U(k+Nc) where Nc is the control horizon. The weighted matrix Q( j) is a

symmetric definite positive matrix.

One of the main advantages of VPC is the capability to explicitly handle con-

straints in the optimization problem. Three kinds of constraints are distinguished:

• constraints on the state of the robotic system. It can typically be a mechanical

constraint such as workspace limit when the state represents the camera pose for

instance,

xmin ≤ x(k) ≤ xmax; (20.9)

• 2D constraints also named visibility constraints to ensure that the visual features

stay in the image plane or to represent forbidden areas in the image. The latter
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can be very useful to deal with obstacle avoidance or image occlusion,

smin ≤ sm(k) ≤ smax; (20.10)

• control constraints such as actuator limitations in amplitude or velocity,

Umin ≤ U(k) ≤ Umax. (20.11)

These constraints are added to the problem (20.4) which becomes a nonlinear con-

strained optimization problem:

min
Ũ∈K

J(U) (20.12)

where K is the constraint domain defined by:

{
C(U) ≤ 0

Ceq(U) = 0.
(20.13)

The constraints (20.9), (20.10) and (20.11) can be formulated by nonlinear functions

C(U) and Ceq(U) [8]. Numerous constrained optimization routines are available in

software libraries to solve this kind of problem: projected gradient methods, penalty

methods, etc. In our case, a sequential quadratic program (SQP) is used and more

precisely, the function fmincon from Matlab optimization toolbox.

The setting parameters of the predictive approach are the prediction horizon (Np),

the control horizon (Nc) and the weighted matrix (Q( j)):

• the prediction horizon is chosen in order to satisfy a compromise between scheme

stability (long horizon) and numerical feasibility in term of computational time

requirement (short horizon);

• the control input is usually kept constant over the prediction horizon, which cor-

responds to a control horizon equal to 1. A Nc > 1 can be useful for stabilization

task of nonholonomic mobile robot for instance [1];

• the matrix Q( j) is often the identity matrix but it can also be a time-varyingmatrix

useful for stabilizing the system. If Q(k+ 1) = I and Q(k + l) = 0 ∀l ∈ [2;Np],

the cost function J is then similar to the standard criterion of IBVS. It is also

equivalent to have a prediction horizon equal to 1.

20.3 Model of Image Prediction

Here we focus on the model used to predict the image evolution. We consider a 6

DOF free-flying perspective camera observing fixed point features. A 3D point with

coordinates P = (X,Y,Z) in the camera frame is projected in the image plane as a 2D

point with coordinates s = (u,v). The sampling period is Te and the control input U

is the camera velocity noted τ = (Tx,Ty,Tz,Wx,Wy,Wz).

The role of the model is to predict, over the horizon Np, the evolution of the visual

features in regard to the camera velocity. The principle of the image prediction is
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depicted in Fig. 20.2. To perform this image prediction, two kinds of model can

k+2 k+1 k

Time 

k+2

k+1

k

Desired image Current image Model input 

Camera velocity 

Model output: 

Predicted features over Np

k+3 k+2 k+1 

k+4 k+3 k+2 

k+3 

k+5 

k+4 

Fig. 20.2 Principle of image prediction (Np = 3,Nc = 2).

be considered: a nonlinear global model and a local model based on the interaction

matrix. The identification of the model, described above by (20.7), is discussed with

respect to both cases in the next section.

20.3.1 Nonlinear Global Model

The control input of the free-flying process is the camera velocity τ applied to

the camera. Here, the state of the system can be the camera pose in the target frame:

x = (Px,Py,Pz,Θx,Θy,Θz). The dynamic equation can be approximated by 1:

x(k+1) = x(k)+Te τ(k) = f (x(k), τ(k)). (20.14)

The output is the visual features expressed in the image plane noted sm. In the case

of a perspective camera, the output equation for one point-like feature in normalized

coordinates can be written as:

sm(k) =

(
u(k)

v(k)

)
=

(
X(k)/Z(k)

Y(k)/Z(k)

)
= g(X(k),Y(k),Z(k)), (20.15)

where (X,Y,Z,1)Rc are the point coordinates in the camera frame. The rigid trans-

formation between the camera frame and the target frame, noted l(x), can easily be

deduced from the knowledge of the camera pose x(k). If the point coordinates are

known in the target frame, (X,Y,Z,1)Rt, then the point coordinates in the camera

frame, (X,Y,Z,1)Rc are given by:

1 The exponential map could be also used to better describe the camera motion.



400 Guillaume Allibert, Estelle Courtial, and François Chaumette

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

Z

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Rc

=

(
R(x) T (x)

01×3 1

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X

Y

Z

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Rt

= l(x(k)). (20.16)

Finally, we obtain:

sm(k) = g ◦ l(x(k)) = h(x(k)). (20.17)

Equations 20.7 are now completely identified with (20.14) and (20.17). This dy-

namic model combines 2D and 3D data and so it is appropriate to deal with 2D

and/or 3D constraints. The constraints are respectively expressed on the states and/or

the outputs of the prediction model and are easily added to the optimization prob-

lem. The nonlinear global model has a large validity domain and thus it can be used

for large displacements. Nevertheless, the prediction over the prediction horizon can

be time consuming. Moreover, this model requires 3D data that are the pose of the

target in the initial camera frame, as well as the target model. To reduce the 3D

knowledge, a solution can be the linearization of the model based on the interaction

matrix.

20.3.2 Local Model Based on the Interaction Matrix

For a point-like feature s expressed in normalized coordinates such that u = X/Z

and v = Y/Z, the interaction matrix related to s is given by [5]:

Ls =

[
− 1

Z
0 u

Z
uv −(1+u2) v

0 − 1
Z

v
Z

1+ v2 −uv −u

]
. (20.18)

The value Z is the depth of the 3D point expressed in the camera frame. The rela-

tionship between the camera velocity τ and the time variation of the visual features

ṡ is given by:

ṡ(t) = Ls(t)τ(t). (20.19)

In [11], this dynamic equation is solved to reconstruct the image data in case of

occlusion. Here, with a simple first order approximation, we obtain:

s(k+1) = s(k)+Te Ls(k)τ(k). (20.20)

To avoid the estimation of the depth parameter at each iteration, its value Z∗ given

or measured at the reference position can be used. Consequently, the interaction

matrix (20.18) becomes L̂s and depends only on the current measure of the visual

features. By considering here the visual features s as the state x, we obtain the set

of equations describing the process dynamics and outputs (20.7):

{
x(k+1) = x(k)+Te L̂s(k)τ(k) = f (x(k), τ(k))

sm(k) = x(k) = h(x(k)).
(20.21)
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This approximated local model does not require 3D data but only the approximate

value of Z∗. 2D constraints can be taken into account since the model states and

outputs are the visual features. On the other hand, no information is available on the

camera pose and so 3D constraints can not be directly handled. For doing that, as for

the nonlinear model, it would be necessary to reconstruct the initial camera pose by

using the knowledge of the 3D model target. That is of course easily possible but has

not been considered in this chapter. Finally, for large displacements, a problem can

be mentioned as we will see on simulations: the linear and depth approximations

may be too coarse and can lead to control law failures.

20.4 Simulation Results

For all presented simulations, the sampling time Te is equal to 40 ms. This choice

allows considering real-time application with an usual camera (25 fps). The control

task consists in positioning a perspective free-flying camera with respect to a target

composed of four points. These four points form a square of 20 cm in length in

Cartesian space. The reference image is obtained when the target pose expressed in

the camera frame (RC) is equal to PT/C = (0,0,0.5,0,0,0) (see Fig. 20.3), where the

first three components are the translation expressed in meters and the last three com-

ponents are the roll, pitch and yaw angles expressed in radians. The coordinates of

the four points in the reference image are: s∗ = (ud1,vd1,ud2,vd2,ud3,vd3,ud4,vd4) =

(−0.2,0.2,0.2,0.2,0.2,−0.2,−0.2,−0.2) (see Fig. 20.4).
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Fig. 20.4 2D reference image.

Different simulations illustrate the performance of the VPC strategy. Besides the

choice of the model used to predict the point positions, VPC requires to set three

parameters, the prediction horizon Np, the control horizon Nc and the weighted

matrix Q( j):

• the choice of the prediction horizon is crucial. The system behavior and the con-

vergence speed depend on the prediction horizon. The value of Np is discussed

below;
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• the control horizon is kept constant and equal to 1 (Nc = 1). Only one control is

calculated over the prediction horizon;

• the weighted matrix Q( j) is either the identity matrix Q( j) = I8×8 ∀ j, constant

over the prediction horizon, or a time-varying matrix Q( j) = 2Q( j − 1) with

Q(1) = I8×8. In this last case, this matrix weights the error at each sampling in-

stant more and more over the prediction horizon and so, stresses the error at the

end of the horizon Np which corresponds to the final objective. In stabilization

task, this time-varying matrix can be compared to the terminal constraint used

in the classical predictive control strategy. However it is less restrictive for the

optimization algorithm. In the sequel, the time-varying matrix is noted QTV .

The VPC simulation results are compared with the classical IBVS approaches based

on the exponential control law (20.1) where L̂s can be chosen as:

• L̂s=L̂(s(t),Z(t)) , noted Lc: the interaction matrix is updated at each iteration;

• L̂s=L̂(s(t),Z∗ ), noted Lp: the depth computed or measured at the reference position

noted Z∗ is used. The interaction matrix varies only through the current measure

of the visual features;

• L̂s=L̂(s∗,Z∗), noted Ld: the interaction matrix is constant and corresponds to its

value at the reference position;

• L̂s=
1
2
(L̂(s∗,Z∗) + L̂(s(t),Z(t))), noted Lm: the interaction matrix is the mean of the

constant and current interaction matrices.

In order to compare the VPC approach with the classical IBVS, no constraint on

the control input is considered in the first part. Then, mechanical and visibility con-

straints will be taken in consideration with the VPC approach. In all cases, the con-

trol inputs are normalized if needed. The bounds are 0.25 m/s for the translation

speed and 0.25 rad/s for the rotation speed.

20.4.1 Case 1: Pure Rotation around the Optical Axis

In case 1, the required camera motion is a pure rotation of π
2

radians around the

optical axis. Due to the lack of space and since it is a classical case, all simulation

results are not presented here but all are discussed.

20.4.1.1 Classical IBVS

For the classical IBVS, the following results are obtained:

• with Lc, the trajectories in the image plane are pure straight lines as expected [5].

The camera motion is then a combination of a backward translation and a rotation

with respect to the camera optical axis (retreat problem). Due to this undesired

retreat, the camera might reach the limit of the workspace;
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• with Lp, the results are approximatively the results obtained in the first case (re-

treat problem), see Fig. 20.5. The visual feature trajectories tend to straight lines;

• with Ld , the camera moves toward the target and simultaneously rotates around

the optical axis (advance problem) [5]. Due to this undesired forward motion,

some features can go out the camera field of view during the camera motion;

• with Lm, the camera motion is a pure rotation [18]. No additional motion is in-

duced along the optical axis and the visual feature trajectories are circular.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Image plane

u

v

1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Seconds

E
rr

or
s

u
(p

ix
el

s)

Image errors

 

 

ε u
1

ε u
2

ε u
3

ε u
4

1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Seconds

E
rr

or
s

v
(p

ix
el

s)

 

 

ε v
1

ε v
2

ε v
3

ε v
4

1 2 3 4 5 6 7 8 9 10

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Control

Seconds

 

 

Tx (m/s)

Ty (m/s)

Tz (m/s)

Wx (rad/s)

Wy (rad/s)

Wz (rad/s)

1 2 3 4 5 6 7 8 9 10
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Camera pose errors

Seconds

E
rr

o
rs

 

 

ε T
x
 (m)

ε T
y
 (m)

ε T
z
 (m)

ε W
x
 (rad)

ε W
y
 (rad)

ε W
z
 (rad)

Fig. 20.5 Case 1: Classical IBVS with Lp.

20.4.1.2 VPC with a Local Model (VPCLM)

The following simulations are obtained with the VPC strategy using a local

model based on the interaction matrix Lp. The comparison with the classical IBVS

is done for different Np values (Np = 1,10,20) and different weighted matrices

(Q( j) = I or QTV ). For Np = 1, the results are similar to the classical IBVS with Lp

since the model used to predict the next image is exactly the same (see Fig. 20.6).

The only difference is the behavior of the control law, decreasing exponentially with

IBVS. For Np = 10 (see Fig. 20.7) or Np = 20 (see Fig. 20.8), the trajectories in the

image plane become circular. Indeed, the only constant control over Np which min-

imizes the cost function is a pure rotation. Thus the translation motion along the

optical axis decreases with the increase of Np value.
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The time-varying matrix QTV accentuates the decoupling control by giving im-

portance at the end of Np which corresponds to the final objective (see Fig. 20.9). It

seems to be equivalent to the behavior obtained with Lm which takes into account

the desired position. For a π rotation around the optical axis, the classical IBVS

with Lc, Lp or Ld fails as well as VPCLM with Q( j) = I and whatever Np. On the

other hand, VPCLM achieves the satisfying motion with QTV and Np ≥ 20 (see Fig.

20.10).

To illustrate the capability of visibility constraint handling, the visual features are

constrained to stay in a window defined by the following inequalities:

[
umin=−0.22

vmin=−0.22

]
≤ sm( j) ≤

[
umax = 0.22

vmax = 0.22

]
. (20.22)

In that case, VPCLM satisfies both visibility constraint and control task (see Fig.

20.11). A translation along the optical axis is then induced to ensure that the visual

features do not get out the camera field of view.
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Fig. 20.6 Case 1: VPCLM with Np = 1, Q( j) = I.

20.4.1.3 VPC with a Nonlinear Global Model (VPCGM)

The previous results obtained with VPCLM are improved with VPCGM since no

linearization is done. For instance, with VPCGM and Np = 1, the image plane tra-
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Fig. 20.7 Case 1: VPCLM with Np = 10, Q( j) = I.
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Fig. 20.8 Case 1: VPCLM with Np = 20, Q( j) = I.

jectories are circular as the ones obtained with Lm. Here, we focus on 3D constraint

handling. Added to the visibility constraint, we limit the camera workspace along
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Fig. 20.9 Case 1: VPCLM with Np = 10, Q( j) = QTV .
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Fig. 20.10 π rotation around optical axis: VPCLM with Np = 20, Q( j) = QTV .

the Zc axis. As can be seen on Fig. 20.12, VPCGM converges under both constraints

by using the other camera DOF. If no admissible trajectory ensuring visibility con-
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Fig. 20.11 Case 1: VPCLM with Np = 10, Q( j) = I and visibility constraint.

straints and 3D constraints (such as −0.05 < Xc < 0.05, −0.05 < Yc < 0.05, Zc <

0.6m) exists, VPCGM stops at the position minimizing the constrained cost function

(see Fig. 20.13).

20.4.2 Case 2: Large Displacement

In case 2, the initial target pose expressed in the camera frame is given by

PT/C = (0.04,0.03,0.35,1,−0.98,−0.43). The classical IBVS with Lp or Ld does

not converge for such a large displacement. Indeed, during the motion, the camera

reaches the object plane where Z = 0. The same result is obtained by the VPCLM

whatever Np due to the too coarse approximations. However, the convergence is ob-

tained with the weighted time-varying matrix QTV . VPCGM always converges even

if Q( j) = I (see Fig. 20.15). The trajectories in the image plane are very similar to

the ones obtained with the classical IBVS with Lm (see Fig. 20.14). These good re-

sults are still kept even if visibility constraints (−0.29 < u < 0.29, −0.4 < v < 0.4)

are considered (see Fig. 20.16).
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Fig. 20.12 Case 1: VPCGM with Np = 10, Q( j) = I, visibility constraint and ZT/C < 0.6 m.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Image plane

u

v

1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Seconds

E
rr

or
s

u
(p

ix
el

s)
Image errors

 

 

ε u
1

ε u
2

ε u
3

ε u
4

1 2 3 4 5 6 7 8 9 10

−0.4

−0.2

0

0.2

0.4

Seconds

E
rr

or
s

v
(p

ix
el

s)

 

 

ε v
1

ε v
2

ε v
3

ε v
4

1 2 3 4 5 6 7 8 9 10

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Control

Seconds

 

 

Tx (m/s)

Ty (m/s)

Tz (m/s)

Wx (rad/s)

Wy (rad/s)

Wz (rad/s)

1 2 3 4 5 6 7 8 9 10
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

Camera pose errors

Seconds

E
rr

o
rs

 

 

ε T
x
 (m)

ε T
y
 (m)

ε T
z
 (m)

ε W
x
 (rad)

ε W
y
 (rad)

ε W
z
 (rad)

Fig. 20.13 Case 1: VPCGM with Np = 10, Q( j) = I, visibility and strong 3D constraints such that

there is no solution to the optimization problem.
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Fig. 20.14 Case 2: Classical IBVS with Lm.
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Fig. 20.15 Case 2: VPCGM with Np = 10, Q( j) = I.

20.5 Conclusions

In this chapter, we have shown that an alternative approach of IBVS can be the

VPC strategy. The visual servoing task is then formulated into a nonlinear optimiza-



410 Guillaume Allibert, Estelle Courtial, and François Chaumette

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Image plane

u

v
1 2 3 4 5 6 7 8 9 10

−0.1

0

0.1

0.2

Seconds

E
rr

or
s

u
(p

ix
el

s)

Image errors

 

 

ε u
1

ε u
2

ε u
3

ε u
4

1 2 3 4 5 6 7 8 9 10

−0.2

0

0.2

0.4

0.6

Seconds

E
rr

or
s

v
(p

ix
el

s)

 

 

ε v
1

ε v
2

ε v
3

ε v
4

1 2 3 4 5 6 7 8 9 10

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Camera pose errors

Seconds

E
rr

o
rs

 

 

ε T
x
 (m)

ε T
y
 (m)

ε T
z
 (m)

ε W
x
 (rad)

ε W
y
 (rad)

ε W
z
 (rad)

1 2 3 4 5 6 7 8 9 10

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Control

Seconds

 

 

Tx (m/s)

Ty (m/s)

Tz (m/s)

Wx (rad/s)

Wy (rad/s)

Wz (rad/s)

Fig. 20.16 Case 2: VPCGM with Np = 10, Q( j) = I and visibility constraint.

tion problem over a prediction horizon. The advantage of this formulation is the

capability of easily dealing with visibility constraints and 3D constraints. The opti-

mization procedure can be compared to an on-line implicit and optimal constrained

path-planning of features in the image plane. The choice of the image prediction

model has been discussed. The approximated local model can be less efficient than

the global model for difficult configurations but no 3D data are required. On the

other hand, if 3D data are available, VPCGM gives satisfying results for any initial

configuration and motion to achieve. The VPC setting parameters, i.e., the predic-

tion horizon and the weighted matrix, play a crucial role in terms of camera and

visual feature trajectories. Simulation results highlight the efficiency of VPC. Fi-

nally, this strategy is very flexible and can be used whatever the robotic system

(mobile robot or robot arm) and the camera (perspective or catadioptric).
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