
Visual Simulation of Smoke

Ronald Fedkiw�

Stanford University

Jos Stamy

Aliaswavefront

Henrik Wann Jensenz

Stanford University

Abstract

In this paper, we propose a new approach to numerical smoke
simulation for computer graphics applications. The method pro-
posed here exploits physics unique to smoke in order to design a
numerical method that is both fast and efficient on the relatively
coarse grids traditionally used in computer graphics applications
(as compared to the much finer grids used in the computational
fluid dynamics literature). We use the inviscid Euler equations in
our model, since they are usually more appropriate for gas mod-
eling and less computationally intensive than the viscous Navier-
Stokes equations used by others. In addition, we introduce a physi-
cally consistent vorticity confinement term to model the small scale
rolling features characteristic of smoke that are absent on most
coarse grid simulations. Our model also correctly handles the inter-
action of smoke with moving objects.

Keywords: Smoke, computational fluid dynamics, Navier-Stokes equations, Euler

equations, Semi-Lagrangian methods, stable fluids, vorticity confinement, participat-

ing media

1 Introduction

The modeling of natural phenomena such as smoke remains a chal-
lenging problem in computer graphics (CG). This is not surprising
since the motion of gases such as smoke is highly complex and
turbulent. Visual smoke models have many obvious applications in
the industry including special effects and interactive games. Ideally,
a good CG smoke model should both be easy to use and produce
highly realistic results.

Obviously the modeling of smoke and gases is of importance
to other engineering fields as well. More generally, the field of
computational fluid dynamics (CFD) is devoted to the simulation of
gases and other fluids such as water. Only recently have researchers
in computer graphics started to excavate the abundant CFD litera-
ture for algorithms that can be adopted and modified for computer
graphics applications. Unfortunately, current CG smoke models are
either too slow or suffer from too much numerical dissipation. In
this paper we adapt techniques from the CFD literature specific to

�Stanford University, Gates Computer Science Bldg., Stanford, CA

94305-9020, fedkiw@cs.stanford.edu
yAlias wavefront, 1218 Third Ave, 8th Floor, Seattle, WA 98101, U.S.A.

jstam@aw.sgi.com
zStanford University, Gates Computer Science Bldg., Stanford, CA

94305-9020, henrik@graphics.stanford.edu

the animation of gases such as smoke. We propose a model which
is stable, rapid and doesn’t suffer from excessive numerical dis-
sipation. This allows us to produce animations of complex rolling
smoke even on relatively coarse grids (as compared to the ones used
in CFD).

1.1 Previous Work

The modeling of smoke and other gaseous phenomena has received
a lot of attention from the computer graphics community over the
last two decades. Early models focused on a particular phenomenon
and animated the smoke’s density directly without modeling its ve-
locity [10, 15, 5, 16]. Additional detail was added using solid tex-
tures whose parameters were animated over time. Subsequently,
random velocity fields based on a Kolmogoroff spectrum were used
to model the complex motion characteristic of smoke [18]. A com-
mon trait shared by all of these early models is that they lack any
dynamical feedback. Creating a convincing dynamic smoke simu-
lation is a time consuming task if left to the animator.

A more natural way to model the motion of smoke is to simulate
the equations of fluid dynamics directly. Kajiya and Von Herzen
were the first in CG to do this [13]. Unfortunately, the computer
power available at the time (1984) only allowed them to produce
results on very coarse grids. Except for some models specific to
two-dimensions [21, 9], no progress was made in this direction un-
til the work of Foster and Metaxas [7, 6]. Their simulations used
relatively coarse grids but produced nice swirling smoke motions in
three-dimensions. Because their model uses an explicit integration
scheme, their simulations are only stable if the time step is chosen
small enough. This makes their simulations relatively slow, espe-
cially when the fluid velocity is large anywhere in the domain of in-
terest. To alleviate this problem Stam introduced a model which is
unconditionally stable and consequently could be run at any speed
[17]. This was achieved using a combination of a semi-Lagrangian
advection schemes and implicit solvers. Because a first order inte-
gration scheme was used, the simulations suffered from too much
numerical dissipation. Although the overall motion looks fluid-like,
small scale vortices typical of smoke vanish too rapidly.

Recently, Yngve et al. proposed solving the compressible ver-
sion of the equations of fluid flow to model explosions [22]. While
the compressible equations are useful for modeling shock waves
and other compressible phenomena, they introduce a very strict
time step restriction associated with the acoustic waves. Most CFD
practitioners avoid this strict condition by using the incompressible
equations whenever possible. For that reason, we do not consider
the compressible flow equations. Another interesting alternative
which we do not pursue in this paper is the use of lattice gas solvers
based on cellular automata [4].

1.2 Our Model

Our model was designed specifically to simulate gases such as
smoke. We model the smoke’s velocity with the incompressible Eu-
ler equations. These equations are solved using a semi-Lagrangian
integration scheme followed by a pressure-Poisson equation as in
[17]. This guarantees that our model is stable for any choice of the
time step. However, one of our main contributions is a method

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ACM SIGGRAPH 2001, 12-17 August 2001, Los Angeles, CA, USA
© 2001 ACM 1-58113-374-X/01/08...$5.00

15

to reduce the numerical dissipation inherent in semi-Lagrangian
schemes. We achieve this by using a technique from the CFD lit-
erature known as ”vorticity confinement” [20]. The basic idea is
to inject the energy lost due to numerical dissipation back into the
fluid using a forcing term. This force is designed specifically to in-
crease the vorticity of the flow. Visually this keeps the smoke alive
over time. This forcing term is completely consistent with the Eu-
ler equations in the sense that it disappears as the number of grid
cells is increased. In CFD this technique was applied to the numeri-
cal computation of complex turbulent flow fields around helicopters
where it is not possible to add enough grid points to accurately re-
solve the flow field. The computation of the force only adds a small
computational overhead. Consequently our simulations are almost
as fast as the one’s obtained from the basic Stable Fluids algorithm
[17]. Our model remains stable as long as the magnitude of the
forcing term is kept below a certain threshold. Within this range,
our time steps are still orders of magnitude higher than the ones
used in explicit schemes.

Semi-Lagrangian schemes are very popular in the atmospheric
sciences community for modeling large scale flows dominated by
constant advection where large time steps are desired, see e.g. [19]
for a review. We borrow from this literature a higher order inter-
polation technique that further increases the quality of the flows.
This technique is especially effective when moving densities and
temperatures through the velocity field.

Finally, our model, like Foster and Metaxas’ [6], is able to han-
dle boundaries inside the computational domain. Therefore, we are
able to simulate smoke swirling around objects such as a virtual
actor.

The rest of the paper is organized as follows. In the next section
we derive our model from the equations of fluid flow, and in section
3 we discuss vorticity confinement. In section 4, we outline our
implementation. In section 5, we present both an interactive and a
high quality photon map based renderer to depict our smoke simu-
lations. Subsequently, in section 6, we present some results, while
section 7 concludes and discusses future work.

2 The Equations of Fluid Flow

At the outset, we assume that our gases can be modeled as inviscid,
incompressible, constant density fluids. The effects of viscosity
are negligible in gases especially on coarse grids where numerical
dissipation dominates physical viscosity and molecular diffusion.
When the smoke’s velocity is well below the speed of sound the
compressibility effects are negligible as well, and the assumption of
incompressibility greatly simplifies the numerical methods. Conse-
quently, the equations that model the smoke’s velocity, denoted by
u = (u; v; w), are given by the incompressible Euler equations
[14]

r � u = 0 (1)

�u

�t
= �(u � r)u�rp+ f : (2)

These two equations state that the velocity should conserve both
mass (Equation 1) and momentum (Equation 2). The quantity p is
the pressure of the gas and f accounts for external forces. Also we
have arbitrarily set the constant density of the fluid to one.

As in [7, 6, 17] we solve these equations in two steps. First we
compute an intermediate velocity field u

� by solving Equation 2
over a time step �t without the pressure term

u
� � u

�t
= �(u � r)u+ f : (3)

After this step we force the field u
� to be incompressible using a

projection method [3]. This is equivalent to computing the pressure

from the following Poisson equation

r
2p =

1

�t
r � u

�
(4)

with pure Neumann boundary condition, i.e., �p
�n

= 0 at a bound-
ary point with normal n. (Note that it is also straightforward to im-
pose Dirichlet boundary conditions where the pressure is specified
directly as opposed to specifying its normal derivative.) The inter-
mediate velocity field is then made incompressible by subtracting
the gradient of the pressure from it

u = u
�
��trp: (5)

We also need equations for the evolution of both the tempera-
ture T and the smoke’s density �. We assume that these two scalar
quantities are simply moved (advected) along the smoke’s velocity

�T

�t
= �(u � r)T; (6)

��

�t
= �(u � r)�: (7)

Both the density and the temperature affect the fluid’s velocity.
Heavy smoke tends to fall downwards due to gravity while hot gases
tend to rise due to buoyancy. We use a simple model to account for
these effects by defining external forces that are directly propor-
tional to the density and the temperature

fbuoy = ���z+ �(T � Tamb)z; (8)

where z = (0; 0; 1) points in the upward vertical direction, Tamb
is the ambient temperature of the air and � and � are two positive
constants with appropriate units such that Equation 8 is physically
meaningful. Note that when � = 0 and T = Tamb, this force is
zero.

Equations 2, 6 and 7 all contain the advection operator �(u �r).
As in [17], we solve this term using a semi-Lagrangian method [19].
We solve the Poisson equation (Equation 4) for the pressure using
an iterative solver. We show in Section 4 how these solvers can also
handle bodies immersed in the fluid.

3 Vorticity Confinement

Usually smoke and air mixtures contain velocity fields with large
spatial deviations accompanied by a significant amount of rotational
and turbulent structure on a variety of scales. Nonphysical nu-
merical dissipation damps out these interesting flow features, and
the goal of our new approach is to add them back on the coarse
grid. One way of adding them back would be to create a random or
pseudo-random small scale perturbation of the flow field using ei-
ther a heuristic or physically based model. For example, one could
generate a divergence free velocity field using a Kolmogorov spec-
trum and add this to the computed flow field to represent the miss-
ing small scale structure (see [18] for some CG applications of the
Kolmogorov spectrum). While this provides small scale detail to
the flow, it does not place the small scale details in the physically
correct locations within the flow field where the small scale details
are missing. Instead, the details are added in a haphazard fashion
and the smoke can appear to be “alive”, rolling and curling in a
nonphysical fashion. The key to realistic animation of smoke is
to make it look like a passive natural phenomena as opposed to a
“living” creature made out of smoke.

Our method looks for the locations within the flow field where
small scale features should be generated and adds the small scale
features in these locations in a physically based fashion that pro-
motes the passive rolling of smoke that gives it the realistic turbu-
lent look on a coarse CG grid. With unlimited computing power,

16

w

u

v

Figure 1: Discretization of the computational domain into identical
voxels (left). The components of the velocity are defined on the
faces of each voxel (right).

any consistent numerical method could be used to obtain accept-
able results simply by increasing the number of grid points until
the desired limiting behavior is observed. However, in practice,
computational resources are limited, grids are fairly coarse (even
coarser in CG than in CFD), and the discrete difference equations
may not be asymptotically close enough to the continuous equa-
tions for a particular simulation to behave in the desired physically
correct fashion. Our key idea is to design a consistent numerical
method that behaves in an interesting and physically plausible fash-
ion on a coarse grid. In general, this is very difficult to do, but
luckily a vorticity confinement method was recently invented by
Steinhoff, see e.g. [20], for the numerical computation of complex
turbulent flow fields around helicopters where it is not possible to
add enough grid points to accurately resolve the flow.

The first step in generating the small scale detail is to identify
where it comes from. In incompressible flow, the vorticity

!!! = r� u (9)

provides the small scale structure. Each small piece of vorticity can
be thought of as a paddle wheel trying to spin the flow field in a
particular direction. Artificial numerical dissipation damps out the
effect of these paddle wheels, and the key idea is to simply add it
back. First normalized vorticity location vectors

N =
���

j���j
(��� = rj!!!j) (10)

that point from lower vorticity concentrations to higher vorticity
concentrations are computed. Then the magnitude and direction of
the paddle wheel force is computed as

fonf = � h (N� !!!) (11)

where � > 0 is used to control the amount of small scale detail
added back into the flow field and the dependence on the spatial
discretization h guarantees that as the mesh is refined the physically
correct solution is still obtained.

This technique was invented by Steinhoff about 10 years ago
with a form similar to Equation 11 without the dependence on h,
see for example [20]. This method has been used successfully as an
engineering model for very complex flow fields, such as those asso-
ciated with rotorcraft, where one cannot computationally afford to
add enough grid points to resolve the important small scale features
of the flow.

4 Implementation

We use a finite volume spatial discretization to numerically solve
the equations of fluid flow. As shown in Figure 1, we dice up the

Figure 2: Semi-Lagrangian paths that end up in a boundary voxel
are clipped against the boundaries’ face.

computational domain into identical voxels. The temperature, the
smoke’s density and the external forces are defined at the center of
each voxel while the velocity is defined on the appropriate voxel
faces (see Figure 1, right). Notice that this arrangement is identical
to that of Foster and Metaxas [6] but differs from the one used by
Stam [17] where the velocity was defined at the voxel centers as
well. Our staggered grid arrangement of the velocity field gives im-
proved results for numerical methods with less artificial dissipation.
See appendix A for more details on our discretization.

To handle boundaries immersed in the fluid we tag all voxels
that intersect an object as being occupied. All occupied voxel cell
faces have their velocity set to that of the object. Similarly, the
temperature at the center of the occupied voxels is set to the object’s
temperature. Consequently an animator can create many interesting
effects by simply moving or heating up an object. The smoke’s
density is of course equal to zero inside the object. However, to
avoid a sudden drop-off of the density near the object’s boundary,
we set the density at boundary voxels equal to the density of the
closest unoccupied voxel.

Our solver requires two voxel grids for all physical quantities.
We advance our simulation by updating one grid from the other
over a fixed time step �t. At the end of each time step we swap
these grids. The grid may initially contain some user provided data,
but in most cases the grids are simply empty. We first update the
velocity components of the fluid. This is done in three steps. First,
we add the force fields to the velocity grid. The forces include user
supplied fields, the buoyancy force defined by Equation 8 and the
new confinement force defined by Equation 11. This is done by
simply multiplying each force by the time step and adding it to the
velocity (see appendix A). Next we solve for the advection term in
Equation 3. We do this using a semi-Lagrangian scheme, see [19]
for a review and [17] for its first application in computer graphics.

The semi-Lagrangian algorithm builds a new grid of velocities
from the ones already computed by tracing the midpoints of each
voxel face through the velocity field. New velocities are then in-
terpolated at these points and their values are transferred to the face
cells they originated from. It is possible that the point ends up in one
of the occupied voxels. In this case we simply clip the path against
the voxel boundary as shown in Figure 2. This guarantees that the
point always lies in the unoccupied fluid. Simple linear interpola-
tion is easy to implement and combined with our new confinement
force gives satisfactory results. It is also unconditionally stable.
Higher order interpolation schemes are, however, desirable in some
cases for high quality animations. The tricky part with higher or-
der schemes is that they usually overshoot the data which results in

17

instabilities. In appendix B we provide a cubic interpolator which
does not overshoot the data.

Finally we force the velocity field to conserve mass. As already
stated in section 2, this involves the solution of a Poisson equation
for the pressure (Equation 4). The discretization of this equation
results in a sparse linear system of equations. We impose free Neu-
mann boundary conditions at the occupied voxels by setting the nor-
mal pressure gradient equal to zero at the occupied boundary faces.
The system of equations is symmetric, and the most natural linear
solver in this case is the conjugate gradient method. This method
is easy to implement and has much better convergence properties
than simple relaxation methods. To improve the convergence we
used an incomplete Choleski preconditioner. These techniques are
all quite standard and we refer the reader to the standard text [11]
for more details. In practice we found that only about 20 iterations
of this solver gave us visually acceptable results. After the pres-
sure is computed, we subtract its gradient from the velocity. See
appendix A for the exact discretization of the operators involved.

After the velocity is updated, we advect both the temperature
and the smoke’s density. We solve these equations using again a
semi-Lagrangian scheme. In this case, however, we trace back the
centers of each voxel. The interpolation scheme is similar to the
velocity case.

5 Rendering

For every time step, our simulator outputs a grid that contains the
smoke’s density �. In this section we present algorithms to realisti-
cally render the smoke under various lighting conditions. We have
implemented both a rapid hardware based renderer as in [17] and a
high quality global illumination renderer based on the photon map
[12]. The hardware based renderer provides rapid feedback and
allows an animator to get the smoke to “look right”. The more ex-
pensive physics-based renderer is used at the end of the animation
pipeline to get production quality animations of smoke.

We first briefly recall the additional physical quantities needed
to characterize the interaction of light with smoke. The amount of
interaction is modeled by the inverse of the mean free path of a
photon before it collides with the smoke and is called the extinc-
tion coefficient �t. The extinction coefficient is directly related to
the density of the smoke through an extinction cross-section Cext:
�t = Cext�. At each interaction with the smoke a photon is either
scattered or absorbed. The probability of scattering is called the
albedo
. A value of the albedo near zero corresponds to very dark
smoke, while a value near unity models bright gases such as steam
and clouds.

In general the scattering of light in smoke is mostly focused in
the forward direction. The distribution of scattered light is modeled
through a phase function p(�) which gives the probability that an
incident photon is deflected by an angle �. A convenient model for
the phase function is the Henyey-Greenstein function

p(�) =
1� g2

(1 + g2 � 2g os �)3=2
; (12)

where the dimensionless parameter g < 1 models the anisotropy
of the scattering. Values near unity of this parameter correspond to
gases which scatter mostly in the forward direction. We mention
that this phase function is quite arbitrary and that other choices are
possible [1].

5.1 Hardware-Based Renderer

In our implementation of the hardware-based renderer, we follow
the algorithm outlined in [17]. In a first pass, we compute the
amount of light that directly reaches each voxel of the grid. This

is achieved using a fast Bresenham line drawing voxel traversal al-
gorithm [8]. Initially the transparencies of each ray are set to one
(Tray = 1). Then, each time a voxel is hit, the transparency is com-
puted from the voxel’s density: Tvox = exp(�Cexth), where h is
the grid spacing. Then the voxel’s radiance is set to

Lvox =
 Llight (1� Tvox) Tray;

while the transparency of the ray is simply multiplied by the voxel’s
transparency: Tray = TrayTvox . Since the transparency of the ray
diminishes as it traverses the smoke’s density this pass correctly
mimics the effects of self-shadowing.

In a second pass we render the voxel grid from front to back. We
decompose the voxel grid into a set of two-dimensional grid-slices
along the coordinate axis most aligned with the viewing direction.
The vertices of this grid-slice correspond to the voxel centers. Each
slice is then rendered as a set of transparent quads. The color and
opacity at each vertex of a quad correspond to the radiance Lvox
and the opacity 1� Tvox, respectively, of the corresponding voxel.
The blending between the different grid slices when rendered from
front to back is handled by the graphics hardware.

5.2 Photon Map Renderer

Realistic rendering of smoke with a high albedo (such as water va-
por) requires a full simulation of multiple scattering of light inside
the smoke. This involves solving the full volume rendering equa-
tion [2] describing the steady-state of light in the presence of par-
ticipating media. For this purpose we use the photon mapping al-
gorithm for participating media as introduced in [12]. This is a two
pass algorithm in which the first pass consists of building a volume
photon map by emitting photons towards the medium and storing
these as they interact with the medium. We only store the photons
corresponding to indirect illumination.

In the rendering pass we use a forward ray marching algorithm.
We have found this to be superior to the backward ray marching
algorithm proposed in [12]. The forward ray marching algorithm
allows for a more efficient culling of computations in smoke that is
obscured by other smoke. In addition it enables a more efficient use
of the photon map by allowing us to use less photons in the query
as the ray marcher gets deeper into the smoke. Our forward ray
marcher has the form

Ln(xn; ~!) = Ln�1(xn�1; ~!) + e��(xn)�xn(~! � ~r)Ls(x
0

n; ~!)
(13)

where �(xn) =
R xn
x0

�t dx is the optical depth, Ls is the fraction of

the inscattered radiance that is scattered in direction ~!, �xn > 0 is
the size of the nth step, xn+1 = xn + �xn and x0n is a randomly

chosen location in the nth segment. The factor e��(xn) can be
considered the weight of the nth segment, and we use this value to
adjust the required accuracy of the computation.

The contribution due to in-scattered radiance, Li, is given by

(~! � ~r)Ls(x; ~!) =
 �t(x)

Z
4�

Li(x; ~!
0

s)p(x
0

n; ~!
0; ~!) d!0 (14)

We split the inscattered radiance into a single scattering term, Ld,
and a multiple scattering term, Lm. The single scattering term is
computed using standard ray tracing, and the multiple scattering
term is computed using the volume radiance estimate from the pho-
ton map by locating the np nearest photons. This gives:

(~! � ~r)Lm(x; ~!) =

npX
1

�p(~!
0)p(x; ~!0; ~!)
4
3
�r3

: (15)

Here �p is the power of the pth photon and r is the smallest sphere
enclosing the np photons.

18

Figure 6: Two stills from the rotor animation. A box is rotating inside the smoke cloud causing it to disperse. Notice how the smoke is sucked
in vertically towards the box as it is pushed outwards horizontally. The simulation time for a 120x60x120 grid was roughly 60 seconds/frame.

Figure 3: Rising smoke. Notice how the vorticies are preserved in
the smoke. The simulation time for a 100x100x40 grid was roughly
30 seconds/frame.

Figure 4: Low albedo smoke passing through several objects. Each
object interacts with the smoke and causes local turbulence and vor-
ticity. The simulation time for a 160x80x80 grid was roughly 75
seconds/frame.

Figure 5: Rising smoke swirling around a sphere. Notice how the
smoke correctly moves around the sphere. The simulation time for
a 90x135x90 grid was roughly 75 seconds/frame.

Figure 7: Six frames rendered using our interactive hardware ren-
derer of the smoke. The simulation time for a 40x40x40 grid was
roughly 1 second/frame.

19

Figure 8: Comparison of linear interpolation (top) and our new
monotonic cubic interpolation (bottom). The simulation time for a
20x20x40 grid was roughly 0.1 second/frame (linear) and 1.8 sec-
onds/frame (third order).

6 Results

This section contains several examples of smoke simulations. We
have run most of the simulations including the rendering on a dual-
Pentium3-800 or comparable machine. The images in Figures 3-6
have been rendered at a width of 1024 pixels using 4 samples per
pixel. These photon map renderings were done using 1-2 million
photons in the volume photon map and the rendering times for all
the photon map images are 20-45 minutes.

Figure 3 is a simple demonstration of smoke rising. The only
external force on the smoke is the natural boyancy of the smoke
causing it to rise. Notice how even this simple case is enough to
create a realistic and swirly apperance of the smoke. Figures 4 and
5 demonstrate that our solver correctly handles the interaction with
objects immersed in the smoke. These objects need not be at rest.
Figure 6 shows two stills from an animation where a rotating cube
is inside a smoke cloud. The rotation of the cube causes the smoke
to be pushed out horizontally and sucked in vertically. The grid
resolutions and the cost of each time step are reported in the figure
captions.

Figure 7 shows six frames of an animation rendered using our
interactive renderer. The rendering time for each frame was less
than a second on a nVidia Quadro graphics card. The speed, while
not real-time, allowed an animator to interactively place densities
and heat sources in the scene and watch the smoke raise and billow.

Finally, Figure 8 demonstrates the benefits of using a higher or-
der interpolant in the semi-Lagrangian scheme. The three pictures
on the top show the appearance of falling smoke using a linear in-
terpolant, while the pictures on the bottom show the same smoke
using our new monotonic cubic interpolant. Clearly the new inter-
polation reduces the amount of numerical dissipation and produces
smoke simulations with more fine detail.

7 Conclusions

In this paper we proposed a new smoke model which is both stable
and does not suffer from numerical dissipation. We achieved this
through the use of a new forcing term that adds the lost energy
back exactly where it is needed. We also included the interaction of
objects with our smoke. We believe that our model is ideal for CG
applications where visual detail and speed are crucial.

We think that vorticity confinement is a very elegant and power-
ful technique. We are investigating variants of this technique cus-
tom tailored for other phenomena such as fire. We are also investi-
gating techniques to improve the interaction of the smoke with ob-
jects. In our current model objects may sometimes be too coarsely
sampled on the grid.

8 Acknowledgements

We would like to thank John Steinhoff (Flow Analysis Inc. and
UTSI) and Pat Hanrahan (Stanford University) for many helpful
discussions. The work of the first author was supported in part by
ONR N00014-97-1-0027. The work of the last author was sup-
ported by NSF/ITR (IIS-0085864) and DARPA (DABT63-95-C-
0085).

A Discretization

We assume a uniform discretization of space into N3 voxels with
uniform spacing h. The temperature and the smoke’s density are
both defined at the voxel centers and denoted by

Ti;j;k and �i;j;k; i; j; k = 1; � � � ; N;

respectively. The velocity on the other hand is defined at the cell
faces. It is usual in the CFD literature to use half-way index notation
for this

ui+1=2;j;k; i = 0; � � � ; N; j; k = 1; � � � ; N;

vi;j+1=2;k; j = 0; � � � ; N; i; k = 1; � � � ; N;

wi;j;k+1=2; k = 0; � � � ; N; i; j = 1; � � � ; N:

Using these notations we can now define some discrete operators.
The divergence is defined as

(r � u)i;j;k = (ui+1=2;j;k � ui�1=2;j;k +

vi;j+1=2;k � vi;j�1=2;k +

wi;j;k+1=2 � wi;j;k�1=2)=h

while the discrete gradients are (note rp = (px; py; pz))

(px)i+1=2;j;k = (pi+1;j;k � pi;j;k)=h;

(py)i;j+1=2;k = (pi;j+1;k � pi;j;k)=h;

(pz)i;j;k+1=2 = (pi;j;k+1 � pi;j;k)=h:

The discrete Laplacian is simply the combination of the divergence
and the gradient operators. The discrete version of the vorticity
!!! = (!1; !2; !3) is defined as follows. First we compute the cell-
centered velocities through averaging

�ui;j;k = (ui�1=2;j;k + ui+1=2;j;k)=2;

�vi;j;k = (vi;j�1=2;j + vi;j+1=2;j)=2;

�wi;j;k = (wi;j;k�1=2 +wi;j;k+1=2)=2:

Then

!1i;j;k = (�wi;j+1;k � �wi;j�1;k � �vi;j;k+1 + �vi;j;k�1)=2h;

!2i;j;k = (�ui;j;k+1 � �ui;j;k�1 � �wi+1;j;k + �wi�1;j;k)=2h;

!3i;j;k = (�vi+1;j;k � �vi�1;j;k � �ui;j+1;k + �ui;j�1;k)=2h:

20

Figure 9: Standard cubic Hermite interpolation (left) produces
overshoots while our modified interpolation scheme (right) guar-
antees that no overshoots occur.

All of our force fields are defined at the center of the grid voxels.
To get values at the faces we simply average again. If the force field
f = (f1; f2; f3), then the velocity is updated as

ui+1=2;j;k + = �t (f1i;j;k + f1i+1;j;k)=2;

vi;j+1=2;k + = �t (f2i;j;k + f2i;j+1;k)=2;

wi;j;k+1=2 + = �t (f3i;j;k + f3i;j;k+1)=2:

B Monotonic Cubic Interpolation

In this appendix we present a cubic interpolation scheme which
does not overshoot the data. Since our voxel grids are regular
the three-dimensional interpolation can be broken down into a se-
quence of one-dimensional interpolations along each coordinate
axis. Therefore, it is sufficient to describe the one-dimensional case
only. The data consists of a set of values fk defined at the locations
k = 0; � � � ; N . A value at a point t 2 [tk; tk+1℄ can be interpolated
using a Hermite interpolant as follows [8]

f(t) = a3(t� tk)
3
+ a2(t� tk)

2
+ a1(t� tk) + a0;

where

a3 = dk + dk+1 ��k

a2 = 3�k � 2dk � dk+1

a1 = dk

a0 = fk

and

dk = (fk+1 � fk�1)=2; �k = fk+1 � fk:

However, this interpolant usually overshoots the data as we show
on the left hand side of Figure 9. We want to avoid this, since
monotone interpolation guarantees stability. One solution is to sim-
ply clip the interpolation against the data, but this results in sharp
discontinuities. Another remedy is to force the interpolant to be
monotonic over each interval [tk; tk+1℄. A necessary condition for
this to be the case is that�

sign(dk) = sign(dk+1) = sign(�k) �k 6= 0

dk = dk+1 = 0 �k = 0
:

In our implementation we first compute �k and then set the slopes
to zero whenever they have a sign different from �k. On the right
hand side of Figure 9, we show the our new interpolant applied to
the same data. Clearly the overshooting problem is fixed.

References

[1] P. Blasi, B. Le Saec, and C. Schlick. A Rendering Algo-
rithm for Discrete Volume Density Objects. Computer Graph-
ics Forum (EUROGRAPHICS 93 Conference Proceedings),
12(3):201–210, 1993.

[2] S. Chandrasekhar. Radiative Transfer. Dover, New York,
1960.

[3] A. Chorin. A Numerical Method for Solving Incompressible
Viscous Flow Problems. Journal of Computational Physics,
2:12–26, 1967.

[4] Y. Dobashi, K. Kaneda, T. Okita, and T. Nishita. A Simple,
Efficient Method for Realistic Animation of Clouds. In SIG-
GRAPH 2000 Conference Proceedings, Annual Conference
Series, pages 19–28, July 2000.

[5] D. S. Ebert and R. E. Parent. Rendering and Animation of
Gaseous Phenomena by Combining Fast Volume and Scanline
A-buffer Techniques. Computer Graphics (SIGGRAPH 90
Conference Proceedings), 24(4):357–366, August 1990.

[6] N. Foster and D. Metaxas. Realistic Animation of Liq-
uids. Graphical Models and Image Processing, 58(5):471–
483, 1996.

[7] N. Foster and D. Metaxas. Modeling the Motion of a Hot,
Turbulent Gas. In SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pages 181–188, August 1997.

[8] J. D. Fowley, A. van Dam, S. K. Feiner, and J. F. Hughes.
Computer Graphics: Principles and Practice. Second Edi-
tion. Addison-Wesley, Reading, MA, 1990.

[9] M. N. Gamito, P. F. Lopes, and M. R. Gomes. Two-
dimensional Simulation of Gaseous Phenomena Using Vor-
tex Particles. In Proceedings of the 6th Eurographics Work-
shop on Computer Animation and Simulation, pages 3–15.
Springer-Verlag, 1995.

[10] G. Y. Gardner. Visual Simulation of Clouds. Com-
puter Graphics (SIGGRAPH 85 Conference Proceedings),
19(3):297–384, July 1985.

[11] G. Golub and C. Van Loan. Matrix Computations. The John
Hopkins University Press, Baltimore, 1989.

[12] H. W. Jensen and P. H. Christensen. Efficient Simulation
of Light Transport in Scenes with Participating Media using
Photon Maps. In SIGGRAPH 98 Conference Proceedings,
Annual Conference Series, pages 311–320, July 1998.

[13] J. T. Kajiya and B. P. von Herzen. Ray Tracing Volume Den-
sities. Computer Graphics (SIGGRAPH 84 Conference Pro-
ceedings), 18(3):165–174, July 1984.

[14] L. D. Landau and E. M. Lifshitz. Fluid Mechanics, 2nd edi-
tion. Butterworth-Heinemann, Oxford, 1998.

[15] K. Perlin. An Image Synthesizer. Computer Graphics (SIG-
GRAPH 85 Conference Proceedings), 19(3):287–296, July
1985.

[16] G. Sakas. Fast Rendering of Arbitrary Distributed Volume
Densities. In F. H. Post and W. Barth, editors, Proceedings
of EUROGRAPHICS ’90, pages 519–530. Elsevier Science
Publishers B.V. (North-Holland), September 1990.

21

[17] J. Stam. Stable Fluids. In SIGGRAPH 99 Conference Pro-
ceedings, Annual Conference Series, pages 121–128, August
1999.

[18] J. Stam and E. Fiume. Turbulent Wind Fields for Gaseous
Phenomena. In SIGGRAPH 93 Conference Proceedings, An-
nual Conference Series, pages 369–376, August 1993.

[19] A. Staniforth and J. Cote. Semi-lagrangian integration
schemes for atmospheric models: A review. Monthly Weather
Review, 119:2206–2223, 1991.

[20] J. Steinhoff and D. Underhill. Modification of the euler equa-
tions for “vorticity confinement”: Application to the computa-
tion of interacting vortex rings. Physics of Fluids, 6(8):2738–
2744, 1994.

[21] L. Yaeger and C. Upson. Combining Physical and Visual Sim-
ulation. Creation of the Planet Jupiter for the Film 2010. Com-
puter Graphics (SIGGRAPH 86 Conference Proceedings),
20(4):85–93, August 1986.

[22] G. Yngve, J. O’Brien, and J. Hodgins. Animating explosions.
In SIGGRAPH 2000 Conference Proceedings, Annual Con-
ference Series, pages 29–36, July 2000.

22

