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Abstract— One way to deal with occlusions or loss of tracking
of the visual features used for visual servoing tasks is to predict
the feature behavior in the image plane when the measurements
are missing. Different prediction and correction methods have
already been proposed in the literature. The purpose of this
paper is to compare and experimentally validate some of these
methods for eye-in-hand and eye-to-hand configurations. In
particular, we show that a correction based both on the image
and the camera/target pose provides the best results.

I. INTRODUCTION

In the visual servoing literature (see [1] for a tutorial)

there exist two main approaches for dealing with occlusions

and/or loss of feature tracking due to the limited camera field

of view. In the first approach, one tries to develop control

schemes for avoiding that an occlusion or loss of tracking

never occurs while the second approach proposes strategies

for coping with the possibility that such events may occur.

On the control side, many techniques have been consid-

ered: occlusions avoidance is expressed as a secondary task

combined with a classical visual task using the gradient

projection method in [2]. This method has also been used

in [3], combined with sequencing tasks to also consider

obstacle avoidance. Avoiding that features leave the camera

field of view is explicitly taken into account in the visual

features design in [4], while switching control methods

have been proposed in [5], [6]. Visual trajectory planning

taking into account several constraints such as occlusions

and feature loss has led to a series of works [7]–[10]. More

recently, model predictive control has been applied to visual

servoing since this approach allows an easy handling of hard

constraints [11]–[16]. Finally, another method consisting in

integrating the constraints in the feature set used as input of

the control scheme has been proposed in [17].

On the other side, a visual servoing task can still be

successful in case of occlusions or feature loss provided a

sufficient number of features remains visible during motion

(so that the rank of the corresponding Jacobian matrix can

still match the number of controlled degrees of freedom).

The most simple solution is thus to just remove from the

feature set those no longer available. However, a change in
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the feature set implies a change in the number of rows of the

Jacobian matrix, and thus a discontinuity in the output of the

control scheme. To solve this problem, a continuous weight

can be associated to each feature as proposed in [18]: this

weight varies between 1, when the feature is located near

the center of the image, to 0 when the feature reaches the

image limit. This then ensures continuity of the output of the

control scheme. This strategy is of course no more efficient

when the number of visible features becomes too small and

cannot ensure full rankness of the Jacobian matrix. A general

solution, explored in [19], is thus to predict the location of

the features when they are no more visible, and to then use

this prediction in the control scheme as well as for guiding

the feature re-tracking when it becomes visible again. This

is also the strategy considered in our previous work [20] and

in this paper.

The purpose of this paper is to validate experimentally

the conclusions of this previous work, which were validated

only in simulation using a priori given camera motions while

visual servoing is considered here. Section II begins with

reviewing the prediction and correction methods previously

discussed in [20]. Section III recalls the basic visual servoing

equations for both eye-in-hand and eye-to-hand configura-

tions. Section IV presents a number of experimental results

aiming at comparing the different methods available. Finally,

Section V concludes the paper.

II. VISUAL FEATURES MODEL ERROR

CORRECTION

In this paper, we consider a monocular perspective camera

and a target object made of N 3D points P i with FC and

FO two Cartesian frames attached respectively to the camera

and target. We also denote with x = (x, y, z, θu) ∈ R
6

the pose of FO with respect to FC , with (u, θ) ∈ S
2 × R

the axis/angle parameterization of the orientation1, and with

v(t) = (v(t), ω(t)) ∈ R
6 the linear and angular velocity of

the camera, expressed in the camera frame.

Let O
P i = (OXi,

OYi,
OZi) and C

P i = (CXi,
CYi,

CZi)
be the coordinates of the 3D points P i in the object and cam-

era frames. Assuming a calibrated camera, the normalized

perspective 2-D projection of each point P i on the image

plane is

si =

[
ui

vi

]
=

[
CXi/

CZi

CYi/
CZi

]
= fsi(x), (1)

1Among all the possible minimal representations for the orientation
between FO and FC , we chose the vector θu ∈ R3 because its singularities
lie at θ = 2kπ, k ∈ Z∗, i.e., out of the possible workspace in any normal
application (see [21]).



where the dependence on the camera/target relative pose

x has been emphasized. The set of all visual features is

therefore

s =



s1
...

sN


 = fs(x) ∈ R

2N . (2)

We finally let xm(t) represent a model/approximation of the

true target pose, with sm(t) = fs(xm(t)) the corresponding

model of s(t), derived from xm(t) via (2).

In the following, we assume that the vector s(t) can

be measured until some t = tocc after which some visual

features or the full set s(t) become unavailable for a time

period T > 0 because of some external ‘event’ such as,

e.g., an occlusion, loss of tracking because of the limited

camera field of view (fov), or a generic error of the image

processing step. The following sections discuss then two

possible strategies for (i) propagating the internal models

sm(t) and xm(t) during t ∈ [tocc, tocc + T ], exploiting the

known linear and angular velocity v(t) = (v(t), ω(t)) of

the camera, and for (ii) correcting sm(t) and xm(t) as long

as the measurements s(t) are available (thus for t < tocc and

t ≥ tocc + T ).

A. Model prediction

We assume the time interval [tocc, tocc +T ] is discretized

in H uniform steps (corresponding to the number of camera

frames without visual feature measurement) of duration τ =
T/H . We also set v(t) = v(tk) = const for t ∈ [tk, tk+1],
with k = 1 . . . H .

1) Prediction in the image: the prediction in the image

proposed in [15], [20] is a simple forward integration of

sm(t) via the interaction matrix Ls given by [1]

Ls =



− 1

Z
0 u

Z
uv −(1 + u2) v

0 − 1

Z

v

Z
1 + v2 −uv −u


 . (3)

More precisely, we have

sm(tk) = sm(tk−1) + τLs(sm(tk−1), Zm(tk−1))v(tk−1),
(4)

with Zm = [Zm1
, . . . , ZmN

] a model of the depths associ-

ated to the N feature points. The vector Zm(t) can also be

updated from an initial Zm(tocc) with

Zm(tk) = Zm(tk−1)+τLZ(sm(tk−1), Zm(tk−1))v(tk−1),
(5)

with

LZ(s(tk−1), Z(tk−1)) =



LZ1

...

LZN


 (6)

and

LZi
(si(tk−1), Zi(tk−1)) =

[
0 0 −1 −viZi uiZi 0

]
.

(7)

By exploiting (4) and (5), the behavior of the feature

positions sm(t) and depths Zm(t) can be predicted during

the interval [tocc, tocc + T ] without requiring an explicit

knowledge of the camera/target relative pose x(t) nor the

3D model of the target. Obviously the accuracy of this

prediction scheme depends on the accuracy of the initial

values sm(tocc) and Zm(tocc).
Note that if only camera rotational motions are involved

in the control scheme, such as for gaze control where a

pan-tilt camera is used to track a moving target, the depth

does not come anymore into the interaction matrix (Z only

appears in the first three colomns corresponding to the three

translational motions), which makes useless the prediction

Zm(t).
2) Prediction in the pose: an alternative is to propagate

instead the model xm(t) of the target pose w.r.t. the camera,

with the kinematic relationship

xm(tk) = xm(tk−1) + τLxv(tk−1), (8)

where

Lx =

[
O
RC(u, θ) 0

0 Lω(u, θ)

]

with

O
RC(u, θ) = I3 + [u]× sin(θ) + [u]2×(1− cos(θ))

is the rotation matrix from FC to FO, and

Lω(u, θ) = I3 −
θ

2
[u]× +

(
1−

sinc(θ)

sinc2 (θ/2)

)
[u]2×.

and sinc(θ) = sin(θ)/θ, see [21]. Since det(Lω(u, θ)) =
1/sinc2 (θ/2), matrix Lx is invertible for θ 6= 2kπ, k ∈ Z

∗,

i.e., within the workspace of any normal application.

Combined with (2), we obtain a model sm(t) = fs(xm(t))
of the features in the image during the interval [tocc, tocc+T ].
The difference with the previous prediction scheme is that

the evolution of the camera/target pose xm(t) is continu-

ously tracked here while only sm(t) and Zm(t) are tracked

with (4) and (5). As before, the accuracy of this prediction

scheme depends on the accuracy of the initial value xm(tocc).

B. Model correction

When measures s(t) are available, they can be exploited

to correct the features and the pose models sm(t) and xm(t)
in the following ways.

1) Correction in the image: this correction scheme, pro-

posed in [15], [20], aims at correcting the model sm(tk) by

exploiting the measures s(tk) as follows:





sm(tk) ← s(tk),

C
Zm(tk) ← C

Zm(tk),

CXmi
(tk) ← umi

(tk)
CZmi

(tk),

CYmi
(tk) ← vmi

(tk)
CZmi

(tk).

(9)

This clearly ensures that sm(tocc) = s(tocc) and sm(tocc+
T ) = s(tocc + T ) when the occlusion begins and ends, but

it fails in correcting any error in the depth model Zm(tocc)
and Zm(tocc +T ) since it only accounts for the error in the

image, without trying to correct any potential discrepancy



between the real and the model poses x(t) and xm(t). As a

result, the model sm(t) will generally diverge from the real

values s(t) for t > tocc.

2) Correction in the image and in the pose: this improved

correction scheme additionally exploits the mismatch be-

tween the model sm(tk) = fs(xm(tk)) and the measures

s(tk) to compute a pose correction

∆x(tk) = LxL
†
s(s(tk)− sm(tk)), (10)

with L
†
s the Moore-Penrose inverse of Ls(sm(t),xm(t))

(see [20] for more details):





xm(tk) ← xm(tk)⊕∆x(tk),

sm(tk) ← s(tk),

C
Zm(tk) ← fZ(xm(tk)),

CXmi
(tk) ← umi

(tk)
CZmi

(tk),

CYmi
(tk) ← vmi

(tk)
CZmi

(tk).

(11)

Here, fZ(·) provides depths Z obtained directly from the

camera/target pose model and point 3D coordinates.

Note that the pose correction scheme corresponds to a

single iteration of a standard pose estimation by virtual visual

servoing [22]. More iterations could be realized if necessary.

Note also that because of the Moore-Penrose inverse property

L
†
sLsL

†
s = L

†
s, (12)

one has

L
†
ssm(t) ≈ L

†
ss(t) (13)

(see again [20] for more details). Therefore, a typical visual

servoing control law (see Section III just below)

v = −λL†
s(s(t)− s

∗) ≈ −λL†
s(sm(t)− s

∗)

will yield similar camera velocities when using either s(t)
or sm(t). Classical image-based visual servoing will thus

not be perturbed by this pose correction method. This is

of particular interest for t > tocc when s(t) is no more

available.

III. IMAGE-BASED VISUAL SERVOING

An IBVS control strategy consists in finding the camera

linear and angular velocity v that will minimize the norm of

an error function defined on the image plane

e = s− s
∗,

where s
∗ represents the desired location of the visual fea-

tures [1]. By exploiting the relationship between the time

variations of s and v, one has

ṡ = ė = Lsv.

A. Eye-In-Hand configuration

If we consider a camera mounted on a robot arm, one can

implement the following control law

v = −λL̂s

†
(s− s

∗), (14)

where L̂s is an estimation of Ls, for driving the error e to

zero.

B. Eye-To-Hand configuration

In order to illustrate how the proposed correction can

be applied to different scenarios, we also consider an Eye-

To-Hand system in which a static camera is observing a

target fixed to the end effector of the robot arm, see [23].

The resulting control law is slightly different from (14) and

results in

ve = λe
V cL̂s

†
(s− s

∗), (15)

where ve is the end effector velocity expressed in the end

effector frame and e
V c is the velocity twist matrix given by

e
V c =

(
e
Rc [etc]×

e
Rc

0
e
Rc

)
.

Note that the measured robot velocity has to be expressed in

the camera frame for using the prediction schemes (4), (5)

and (8). This is simply obtained by:

v = c
V eve. (16)

The main difficulty of the eye-to-hand configuration ap-

pears in the non-exact knowledge of the end effector pose in

the camera frame, which is involved in c
V e in (16). Indeed,

even if the camera/target pose model xm is perfectly cor-

rected, the target/effector pose has to be perfecly calibrated to

avoid dissimilarities between real and predicted movements.

In the following experiments and for both configurations

previously described, we have chosen L̂s = Ls(s
∗,Z∗),

that is, the value of the interaction matrix computed at the

desired pose, to demonstrate that, even if the depth Z(t) is

not involved in the control scheme, its use in the predicion

step is crucial.

IV. EXPERIMENTAL RESULTS

This section presents results obtained when applying the

corrections discussed in Section II to a standard Image-Based

Visual Servoing (IBVS) task in presence of occlusions or loss

of tracking of the controlled visual features.

The first two following experiments were realized with an

eye-in-hand monocular camera mounted on a 6 dof robot

arm. The target consists of four coplanar points forming a

square of about 10 cm in length with coordinates in F0





O
P 0 = (−0.05,−0.05, 0)

O
P 1 = (0.05,−0.05, 0)

O
P 2 = (0.05, 0.05, 0)

O
P 3 = (−0.05, 0.05, 0)

.

The software ViSP [24] was used for image processing and

visual tracking of 2D point coordinates.

The pose of F0 w.r.t. FC at the beginning of the task was

x(t0) = (−0.072,−0.035, 1.21,−0.35, 0.34, 0.050)T

while the initial model of the pose was taken intentionally

incorrect to highlight the value of the correction (11), such

as

xm(t0) = (0, 0, 2, 0, 0, 0.79)T .



This was then used to compute the initial values of the model

sm(t0) = fs(xm(t0)) of visual features via (2) as well

as C
Zm(t0) = fZ(xm(t0)). During the servoing, we also

simulated a camera field of view (fov) smaller than the real

one for exacerbating the loss of tracking during motion.

A. Reference behavior

Figure 1a shows the initial camera image before the

control law (14) is applied. Green crosses represent the

desired locations s
∗ for the visual features, and red crosses

their current (measured) location s(t). This initial experiment

does not include any occlusion or loss of tracking and is

only meant to provide a reference baseline for comparison

(see the first part of the video submitted as supplementary

material). The solid red curves in Figure 1b represent the

paths taken by each point in the image during the camera

motion, while Figure 1c shows the evolution of the error

ei(t) = ‖si(t) − s
∗
i
(t)‖ between the current and desired

locations, eventually converging to zero.

B. Limited field of view

Let us now consider a case where the visual features

leave the field of view of the camera, which is artificially

limited to a small section of the real view obtained from the

camera, represented in the following figures by a blue box.

Figures 2a and 3a show the camera image at the end of the

servoing loop, when using respectively the correction (9) and

the correction (11). Green curves represent the paths taken

by the features when measurements are available, while blue

curves represent their predicted paths computed thanks to (8)

when measurements are not available.

As expected, the non-corrected pose xm(t) in (9) results

in a significant drift of the prediction in the Fig. 2a, while the

correction (11) leads to an almost perfect prediction in the

Fig. 3a. As a result, the camera converges to an incorrect pose

in the first case (see the second part of the video submitted

as supplementary material), while converging to the desired

pose in the second case (see the third part of the video). Note

how the image processing is able to recover the tracking of

the visual features when they re-enter the camera view, by

exploiting their predicted location.

Figures 2b and 3b show the corresponding errors ei(t),
and Figures 2c and 3c the error in estimating the depths

Zi(t). In each plot, the blue parts of the curves correspond

to occlusion phases. We can verify that the depth estimations

converge to the real values when applying the correction (11),

but naturally not when applying the correction (9).

As additional experimentation the fourth part presented

in the video submitted as supplementary material leads to

the same conclusion as the one with the pose and image

correction but with a longer occlusion caused by visual

features leaving the camera field of view and hidden by a

sheet of paper.

C. Eye-To-Hand configuration

This last experiment was realized with an eye-to-hand

monocular camera observing a target mounted on the end

effector of a 6 dof robot arm which has to grasp a cube of 4

cm for each side. The pose of the cube in the camera frame

is computed at the beginning of the experimentation, and is

used to generate desired visual features of the target in the

camera image plane. The target is composed by 4 points with

coordinates in F0





O
P 0 = (0, 0.023,−0.134)

O
P 1 = (0, 0.023,−0.247)

O
P 2 = (−0.057, 0,−0.132)

O
P 3 = (−0.057,−0.113,−0.13)

.

The pose of the target in the camera frame at the beginning

of the task was

x(t0) = (0.307,−0.522, 0.753,−1.155,−0.776,−0.977)T

while the initial model of the pose was taken as

xm(t0) = (0, 0, 1, 0, 0, 0)T .

The visual servoing has to realize 2 steps using the

control law (15). The first step consists in moving the grasp

above the cube to avoid any collision, and the second step

consists in moving the arm towards the cube for grasping

it as shown on Figure 4a. Once again, the field of view

of the camera is artificially limited to a small section of

the real view obtained from the camera, which causes loss

of measurements replaced by prediction computed thanks

to (4), (5).

Figures 4b and 4c show respectively the camera image at

the end of the servoing loops and the correponding errors

ei(t). This demonstrates the efficiency of (11) for an Eye-

To-Hand system (see the last part of the video submitted as

supplementary material). Indeed, the two steps required to

grasp the cube are realized even when visual features leave

the camera field of view during the first step. We can note a

slight difference between real and predicted visual features

at the end of the servoing loop because of the non-exact

knowledge of the effector/target pose.

V. CONCLUSION

In this paper, we applied the prediction/correction scheme

recently proposed in [20] to a classical image-based visual

servoing task in order to cope with possible occlusions or loss

of feature tracking due to the limited camera field of view. To

this end, we reported several experimental results (for both an

eye-in-hand and eye-to-hand configurations) that showed the

effectiveness of the proposed approach. Indeed, thanks to the

prediction/correction scheme [20], the servoing task is shown

to gain a high level of robustness against occlusions/loss of

tracking also during extended periods of time. Future works

will investigate how to exploit the proposed machinery in

the context of Model Predictive Control.
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(a) (b) (c)

Fig. 1: Reference trajectory: (a) is the intial state where the locations of desired features s
∗ on the camera image plane are

in green and the locations of measured features s(t0) are in red. (b) is the final state where the measured trajectory followed

by each feature for reaching the green desired values are in red. (c) is the behavior of the error ei(t) = ||si(t)− s
∗
i
(t)|| for

each visual feature error during the servoing.

(a) (b) (c)

Fig. 2: Limited field of view with correction (9): (a) is the final state where the green curves represent the measured path

of the visual features while the blue curves represent the predicted path (when no measurement is available). (b) is the

evolution of the error ei(t) = ||si(t) − s
∗
i
|| (red parts) and of ei(t) = ||sm(t) − s

∗
i
|| (blue parts). (c) is the evolution of

‖Zmi
(t)−Zi(t)‖. Because of the poor performance of the correction (9), the predicted paths substantially diverge from the

expected ones (in red), causing a complete failure of the servoing loop.

(a) (b) (c)

Fig. 3: Limited field of view with correction (11): (a) is the final state. (b) is the evolution of the error ei(t) = ||si(t)− s
∗
i
||

(red parts) and of ei(t) = ||sm(t)−s
∗
i
|| (blue parts). (c) is the evolution of ‖Zmi

(t)−Zi(t)‖. Note how, compared to Fig. 2,

convergence towards the desired pose is now correctly achieved thanks to the superior performance of the correction (11),

that allows for a more accurate prediction of sm(t) when no measurement is available.



(a) (b) (c)

Fig. 4: Limited field of view with correction (11) applied to the Eye-To-Hand system. (a) is the initial state where desired

visual features are in green for step 1 and in purple for step 2. (b) is the final state. (c) is the evolution of the error

ei(t) = ||si(t) − s
∗
i
|| (red parts) and of ei(t) = ||sm(t) − s

∗
i
|| (blue parts). The 2 servoing tasks are correctly realized.

This again confirms the effectiveness of correction (11) what allows quickly recovering any initial error in the camera/target

model pose for then allowing an accurate prediction sm(t) during the occlusion phase.
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