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Visual simultaneous localisation and map-building systems which take advantage of some landmarks other than point-wise
environment features are not frequently reported. In the following paper the method of using the operational map of robot
surrounding, which is complemented with visible structured passive landmarks, is described. These landmarks are used to
improve self-localisation accuracy of the robot camera and to reduce the size of the Kalman-filter state-vector with respect
to the vector size involving point-wise environment features only. Structured landmarks reduce the drift of the camera pose
estimate and improve the reliability of the map which is built on-line. Results of simulation experiments are described,
proving advantages of such an approach.
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1. Introduction

The goal of the research is to investigate the tracking
properties of the Simultaneous Localisation And Map-
building (SLAM) algorithm, which reconstructs the tra-
jectory of a mobile camera navigating in an unknown
environment. By tracking properties we understand here
the ability to properly extend the camera trajectory based
on images of the surroundings; while continuing the cour-
se some landmarks escape the field of view but some new
appear. Usually such a SLAM system works according to
the sequential estimation scheme.

At the beginning of the mission, reference coordina-
tes of the starting point have to be initialized. Then fe-
atures of the environment are extracted from the current
image, and characteristic objects are recognized. As such
they are put on the dynamically constructed map, which
has been empty so far.1 At the next stage, as the camera
moves, the following tasks have to be accomplished:

• determination of the updated camera position and
orientation (shortly: pose) with respect to the global
reference system set at the beginning of the mission,

1In the case of bearing-only SLAM there is the need to bootstrap the
system by injecting into the map some known 3D points or by recogni-
sing objects of known dimensions.

• refinement of the location of features/objects on the
map with respect to the global reference frame.

Moreover, there is usually the need to add new items
on the map, which have been discovered from the new
camera position. The next step is to move the camera for-
ward along a trajectory and to establish a new viewer pose.
Then such a sequence is repeated.

Self-localisation of the robot with a camera fixed on
board is a problem tightly coupled with the issue of map
building, while navigating in an unknown (new) neighbo-
urhood. None can be solved on its own and they have to
be worked out simultaneously.

Last years have witnessed substantial progress in
mobile robots navigation systems (Durrant-Whyte and
Bailey, 2006; Bailey and Durrant-Whyte, 2006; Neira
et al., 2008). Most approaches solve the SLAM task by
using sequential Bayesian schemes. The Kalman filter is
a good example of it (Bar-Shalom et al., 2002). Working
implementations of navigation systems based on such an
approach emerge (Davison et al., 2007), and it can be ob-
served that the quality of solutions is correlated with the
type and number of sensors used in a particular implemen-
tation (Thrun et al., 2006).

The requested characteristics, fundamental to the
working SLAM system, cover its ability to work on-line.
A SLAM system having such a property can be applied
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whenever the current camera pose estimate is used within
the closed-loop navigational decision scheme of the robot
controler.

SLAM can be used to guide autonomous agents (mo-
bile robots) on the shop-floor, in hospitals or in offices, to
support the mobility of humanoid robots or blind people,
and, last but not least, to guide a military warfare. Some
other applications areas can include: augmented reality,
city-map building or extraterrestrial navigation systems,
in which the communication latency prohibits the on-line
remote control.

Most of the reported SLAM methods involve multi-
ple sensors to observe the environment, while in this pa-
per a system using only a single camera is described. With
such an approach, hardware complexity is reduced, there-
fore system reliability grows and portable SLAM systems
involving embedded PC solutions are feasible.

2. Discussion and original elements
of the approach

Here, related earlier works will be presented as the back-
ground of the contribution.

Single camera SLAM systems reported in (Davison
and Murray, 2002; Davison, 2003; Davison et al., 2007)
allow exploring compact indoor spaces. A map generated
by the SLAM process is sparse there and usually consists
of a finite set of point-wise environment features (shortly:
point-features) coordinates. The map is primary used to
establish the camera pose with respect to the global refe-
rence system.

The problem is that the computational cost of the
SLAM algorithm grows with the square of the number of
map-items. So it is wise to reduce the system state vec-
tor dimension consisting of the camera state vector and
the environment map items coordinates. Breaking the up-
per bound of the state-vector size can disable the on-line
operation of the system, given the constrained on-board
computing resources.

The second important issue while navigating is a vie-
wer trajectory drift, which complicates the closing of the
robot path loop (Clemente et al., 2007). Sometimes, it is
necessary to explore the neighbourhood of some referen-
ce point along multiple exploratory trajectories. In such a
case the viewer prefers to come back to the starting point
following a new path in order to acquire some new map
items. Loop closing is one of the most important proper-
ties required in SLAM since it allows reducing accumula-
tion of errors (enables position resetting).

Looking for a solution which would keep the com-
plexity of the map under control and compensate for the
trajectory drift put on the agenda the issue of a spar-
se map management, which consists of not only point-
features. To manage the map efficiently it is wise not
to rely on the environment point-features only (natural

landmarks), but to account also for purposefully loca-
ted artificial simple landmarks (for example, hue-planar,
passive patterns). A particular design of such a landmark,2

aimed at providing efficient recognition results, was de-
scribed in (Bączyk et al., 2003). Similar solutions are used
in augmented reality systems. Such landmarks are intro-
duced there because of the critical importance of the pre-
cise collocation of coordinates of virtual/artificial objects
with the real-scene objects poses. In a SLAM system it is
of general interest to establish a pose of the free-flying
camera with respect to the current environment model,
which is built on-line during the camera travel. By au-
gmenting a SLAM system with the ability of structured
landmarks recognition some well known limitations of
the single camera as a bearing-only SLAM sensor can be
overcome.

In known visual SLAM systems it is rare to acco-
unt for map items other than natural point-wise image fe-
atures. Line segments were accounted for in the system
of Smith et al. (2006). There the goal was to improve
point-features recognition reliability (important while so-
lving the feature correspondence problem in the sequence
of scene images). From the viewpoint of filtration process
performance, such an extension was not really substantial,
as finally the extracted segment endings were again treated
simply as point-features.

Edgelet landmarks introduced in (Eade and Drum-
mond, 2009) were not a substantial modification as in the-
ir algorithm they were treated as point-features as well.

Higher level structures in visual SLAM were also
proposed in (Gee et al., 2008). Discovered lines and pla-
nes in space were fitted to points contained in the map, but
images were not directly used for this purpose. Higher le-
vel objects allow reducing the state vector dimension and
provide more meaning to the SLAM map as compared to
collections of points only. On the other hand, this proce-
dure is complex and there are a number of coefficients to
be set. The authors mention that their approach can lead to
estimates inconsistency and its ability to error reduction is
controversial.

In (Castle et al., 2007a ; 2007b), some known planar
patterns were used together with point-features. The pla-
nar pattern recognition sequence runs on the PC second
core as a separate thread at around 1.5 Hz rate. In the re-
cognition scheme the authors use SIFT descriptors and the
RANSAC method, which are too computationally expen-
sive for video frame-rate operation, and thus the insertion
of planar structures into the map is delayed. The authors
decompose homography (computed as the output of RAN-
SAC) between the planar structure and the current image
into camera calibration matrix, rotation and translation.

2 It is important to distinguish point-features from landmarks (as in
some papers they are called landmarks as well). By landmarks we me-
an here the structured patterns purposefully introduced to the explored
space.
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Extrinsic parameters are then determined using singular
value decomposition. Differently enough here we show
the advantages of embedding landmark measurement into
the filtration process at frame-rate frequency. Landmarks’
rectangular shape and unique code allows the use fast and
robust recognition and a pose evaluation method (Bączyk
et al., 2003).

Another drawback of the mentioned method (Castle
et al., 2007a; 2007b) is that the planar object was repre-
sented on the created map merely by three boundary po-
ints. It is not clear if the use of three boundary points
treated as distinct point-features in space can hold rigid
nature of a planar object during the filtration process. It
is not mentioned there how the comparison of prediction
and measurement is applied in the case of planar structure
recognition.

Here we propose to treat planar patterns as a new
class of environment objects and, as such, to put them on
the map. So the SLAM state vector containing a represen-
tation of two categories of features is maintained and in
the single system a measurement in the image space for
the first and in the 3D space for the second feature type is
performed.

The next drawback of the Castle approach is that the
covariance matrix (statistically characterising the uncerta-
inty of the evaluated planar object position) is not formally
obtained. Its diagonal elements were evaluated there only
in a trial-and-error experiment, by testing the influence of
their values on the convergence of the filtration process.

With our method, landmark position uncertainty with
respect to the camera reference frame is formally obtained
by propagating the uncertainty of image coordinates.

3. SLAM fundamentals

Assumptions. The following assumptions have been ma-
de at the beginning:

• The agent (a hand-held camera or mobile robot with
a fixed camera) is moving with three degrees of
freedom (planar motion case). Its references are x, y
coordinates and orientation angle θ on the plane.
However, the scheme presented in this paper can
be easily generalised to the case of six degrees of
freedom (free 3D camera motion).

• The only external sensor available in the system is a
single camera.

• The guidance of the camera is not known a priori
(free motion).

• Camera motion is smooth (continuous acceleration,
no jerks).

• Intrinsic camera parameters are known a priori (the
camera has been calibrated beforehand).
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Fig. 1. Cyclic tracking sequence using the EKF scheme in the
case of point-wise environment features put on the map.

• The map consists of point-wise, stationary natural
features fixed to the observation space and of freely
distributed rectangular, planar landmarks.

• The position of landmarks is not known a priori,
however, short edges of the landmark frame are kept
perpendicular to the motion plane.

• The raw measurement data of the SLAM system are
image-coordinates of the point-features and of the
landmark corners.

System goals. The SLAM system uses an Extended Kal-
man Filter (EKF), working sequentially (Fig. 1) on the
consecutive image frames. Its role is to track the observer
trajectory, consisting of a position, camera optical axis
orientation and its linear and angular velocity. Moreover
the EKF tracks fixed features, puts them on the map and
steadily refines their coordinates already on the map. The
EKF calculates on-line the covariance matrix of measure-
ments data to provide the uncertainty measure of tracked
variables and of stationary coordinates.

It is a typical situation that camera pose uncertainty
grows with the trajectory length; however, the uncertain-
ty of the stationary data (such as features and landmarks
coordinates) always decreases with the length of the obse-
rvation sequence (Dissanayake et al., 2001).

The EKF state-vector, which is critical data in the navi-
gation system, can be defined as follows:

x =
(
cGT θG ċGT θ̇G pGT

1 · · ·
pGT

n lGT
1 βG

1 · · · lGT
m βG

m

)T

. (1)
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Fig. 2. Geometrical relations in a global reference system between the camera and the point-wise feature (a) and the landmark (b);
landmark template (c).

It consists of the observer trajectory subvector, whose co-
ordinates are the observer position on the motion plane

cG =
(
xG

c yG
c

)T
, the orientation θG, the linear veloci-

ty subvector ċG =
(
ẋG

c ẏG
c

)T
and the angular velocity

θ̇G. The subsequent elements of the state vector are triples
of absolute Cartesian coordinates of n observed point-

features pG
i =

(
xG

pi
yG

pi
zG

pi

)T
, i = 1, . . . , n, fixed to the

environment. Next elements of the state vector are poses
of m landmarks also expressed in the global reference fra-
me: (

lGT
j βG

j

)T =
(
xG

lj yG
lj zG

lj θG + αC
j

)T
, (2)

j = 1, . . . , m. In turn, the position of the j-th land-
mark expressed in the camera coordinates is denoted as
lCj = (xC

lj
yC

lj
zC

lj
)T and its orientation as αC

j . Geometri-
cal relations are shown in the Fig. 2.

The state transition model is the following:

x̂(k + 1|k) = f(x̂(k|k),nx(k + 1))

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x̂G
c (k|k) +

(ˆ̇xG
c (k|k) + 1

2nẋ(k + 1)
)

� t

ŷG
c (k|k) +

(ˆ̇yG
c (k|k) + 1

2nẏ(k + 1)
)

� t

θ̂G(k|k) +
( ˆ̇
θG(k|k) + 1

2nθ̇(k + 1)
)

� t
ˆ̇xG

c (k|k) + nẋ(k + 1)
ˆ̇yG
c (k|k) + nẏ(k + 1)

ˆ̇
θG(k|k) + nθ̇(k + 1)
p̂G

1 (k|k)...
p̂G

n (k|k)
l̂G1 (k|k)
β̂G

1 (k|k)...
l̂Gm(k|k)
β̂G

m(k|k)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(3)
As velocity changes are not available from direct measu-
rements, a simplified constant-velocity model is used. The
model accounts for the random noise reflecting the velo-

city changes nx(k) =
(
nẋ(k) nẏ(k) nθ̇(k)

)T
. In the state

vector prediction step, a new camera position is calculated

and the integration of noise is preformed with the trapezo-
id averaging rule instead of the rectangle method used in
(Davison et al., 2007). That approach provides better co-
nvergence of the computations.

It is worth noticing that in (3) only a subvector of the
state-vector which represents the camera pose is modified.
Predicted coordinates of the point-features and landmarks
are left unmodified (as they are assumed to be stationa-
ry) and their estimates are modified only in the filtration
update step.

4. SLAM scheme for point-features

4.1. Main algorithm.
The system covariance matrix P is predicted according
to the following formula:

P(k + 1|k)= Jf (k)
[

P(k|k) 0
0 Pnx(k)

]
JT

f (k), (4)

where Jf (k) is the Jacobian matrix of the right side func-
tion (3) at the time k and Pnx(k) is the covariance matrix
of the noise nx(k) mentioned above.

Measurement prediction. Coordinates of point-features
put on the map are measured on images. Thus based on
the predicted state vector x̂(k +1|k), the expected image-
coordinates of features have to be evaluated. This is done
by the use of the following pin-hole camera model:

ĥi(k + 1|k) = hi

(
x̂(k + 1|k),npi(k + 1)

)

=

⎛
⎜⎜⎝

λu
x̂C

pi
(k+1|k)

ẑC
pi

(k+1|k) + uc + nupi
(k + 1)

λv
ŷC

pi
(k+1|k)

ẑC
pi

(k+1|k) + vc + nvpi
(k + 1)

⎞
⎟⎟⎠ ,

(5)
where λu, λv denote focal lengths for image u, v coordi-
nates expressed in pixels, uc, vc denote image-coordinates
of optical center, ĥi(k + 1|k) denotes the predicted image
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coordinates of the i-th map-point, and the variables

⎛
⎝

x̂C
pi

(k + 1|k)
ŷC

pi
(k + 1|k)

ẑC
pi

(k + 1|k)

⎞
⎠ = p̂C

i (k + 1|k) (6)

denote its coordinates calculated at the (k + 1)-th predic-
tion step, expressed in the camera reference frame (see
Fig. 2):

p̂C
i (k + 1|k) =C R̂G(k + 1|k)

×
(
p̂G

i (k + 1|k) − (x̂G
c (k + 1|k) ŷG

c (k + 1|k) 0
)T)

.

(7)

The rotation matrix CR̂G(k +1|k) can be calculated kno-
wing the angle θ̂G(k + 1|k) being the element of the pre-
dicted state x̂(k+1|k). The model (5) accounts for the fact
that readouts of image coordinates are corrupted by me-

asurement noise vector: npi(k) =
(
nupi

(k) nvpi
(k)
)T

.

The function hi

(
x̂(k + 1|k),npi(k + 1)

)
is defined

with the formulas (5)–(7) and it models the camera in the
case of i-th point-features being put on the map.

The innovation vector represents the difference betwe-
en the measured and predicted features coordinates in the
image domain:

v(k + 1) = h(k + 1) − ĥ(k + 1|k), (8)

where h(k+1) denotes the measurement result at the k+1
step and ĥ(k + 1|k) denotes a result calculated with the
state vector estimate predicted at the (k+1)-th step, based
on the data from the k-th step, according to (5).

The innovation vector covariance matrix represents
measurement and prediction uncertainty. It is obtained as
a combination of the state-vector uncertainty P(k + 1|k)
and the measurement uncertainty Pnp(k + 1):

S(k + 1)

= Jh(k + 1)
[ P(k + 1|k) 0

0 Pnp(k + 1)

]
JT

h (k + 1),

(9)
where Jh(k + 1) is the Jacobian matrix consisting of par-
tial derivatives of the functions hi (5) at the (k + 1)-th
step.

At each step, the measurement vector h(k + 1) can
vary its dimension as it is clear that at the current observa-
tion pose only some subsets of map elements are visible,
while some of them can be undetected. Thus, at each sequ-
ential filtration step some rows from the vector ĥ(k+1|k)
in (8) and the Jacobian matrix Jh(k +1) have to be remo-
ved, namely, those having no corespondents in the measu-
rements vector h(k + 1).

EKF filtering scheme. In the general filtering scheme, the
update for the state vector and its covariance matrix is de-
fined with the following formulas:

x̂(k + 1|k + 1)
= x̂(k + 1|k) + W(k + 1) v(k + 1),

(10)

P(k + 1|k + 1)

= P(k + 1|k) − W(k + 1) S(k + 1)WT (k + 1),
(11)

while the weighting matrix W(k + 1), appearing in (10)
and (11), is established from

W(k + 1)

= P(k + 1|k)
∂h
(
x̂(k + 1|k),0

)
∂x̂

T

S−1(k + 1).
(12)

4.2. Point-feature initialization method. The proce-
dure aims at calculating a rough position estimate of
the new point-feature which appears on the image. Fur-
ther, making use of the empirical knowledge on the si-
ze of the observed space, one can determine the proba-
bility distribution of the spatial position of the feature,
which has been detected (as a new one) in the current
image. A similar approach was used in (Gee and Mayol-
Cuevas, 2006), but a detailed explanation was missing.
A much more complex initialization method discussed in
(Civera et al., 2008) contrasts with the one presented be-
low.

A point is put on the map with its uncertainty me-
asure instantly, at the same step at which the point-feature
is selected from the set of points detected in the current
viewfield. Assuming that adding a point-feature to the
map was undertaken at the instant k, just after the update
stage (10), (11), the new, current system state vector has
the following value:

x̂new(k|k)
= f2

(
x̂(k|k), unew(k), vnew(k)

)

=

(
x̂(k|k)

f1

(
ĉG(k|k), θ̂G(k|k), unew(k), vnew(k),0, 0

)
)

,

(13)
where f1 represents the inverse camera model. Thus it
determines spatial coordinates of such a newly emerging
point-feature:

f1

(
ĉG(k|k), θ̂G(k|k), unew(k), vnew(k),npnew , ndst

)

=
(
x̂G

c (k|k) ŷG
c (k|k) 0

)T
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Fig. 3. Geometrical relations used for the evaluation of land-
mark rotation.

+GR̂C(k|k)

⎛
⎜⎜⎜⎜⎜⎜⎝

(
unew(k)−uc+nupnew (k)

) (
dstinit+ndst(k)

)
λu

(
vnew(k)−vc+nvpnew (k)

) (
dstinit+ndst(k)

)
λv

dstinit + ndst(k)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(14)
Similarly to (5), this model also accounts for the

image measurement noise denoted here as npnew =(
nupnew

nvpnew

)T
. The rotation matrix GR̂C(k|k) is cal-

culated with θ̂G(k|k) picked from the state vector after the
update step. The constant dstinit is empirical. It represents
the most likely value of the z-coordinate (in the ZC direc-
tion) of the point-feature. The uncertainty of that coordi-
nate is represented by some random variable ndst(k). The
system covariance matrix augmented with the new points
position uncertainty is calculated from

Pnew(k|k)

= Jf2(k)

⎡
⎣

P(k|k) 0 0
0 Pnpnew

(k) 0
0 0 σ2

ndst
(k)

⎤
⎦JT

f2
(k),

(15)
where σndst

is a standard deviation of ndst which has to
be evaluated empirically.

5. Introducing landmarks to SLAM

5.1. Determining the landmark pose. As to the land-
marks, the measurement result is the pose of the landmark
in the global reference frame. This pose is obtained from
the image coordinates of the landmark corners. The proces
of landmark pose determination is described below.

The landmark rotation angle αC (ref. to Fig. 2) with
respect to the camera reference frame can be calculated

from the following formula:

αC = f4(u1, v1, u2, v2, u3, v3, u4, v4)

= atan
(

λu

f3(u1, v1, u2, v2, u3, v3, u4, v4)

)

= atan
(

λu

uvp

)
,

(16)

where the value of the function f3 equals the image co-
ordinate uvp of the vanishing point. It is obtained by the
crossing of lines fitted to the horizontal landmark sides, as
shown in Fig. 3. The arguments of f3 are image coordina-
tes of the landmark corners u1 v1 . . . u4 v4.

The landmark position lC =
(
xC

l yC
l zC

l

)T
can be cal-

culated by using the camera mathematical model:
⎡
⎢⎢⎣

λu 0 0 0
0 λv 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

( r1 ) xC
l

( r2 ) yC
l

( r3 ) zC
l

( 0 0 0 ) 1

⎤
⎥⎥⎦

⎛
⎜⎜⎝

xL
e

yL
e

zL
e

1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

zC
e ue

zC
e ve

zC
e

1

⎞
⎟⎟⎠ , where

⎡
⎣

( r1 )
( r2 )
( r3 )

⎤
⎦ = CRL,

(19)
e = 1, 2, 3, 4 stands for the appropriate edge index of the
rectangular landmark. To simplify the formulas, it has be-
en assumed that the origin of the image coordinate fra-
me is in the optical centre of the image (compare (5) and
(14) by taking uc = vc = 0). While having the value of
αC (16), the elements of the rotation matrix CRL can
be calculated. One can shift all expressions to one side of
Eqn. (19) and denote by due and dve the obtained diffe-
rences:

due = ue

(
r3

(
xL

e yL
e zL

e

)T + zC
l

)

− λu

(
r1

(
xL

e yL
e zL

e

)T + xC
l

)
,

dve = ve

(
r3

(
xL

e yL
e zL

e

)T + zC
l

)

− λv

(
r2

(
xL

e yL
e zL

e

)T + yC
l

)
.

(20)

Having the values of due and dve one can determine a

translation vector of the landmark lC =
(
xC

l yC
l zC

l

)T
by

minimizing the sum of the squares of due and dve , denoted
by f5:

f5(u1, v1, . . . , u4, v4, x
C
l , yC

l , zC
l )

= f5(X,Θ) = du1
2 + dv1

2 + · · · + du4
2 + dv4

2,
(21)

where
X = (u1 v1 u2 v2 u3 v3 u4 v4)

and
Θ = (xC

l yC
l zC

l ).
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f7

(
ĉG(k + 1|k), θ̂G(k + 1|k), l̂G(k + 1|k), β̂G(k + 1|k), lC(k + 1), αC(k + 1)

)
= f7(k + 1)

=

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎝

xC
l (k + 1)

yC
l (k + 1)

zC
l (k + 1)

⎞
⎠− CR̂G(k + 1|k)

⎛
⎝
⎛
⎝

x̂G
l (k + 1|k)

ŷG
l (k + 1|k)

ẑG
l (k + 1|k)

⎞
⎠−

⎛
⎝

x̂G
c (k + 1|k)

ŷG
c (k + 1|k)

0

⎞
⎠
⎞
⎠

arc sin

(
sin
(

1
2

(
αC(k + 1) − (β̂G(k + 1|k) − θ̂G(k + 1|k)

)))
)

⎞
⎟⎟⎟⎟⎟⎠

,
(17)

S(k + 1) =
[

∂f7(k + 1)
∂x̂

∂f7(k + 1)
∂lC

∂f7(k + 1)
∂αC

]⎡
⎣ P(k + 1|k) 0

0 P(lC αC)(k + 1)

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂f7(k + 1)
∂x̂

T

∂f7(k + 1)
∂lC

T

∂f7(k + 1)
∂αC

T

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(18)

At the end, the pose vector of the landmark in the
global coordinates frame is established with the function
f6:

(
lG

βG

)
=

⎛
⎜⎜⎝

xG
l

yG
l

zG
l

βG

⎞
⎟⎟⎠ = f6(xG

c , yG
c , θG, xC

l , yC
l , zC

l , αC)

=

⎛
⎜⎜⎝

⎛
⎝

xG
c

yG
c

0

⎞
⎠+ GRC

⎛
⎝

xC
l

yC
l

zC
l

⎞
⎠

θG + αC

⎞
⎟⎟⎠ .

(22)

5.2. Uncertainty of the evaluated landmark po-
se. The rotation angle αC and the translation vec-

tor lC =
(
xC

l yC
l zC

l

)T
of the landmark with re-

spect to the camera coordinates frame are both calcu-
lated based on the uncertainty of the same data set
(u1 v1 u2 v2 u3 v3 u4 v4), which are image coordinates
of the four landmark corners. Thus, there is a correlation
between angle and position errors. A complete covariance
matrix can be established in a single step:

P(lC αC) =

⎡
⎢⎣

∂g(X,Θ)
∂Θ

−1
∂g(X,Θ)

∂X

Jf4

⎤
⎥⎦

· Pnl
∗
[
∂g(X,Θ)

∂X

T ∂g(X,Θ)
∂Θ

−1

JT
f4

]
,

(23)
where

g(X,Θ) =
∂f5(X,Θ)

∂Θ

T

,

and the matrix Pnl
stands for uncertainty measure of the

four corners’ image coordinates (it is an 8 × 8 matrix in
the case of a single landmark). As the translation vector
lC is not evaluated explicitly but as a result of iterative
computations, translational uncertainty in (23) is calcula-
ted according to (Haralick, 2000).

5.3. Landmark innovation vector and its uncertainty.
In the case of a landmark it is wise to compare its predic-
ted Cartesian coordinates and rotation angle with the cor-
responding measurement. The most frequently encounte-
red EKF implementations calculate the innovation vector
as a difference of prediction and measurement results. For
point-features put on the map, such a definition of the in-
novation vector is used (8). For landmarks, the innovation
vector is calculated with (17) as the vector function f7.
Its covariance (18) is treated as the innovation covarian-
ce. Thus, once j landmarks are visible in the image, the
matrix S is 4j × 4j.

5.4. Filtering. The updating of the state-vector cova-
riance matrix P is performed according to (11). In the ca-
se of landmarks, the EKF weight matrix W is calculated
in the following way:

W(k+1) = P(k+1|k)
∂f7(k + 1)

∂x̂

T

S−1(k+1). (24)

The updating of the state-vector estimate is defined with
(25):

x̂(k+1|k+1) = x̂(k+1|k)−W(k+1) f7(k+1). (25)

Compared with (10), in this equation the sum has be-
en replaced by the difference. This can be explained in the
following way. The estimate x̂ enhancement based on the
measurement x can be expressed as

x̂new = x̂ − k
∂f(x, x̂)

∂x̂
f(x, x̂), (26)

where f(x, x̂) is an available monotonous comparation
function. Such a function attains zero once x and x̂ are
equal. The factor k is some positive coefficient, determi-
ning the strength of the x̂ estimate enhancement. The for-
mula (26) is similar to (25). The definiteness of the we-
ight matrix W depends on the definiteness of the gradient
∂f7(k + 1)/∂x̂ since the matrices P and S are both posi-
tive definite.
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5.5. Adding a landmark to the map. In much the sa-
me way as in the case of point-features, adding a landmark
to the map is performed after the update stage ((25), (11)).
The function adding the landmark to the map is denoted
by f8. If the operation takes place at the k-th step, it is
defined by the following formula:

x̂new(k|k) = f8

(
x̂(k|k), xC

l (k), yC
l (k), zC

l (k), αC(k)
)

=

⎛
⎝

x̂(k|k)
lG(k)
βG(k)

⎞
⎠

=
(

x̂(k|k)
f6(ĉG, θ̂G, xC

l , yC
l , zC

l , αC)

)
,

(27)

where f6 is defined in (22). A new covariance matrix of
the system can be defined as in (28):

Pnew(k|k)

= Jf8(k)
[

P(k|k) 0
0 P(lC αC)(k)

]
JT

f8
(k). (28)

The complete data processing scheme for landmarks
and for point-features can be easily worked out based on
the formulas presented so far.

6. Simulation experiment

The goal of the computational experiments is to evaluate
the impact that the presence of landmarks has on the co-
nvergence of SLAM system operation. To this end, a si-
mulator has been designed having the ability to generate
runs for a number of variables characterising SLAM sys-
tem performance. The simulator also generates a graphi-
cal output visualising the system state at any selected time
instant.

6.1. Simulation tools. A typical in-door test environ-
ment has been used. The dimension of the building inte-
rior is 6× 25 m. The orthographic projections of the envi-
ronment are presented in Figs. 4 and 7. The ground truth
camera pose and its estimate are visualised on those fi-
gures as pairs of line-segments forming V shapes, restric-
ting their view-fields. The real trajectory is marked with
the thick, solid line. The calculated camera trajectory is
marked with the thin, dotted line. It is assumed that the
navigation space is delimited with vertical walls on which
point-features have been distributed randomly. They are
marked in Figs. 4 and 7 with grey circles. The distribu-
tion density of point-features equals one feature per 0.5 m
of the wall running length on average. The height of such
features is random in the range (0 ÷ 1.4) m. The camera
moves horizontally at a 0.7 m height.

With a single camera only in an unknown environ-
ment, the initialization of the SLAM system is not possi-
ble. Thus, it is assumed that at the beginning of the mis-
sion some four point-features with precisely known coor-
dinates are visible (they are marked as circles with gray
filling).

Except for point-features, some artificial landmarks
were placed in the environment. In the experiment under
consideration, a single landmark was fixed to the right-
most wall. In Fig. 7 it is marked as a thick black spot. It
is assumed that the system is able to extract point-features
from images acquired during the mission, as well as to
recognise an encountered landmark. In Figs. 4 and 7, the
main axes of the uncertainty ellipsoids of the objects loca-
tion are represented with black line segments.

In Fig. 5, working step numbers of the system are
marked along the real trajectory of the camera. The trial
trajectory is the following: the camera moves to the ri-
ght along the wall up to the distance of roughly 20 m and
then (without turning) it is withdrawn approximately to
the starting position.

In Figs. 6 and 8, some variables of the SLAM sys-
tem are visualised as a function of the time of navigation.
There are four groups of variables:

(a) the first one, representing the x-coordinates of the re-
al position, real velocity vector of the camera and the-
ir estimates (which are visualized indirectly as trajec-
tory envelopes ±3σ wide3),

(b) the second one, comprising the y-coordinates of the
position and velocity vector and their uncertainty
bands,

(c) the third one, consisting of the real rotation angle and
angular velocity of the camera as well as of their es-
timated values returned by SLAM (marked also as
±3σ band),

(d) the fourth one, showing some additional parameters
characterising the operation of the system, such as
the number of point-features recognised from the
current image, as well as the number of false nega-
tives4, time instants at which a new point-feature has
been put on the map5, the number of point-features
kept in the map and the time of the maintaince of
the earliest point-feature in the set of currently vi-
sible point-features.Moreover, in Fig. 8, the number

3It is worth noting that position uncertainty in the experiment under
study is relatively small. In the case of the y-coordinate uncertainty the
band is as narrow as it is invisible on the graph—it is covered by a thick
run of a true y-coordinate.

4The number of unrecognised point-features in Figs. 6 and 8 is shown
as a negative value of the Y-axis.

5The system is able to put a single point-feature on the map within
a single iteration step. During on-line operation 25 iterations per second
are performed to keep up with the TV frame frequency standard.
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Fig. 4. Orthographic projections of the system state at the 920-th (a) and the 2000-th (b) simulation step (without landmarks). The
navigation space is delimited with vertical walls (broken lines). Point-features randomly distributed on walls are marked with
grey circles. The ground truth camera pose and its estimate are visualised as pairs of line-segments forming V shapes, restricting
their view-fields. The real and calculated camera trajectories are marked with a thick solid line and a dotted line. The main axes
of the objects’ location uncertainty ellipsoids are marked with black line-segments.
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Fig. 5. Real camera trajectory with marked filtration steps numbers.

of recognised landmarks at a given time instant and
the number of landmarks already put on the map is
shown.

Some of the values have been rescalled to make
the graph more readable. Scaling factors are described in
Figs. 6 and 8 with comments accompanying the appro-
priate lines.

Having such a characteristic of SLAM behaviour,
one can draw a number of conclusions. For example,
while coming back and accounting for features that
have been put on the map earlier, the live-span of
the oldest extracted feature can be a good measure
of the system ability to recognise the locations al-
ready visited before. A similar role can be played
by a number of recognised/unrecognised point-features

as well as the need of new point-feature initialisation.6

The advantage of the simulation method is also that it
can be used to judge the ability of trajectory reconstruc-
tion while comparing ground truth data with the estimated
ones. This is frequently not possible with real systems if
there is no real position of the camera data available. In
particular, the obtained results demonstrate the discrepan-
cies between the real trajectory of the camera and the un-
certainty bounds around the SLAM-estimated trajectory.

The next two subsections present simulation results
for two cases: one with only natural point-features ac-
counted for and one with the landmark introduced to the
environment. The simulations are carried out according to
the same scenario, i.e., the trial trajectory to pass is iden-
tical, the distribution of point-features is the same and the
same noise disturbs the system in both cases.

6 The SLAM system attempts to add a new point-feature to the map
whenever less than eight point-features have been recognised on the ima-
ge from those already on the map.
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Fig. 6. Runs of real and estimated variables of the SLAM system in the absence of landmarks: x-coordinates (a) and y-coordinates (b)
of the camera position/velocity vector; rotation angle and angular velocity of the camera (c). Estimates are visualized indirectly
as trajectory envelopes ±3σ. Additional parameters characterising the operation of the system (d).

6.2. Testing the SLAM system without landmarks.
In Fig. 4(a) the system state at the 920-th simulation step is
displayed, namely, the distribution of point-features put on
the map so far and the camera pose. Two camera models
are visible: the right-most one represents the real camera
and the second one (closer to the starting point) represents
the estimated pose of the camera. Dotted lines marked out-
side the nominal field of view of the estimated camera
represent the view-field enlargement caused by the ±3σ
orientation uncertainty of the camera. At the 920-th si-
mulation step, only a single point-feature appeared on the
image, and thus the camera orientation uncertainty quic-
kly grows. In turn, position uncertainty ellipsoids for the
camera and for point-features are symbolically represen-
ted by their main axes representing the ±3σ range. In the
case of the camera, thick lines are visible in the apex of a

V shape. Most frequently only a single axis is visible as
the second one is too short.

In Fig. 4(b) the system state at the 2000-th simulation
step is displayed (being a final step). From Fig. 6 it can be
noticed that the final estimate of the camera pose equals
the real pose and the earliest point-features put on the map
have been recognized correctly. It is worth noting that, as a
consequence of recognising the old point-features already
present on the map, the system is able to correct the po-
sition estimates of all point-features put on the map. Thus
the resulting map at this time step is better than the one
available in the middle of the mission.

6.3. Testing the SLAM system in an environment with
landmarks. In Fig. 7(a) the SLAM system state at the
920-th step is visualized, while the system is able to re-
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Fig. 7. Orthographic projections of the system state at the 920-th (a) and the 2000-th (b) simulation step (with a landmark). The
navigation space is delimited with vertical walls (broken lines). A single landmark fixed to the rightmost wall is marked as
a thick black spot. Point-features randomly distributed on walls are marked with grey circles. The ground truth camera pose
and its estimate are visualised as pairs of line-segments forming V shapes, restricting their view-fields. The real and calculated
camera trajectories are marked with a thick solid line and a dotted line. The main axes of the objects’ location uncertainty
ellipsoids are marked with black line-segments.

cognize the landmark and to put it on the map. The obta-
ined map is much better than the one shown in Fig. 4(a).
The estimated camera position and the estimated point-
features coordinates are closer here to the ground truth
data than in the previous simulation experiment. This is
due to the appearance of the landmark within the camera
view-field, which allows the more efficient estimation of
camera velocity. Due to the visibility of the landmark, the
navigation system implicitly receives the information on
the underestimation of camera velocity (which was based
on point-features data only so far). It is interpreted in the
system as the calculated position of the camera is more
advanced than the value of the position estimate available
before the recognition of the landmark. As a consequen-
ce, the camera position as well as the position of all point-
features already on the map are corrected. Such system
operation is visible between 800-th and 900-th simulation
steps in Fig. 8. Especially the correction of the camera x-
coordinate estimate is remarkable. Surprisingly enough,
the recognition of the landmark results in a camera po-
sition estimate uncertainty decrease despite the growing
distance of the camera from the starting point of the tra-
jectory. However, at the same time period, while the land-
mark was absent (Fig. 6), an excessive rise in the camera
orientation and y-coordinate uncertainty were observed.

The next remark is that in Fig. 6 between the 1600-th
and 1800-th simulation steps one can observe a number of
false negatives, while in the case with landmarks (Fig. 8)

during the same time period the system is able to recogni-
se almost all the points that are in the field of view and
which were previously placed on the map. Such an impro-
vement is a consequence of better trajectory reconstruc-
tion, especially for the x-coordinate of the camera.

In Fig. 7(b) the system state is visualized at the 2000-
th simulation step together with the real and estimated ca-
mera motion trajectory. It is evident that in this case, while
the system is able to recognize the landmark and to put it
on the map, the system-estimated trajectory is more close
to the real one. Also the resulting map is of better quality
than the one presented in Fig. 4(b), namely, some uncerta-
inty elipsoids have the main axes shorter.

7. Conclusions

The reported experiments demonstrate the advantages
of embedding landmark measurement into the filtration
process at frame-rate frequency. By implementing the
landmark-based navigation in the visual SLAM system
one is able to get rid of the camera position estimate drift.
Here we have aimed at treating planar patterns as a new
class of environment objects and, as such, to include them
in the map. So the SLAM state vector containing a repre-
sentation of two categories of features is maintained and
within the same system measurements in the image space
for the first and in 3D space for the second feature type
are performed. Also a scheme of image coordinates un-
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0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

3
0

8

20

−1

0

1

−10

0

10

−10

0

10

x-coordinate
x-coordinate
uncertainty

10× x-coordinate
of the velocity vector

10× x-coordinate uncertainty
of the velocity vector estimate

y-coordinate

10× y-coordinate
of the velocity vector

10× y-coordinate uncertainty
of the velocity vector estimate

camera
rotation angle

uncertainty of the
rotation angle estimate

angular velocity

uncertainty of the
angular velocity estimate

a new point-feature
initialization

the number of
recognized

point-features

0.01× the age of the
oldest recognised point-feature

the number of landmarks
in the map

0.1× the number of
point-features in the map

the number of
recognized
landmarks

the number of
unrecognized
point-features

(a)

(b)

(c)

(d)

Fig. 8. Runs of real and estimated variables of the SLAM system in the case with a landmark: x-coordinates (a) and y-coordinates (b)
of the camera position/velocity vector, rotation angle and angular velocity of the camera (c). Estimates are visualized indirectly
as trajectory envelopes ±3σ. Additional parameters characterising the operation of the system (d).

certainty propagation while calculating landmark position
uncertainty with respect to the camera reference frame has
been proposed.

The only inconvenience of the method is that one has
to place the landmarks in the environment before the mis-
sion. However, a possible solution is to provide a naviga-
ting robot with facility for distributing the landmarks.

One of important future research directions is to in-
vestigate a map management scheme in which all land-
marks will be kept in the map as navigation beacons but
old point-features will be removed in order to constrain
the excessive expansion of the state-vector size. The map
including more complex navigational objects (landmarks)
can be sparser, being at the same time a more precise re-
ference than the map generated with the SLAM system
accounting for point-features only.
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