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Abstract— Simultaneous Localization and Mapping (SLAM)
and Visual SLAM (V-SLAM) in particular have been an active
area of research lately. In V-SLAM the main focus is most often
laid on the localization part of the problem allowing for a drift
free motion estimate. To this end, a sparse set of landmarks
is tracked and their position is estimated. However, this set of
landmarks (rendering the map) is often too sparse for tasks in
autonomous driving such as navigation, path planning, obstacle
avoidance etc. Some methods keep the raw measurements for
past robot poses to address the sparsity problem often resulting
in a pose only SLAM akin to laser scanner SLAM. For the
stereo case, this is however impractical due to the high noise
of stereo reconstructed point clouds.
In this paper we propose a dense stereo V-SLAM algorithm that
estimates a dense 3D map representation which is more accurate
than raw stereo measurements. Thereto, we run a sparse V-
SLAM system, take the resulting pose estimates to compute a
locally dense representation from dense stereo correspondences.
This dense representation is expressed in local coordinate
systems which are tracked as part of the SLAM estimate. This
allows the dense part to be continuously updated. Our system
is driven by visual odometry priors to achieve high robustness
when tracking landmarks. Moreover, the sparse part of the
SLAM system uses recently published sub mapping techniques
to achieve constant runtime complexity most of the time. The
improved accuracy over raw stereo measurements is shown in a
Monte Carlo simulation. Finally, we demonstrate the feasibility
of our method by presenting outdoor experiments of a car like
robot.

I. INTRODUCTION

A robot computing a map of a previously unknown en-
vironment while localizing itself within that map is referred
to as Simultaneous Localization and Mapping (SLAM) [31],
[11], [5]. Recently, cameras have been used as the sole sensor
yielding visual SLAM (V-SLAM) [19], [7], [10].
The map is usually represented as a set of landmarks residing
in 3D space. The camera traverses its environment yielding
a trajectory. From each of the camera poses, a portion of the
landmarks is observed. From these measurements, the most
likely landmark positions and camera poses are estimated.
Common methods designed to solve the estimation problem
in real time rely on either Extended Kalman Filters (EKFs)
[10], [25], [26], [9] or some variant of Bundle Adjustment
(BA) [1], [29], [27], [30], [18]. However, both of these
classes of methods are computationally very demanding.
Therefore one usually seeks to limit the number of landmarks
visible from each pose to remain computationally feasible. If
for instance one included every pixel of every camera frame
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Fig. 1: The top shows a dense map computed by our
algorithm. The bottom illustrates a map consisting of a sparse
set of landmarks common in visual SLAM. The sparse map,
however, is often insufficient for autonomous vehicles.

as a single landmark one would need to estimate the position
of millions of landmarks after only a few time steps, thus
burying any hopes for real time operability.
For tasks common in autonomous driving such as path
planning, navigation, collision avoidance etc. these sparse
map representations are often insufficient. Instead a dense
map is sought. One way to address this problem is storing
raw sensor measurements for a given number of camera
poses. This is also common practice in laser scanner based
SLAM systems [6]. However, the raw measurements are very
noisy in the stereo camera case, making tasks in autonomous
driving quite difficult.
We herein present a stereo V-SLAM system which computes

dense maps that are more accurate than simply reconstructed
disparity images. Our system is composed of two main parts.
First a sparse V-SLAM system based on an EKF is run.
The state vector of the EKF contains all landmark positions,
the current camera pose and a, yet to specify, subset of
past camera poses. To tackle the computational complexity
problem inherent to EKF SLAM we utilize the sub mapping
method of [25], [26] dubbed conditionally independent sub
maps which has constant run time complexity most of the
time. After incorporating new observations and updating
the EKF state vector a new camera pose is obtained. We
assume the transition from the immediately foregoing pose



to the current one to be of sufficiently high accuracy. This
assumption has also been made in [22] for a monocular setup.
During the second part, we compute a dense point cloud from
stereo. This dense point cloud is a local map. It is derived by
filtering disparity values for individual pixels of the image.
One Kalman Filter is used for every pixel taking the local ego
displacement for granted. The dense reconstruction of these
disparities is expressed in local coordinate systems. Each one
of the past camera poses which are tracked during the sparse
V-SLAM spans one of these local coordinate systems. Put
differently, each past camera pose has a dense local map
attached. During loop closure the past camera poses are
updated and drift is resolved. Thereby the global position
of the local dense maps are also updated. The separation
of the sparse map (part of the SLAM estimate) from the
dense map (expressed in local coordinates, defined by the
SLAM state vector) is the main contribution of our work.
Figure 1 illustrates the difference between a sparse map
comprised of a few hundred landmarks (bottom) and a dense
map consisting of several magnitudes more points (top). The
dense reconstruction shows parked cars on the side of the
street. Shadows of trees can be seen on the road surface.
The paper is organized as follows. In Section II we review
related work. In section III we present our method in more
detail. The sparse SLAM algorithm is introduced in section
III-A and the dense mapping is presented in section III-
B. Experimental results are given in section IV. Finally a
conclusion is drawn and ideas for future research are given
in section V.

II. RELATED WORK

Agrawal and Konolige [1] compute a skeleton of poses.
Poses are connected by non-linear constraints obtained from
feature matches between consecutive frames. The skeleton
graph is then solved by BA. The map of their SLAM system
is obtained by reconstructing the stereo frames at the nodes
of the pose graph. Their work differs from our method in
the underlying estimator (BA vs. EKF) and in the fact that
their dense part of the map is not locally smoothed.
The work closest to ours is probably the work of Nieto and
co-workers [24], [23]. A hybrid metric mapping method that
embeds local coordinate systems to represent the dense map
in is presented. The local coordinate systems are spanned by
three or more landmarks of the state vector. The dense maps
consist of 2D occupancy grids amongst others. The dense
parts are also locally estimated like in our method. However,
their maps are only two dimensional. Moreover, care must
be taken to correctly choose appropriate landmarks to span
each local coordinate system. Moreover, the scalability
problem of SLAM is not explicitly addressed.
The system developed by Franke and co-workers [12], [4]
also aims at increasing accuracy of stereo reconstructions
by integrating disparity. However, their method relies on
a known ego motion from external sensors. Moreover, the
method is only used locally and not embedded into a SLAM
framework.

III. ALGORITHM OVERVIEW

Figure 2 schematically shows the traversal of a robot. The
triangles denote robot poses, the stars denote a sparse set
of landmarks. Solid triangles denote past poses which are
kept during estimation. The dense part is modeled by dense
point clouds in our algorithm. However, in Figure 2 it is
denoted by the “house” icons for clarity. Each past pose has
a portion of the dense map attached. The associated dense
parts are entirely expressed in coordinate systems defined by
preceding poses.
Our algorithm consists of two phases which are both per-
formed for every time step. During the first phase the set
of landmarks {m1, . . . ,mM} ⊂ R3, some of the past poses
{Xt1 , Xt2 , . . . , XtN } and the current pose XT are stacked
into a vector which is sequentially estimated by an EKF
from stereo images. The poses are two spatial coordinates
and orientation Xt = (xt, yt, ψt)

T . Implementation details
are given further below. After each EKF update one obtains
a new current pose XT . The transition from the immediately
foregoing pose to the current one (XT−1 → XT ) is used
to compute the dense representation of the environment
during the second phase. We integrate the disparity values
by individual Kalman Filters for every pixel. A thorough
description is given in section III-B. The thus computed 3D
position of the pixels are expressed with respect to one of
the past poses of the EKF state vector. In Figure 2 the dark
gray “houses” (corresponding to a portion of the dense map)
are expressed in the coordinate system spanned by the pose
Xt1 whereas the white “houses” are in the coordinate system
of Xt2 etc. Therefore, each of the past poses has a small
portion of the dense map attached to it. After loop closing
a trajectory these past poses will be updated and hence will
affect the global position of the dense embeddings.
The two phases are detailed below in sections III-A and III-
B.
In the sequel we will assume that dense stereo correspon-
dences are at our disposal. Dense disparity can nowadays
already be computed by FPGAs and efficient matching
algorithms are emerging (e.g. [13]).

A. Sparse EKF SLAM

The details of basic EKF SLAM will not be reviewed here
for it being standard nowadays. For an introduction into the
subject the reader is referred to [31]. It is rather focused on
the prediction of the filter driven by visual odometry priors
and the sub mapping techniques which is used to reduce
computational complexity.
First a set of point-point matches between the previous and
current left image is computed. These matches are computed
by a computationally lean algorithm. In our case we have
matched sets of maxima in the sobel filtered images (after
non-maxima suppression). These putative matches are used
to compute a first guess of the ego displacement. To this end
the method of [16] is applied. The rotation matrix R and
translation vector t is computed by non linear least squares.
However, first only the rotation R is estimated from points



Fig. 2: Triangles denote robot poses. Solid triangles are a subset of past poses which are kept as part of the sparse EKF
SLAM state. Stars denote landmarks. The dense map is schematically depicted by the house icons. The dense map is
partitioned into small fragments. Each such fragment is expressed in local coordinates defined by the associated pose. The
black houses are expressed with respect to Xt1 , the white houses with respect to Xt2 etc. XT is the current pose.

far away from the sensor by solving

R̂ = arg min
R

∑
i

||zi,t − proj(R · pi,t−1)||2 (1)

where zi,t is the measurement (pixel position and disparity)
of the ith point match in the current frame and pi,t−1 is
the reconstructed matched point of the previous time step.
The stereo camera projection function is denoted by proj(·).
Thereafter the translation t is recovered while treating the
rotation R as known. Again, a non-linear least squares
problem

t̂ = arg min
t

∑
i

∣∣∣∣∣∣zi,t − proj(R̂ · pi,t−1 + t)
∣∣∣∣∣∣2 (2)

is solved for nearby point matches. Both steps are repeated
in a RANSAC scheme. The RANSAC scheme runs very
fast because only two matches are needed to generate a
hypothesis for R and only one is required to compute a
translation hypothesis t which is why we have chosen this
method. Computing visual odometry priors for SLAM has
been proposed in [2], [32].
This visual odometry is used to predict the position of the
landmarks in the current left image. Landmarks are tracked
by a KLT tracker [20]. If the KLT tracker yields a position
that deviates more than a threshold from its predicted po-
sition this point-to-landmark association is invalidated. The
filter state is also predicted from the visual odometry priors.
At first glance it may seem cumbersome to first compute
putative matches while thereafter actively searching for the
landmarks (KLT). We find that investing this extra time
is beneficial. Easily computable salient points yield unsta-
ble tracks whereas block matching search type methods
are computationally quite demanding. Well initialized KLT
features yield accurate and long lasting tracks. Also it is
easily possible to compute a much higher number of putative
matches than number of landmarks thus improving visual

odometry. New landmarks are initialized such that landmarks
are equally distributed over the entire image. Harris corners
[14] have been used for landmark candidates.
To counteract the poor scalability of EKF SLAM algorithms
we use conditionally independent sub maps as proposed by
Piniés et al. in [25], [26]. The map is partitioned into local
sub maps each containing its own state vector. The size of
the state vector of each sub map is bounded thus achieving
constant runtime complexity. At any time, a global update
can be performed by backpropagating current observations
down the sub map chain. More specifically two consecutive
sub maps A and B are modeled by two Gaussians

p (XA,XC |za) = N
([
X̂A,a

X̂C,a

] ∣∣∣∣[ PA,a PAC,a

PCA,a PC,a

])
p (XC ,XB |za, zb) = N

([
X̂C,ab

X̂B,ab

] ∣∣∣∣[ PC,ab PCB,ab

PBC,ab PB,ab

])

where capital letters indicate map membership and lowercase
letters indicate the observations which have been used to
estimate the states, that is za are all observations seen from
poses of sub map A and zb are measurements from sub map
B. C denotes a common part of the two sub maps. XC can
be interpreted as the overlap between the two maps. A back
propagation yields an estimate of the entire map modeled by

p (XA,XC ,XB |za, zb) = (3)

N

X̂A,ab

X̂C,ab

X̂B,ab

 ∣∣∣∣∣∣
 PA,ab PAC,ab PAB,ab

PCA,ab PC,ab PCB,ab

PBA,ab PBC,ab PB,ab


where all observations (za, zb) have been considered. This
back propagating update step is accomplished by the follow-



ing equations

K = PAC,aP
−1
C,a (4)

PAC,ab = KPC,ab (5)
PA,ab = PA,a +K(PCA,ab − PCA,a) (6)

X̂A,ab = X̂A,a +K(X̂C,ab − X̂C,a). (7)

After backpropagation, the global map (equation 3) is an
exact solution to the non-submapped EKF SLAM. No
approximations are introduced by using the sub mapping
technique. Moreover, the backpropagation is linear in the
number of sub maps and can be launched rarely yielding an
EKF SLAM algorithm which is constant most of the time.
For a detailed derivation of this method see [25], [26].

B. Dense Local Maps
It is a well known phenomena that stereo reconstructions

suffer from a high noise level in depth direction. This
is caused by the uncertain disparity estimate from which
depth is inferred. For an investigation of this phenomena
see [28]. Therefore we filter disparities by iconic Kalman
filters operating on each pixel of the image. The state of
the filter is the disparity. At this point we assume the ego
motion from pose XT−1 to XT to be known and sufficiently
exact. The filter states are predicted by reconstructing the
previous state (from pixel position and current disparity
state), compensating the ego motion and backprojecting it
into the current image. More specifically, let u, v be the
pixel position with Kalman filter state dT−1. The prediction
is computed by

pT−1 = reconst(u, v, dT−1) (8)
p̄T = Φ (pT−1|XT−1, XT ) (9)[

ūT , v̄T , d̄T
]

= proj(p̄T ) (10)

where ·̄ denotes prediction, reconst(·) is the stereo recon-
struction and Φ(·) compensates ego motion. The predicted
pixel position ūT , v̄T is used for association. Once a track is
lost it is added to the local coordinate system permanently.
If a loop closure occurs, the displacement from XT−1 to
XT may be too large. In such cases the ego motion is
compensated by the visual odometry priors (equations 1, 2)
i.e. p̄T = Φ(pT−1|R̂, t̂).
This method of increasing depth accuracy for stereo cameras
has been used in [15], [12], [4]. All these methods are based
on the work of Matthies and co-workers [21].
Observe, that the dense part of the map is tracked in
camera coordinates. However, for our method, it needs to
be transformed into the coordinate system which is spanned
by the last pose XtN = (xtN , ytN , ψtN )T that has been
permanently added to the state vector.

IV. EXPERIMENTAL RESULTS

In the following we present experimental results. First we
validate our claim, that the iconic Kalman Filters improve
reconstruction accuracy. We show that the standard deviation
of the depth of a point is considerably lower compared to
the non-filtered points. Second, we show results of a 3D map
computed from a real world sequence.

A. Simulation Results

To assess the improvement in depth accuracy we have run
a Monte Carlo simulation as follows. First we generate a
trajectory of the camera. Then landmarks are placed around
the trajectory. During the simulation run, the camera traverses
the environment and perceives the landmarks once they
are within a predefined distance to the camera. The exact
pixel positions and disparities, which are computed from the
locations of the landmarks, current camera pose and camera
parameters is disturbed by Gaussian noise with covariance
matrix σ2

camI . This is taken as the measurement and fed
into the SLAM algorithm. The exact ego motion (yaw rate
and speed) is also disturbed by Gaussian noise with standard
deviations σyaw, σspeed. The disturbed ego motion is an
approximation of the ego motion priors of equations 1 and
2. This part of the simulation only affects the sparse SLAM
system.
The dense local map is simulated by 1000 independent tracks
of the same point. This point is also added to the simulation
environment. The virtual camera perceives this point (pixel
position and disparity) 1000-fold for each time step, again
disturbed by independent Gaussian noise with covariance
σ2
camI . Each occurrence of this point is tracked by an iconic

Kalman Filter as presented before. At each time step, all of
the tracks of the dense local map are reconstructed and the
empirical standard deviation of the depth is computed. By
using many realizations of the same point (1000 in our case)
we obtain a faithful approximation of the expected accuracy.
Note that this point is not used as a landmark in the sparse
SLAM system.
The base width of the stereo camera setup used in our
simulation is 57.5 cm. The standard deviation of the disparity
matcher is set to σcam = 1.0px and the ego motion is
disturbed by σyaw = 0.3 rad

s and σspeed = 0.6m
s . The ego

velocity is 10m
s and points are observed at 10 Hz. Figure

3 shows the mean depth of the iconically tracked point
over time in green. It is first observed by the camera at a
distance of 40 meters. The empirical standard deviation of
the depth of all tracks is shown as a confidence interval in
blue (amplified by a factor of five for better visibility).
Moreover, we have reconstructed each occurrence of the
point of the dense local map from its non-filtered mea-
surements. The empirical standard deviation of the depth is
computed for every time step and plotted in red in Figure 3
(again five-fold amplified). It can be seen that the accuracy
of the filtered point is considerably better.

B. Real World Experiments

In the following we present experimental results of a car
like robot.
We have equipped our testing vehicle with stereo cameras
with a base width of approximately 57.5 cm. The region
of interest of our cameras is of size 1350×370 pixels with
an opening angle of 90 degrees. The disparity images are
computed by a block matching based stereo matcher as
presented in [13]. The stereo matcher produces very dense
disparity images which plays into our hands nicely. Images



Fig. 5: The bottom part of the dense map before (left) and immediately after (right) closing the loop. A slight miss alignment
can be observed on the left bottom of the loop. After loop closure this miss alignment is successfully resolved. The position
of past poses is shown in Figure 4.

are recorded with 10 Hz. We have driven a loopy trajectory
of approximately 520 meters on our campus with speeds of
up to 30 km

h . Note that the loop closure has been triggered
manually since place recognition is not the focus of our
contribution.
Figure 4 depicts the chain of past poses Xt1 , . . . , XtN from
a bird’s eye perspective. The left part of Figure 4 shows the
poses directly before closing the loop. On the bottom left
corner a drift of approximately 5 m can be observed. The
right part of the Figure shows the past poses immediately
after closing the loop. However, these poses are only part of
the sparse mapping part of our algorithm.
Each one such pose has a portion of the dense map attached
to it. The resulting dense maps are shown in Figure 5. Again
the left half illustrates the dense map immediately before
closing the loop whereas the right half shows the dense map
after loop closure. It can be seen how the left bottom corner
of the map is misaligned directly before the drift is resolved.
After loop closure, however, the dense map fragments align
well.
Our system is mostly implemented in MATLAB and running
times are currently not real-time. However, we plan to
refactor our system and reimplement a C++ version which
is expected to reach real-time capabilities.

V. CONCLUSION AND FUTURE RESEARCH

Herein we have presented a method to compute dense local
maps which are embedded into a sparse SLAM algorithm.
The dense local maps are continuously updated and 3D
global maps are obtained after loop closure. Moreover, it was
shown experimentally that our dense maps are potentially
more accurate than raw stereo reconstructions.
The sparse SLAM algorithm estimates a subset of past robot
poses jointly with a sparse set of landmarks. This estimation
is achieved by conditionally independent sub maps [25],
[26] which are based on an EKF and has constant runtime
complexity most of the time. The prediction of the filter state
is driven by visual odometry priors computed from a set of
cheaply computed point matches.
The dense map is computed from the local ego displacement
(from pose to pose) and dense disparity images. To increase

Fig. 3: Results of a Monte Carlo simulation are illustrated.
The mean depth of 1000 independent Kalman tracks of the
same point of the dense local map is shown over time
in green. The empirical standard deviation is depicted in
blue (five-fold amplified for clarity). For comparison, the
empirical standard deviation of the raw reconstruction (non-
filtered) is shown in red. A considerable improvement of the
accuracy of the filtered point over the raw reconstruction can
be seen.

reconstruction accuracy, the disparities are tracked by iconic
Kalman filters. Their reconstructed 3D position is expressed
in coordinate systems spanned by past robot poses which are
part of the sparse EKF SLAM state vector.
The presented algorithm brings some flexibility. The sparse
SLAM algorithm can easily be replaced by any one of the
published SLAM algorithms. It can thereby be tuned to
specific needs. Moreover, the dense local mapping algorithm
which merely needs the ego displacement and dense disparity
images can be enhanced as long as the map is expressed in
local coordinates.
In the future we plan to integrate an appearance based place
recognition engine into our SLAM system to automatically
detect loop closures. The method of Cummnis and Newman



Fig. 4: The set of past robot poses which span a local
coordinate system each is depicted. On the left the position
directly before loop closure is shown. The right shows the
position immediately after loop closure. The driving direction
is counter clockwise. The bottom part of the dense map for
that trajectory is depicted in Figure 5.

[8] seems promising. Moreover, we believe that developing
more advanced locally dense mapping algorithms is exciting
ground for future research. Specifically, we plan to fuse
dense optical flow and disparity. Dense flow algorithms
are becoming increasingly feasible [17]. Furthermore, the
detection and tracking of moving objects (e.g. [3]) as an
intermediate step will improve the operation in dense urban
traffic.
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