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Abstract

We introduce the first dataset for sequential

vision-to-language, and explore how this data

may be used for the task of visual storytelling.

The first release of this dataset, SIND1 v.1,

includes 81,743 unique photos in 20,211 se-

quences, aligned to both descriptive (caption)

and story language. We establish several

strong baselines for the storytelling task, and

motivate an automatic metric to benchmark

progress. Modelling concrete description as

well as figurative and social language, as pro-

vided in this dataset and the storytelling task,

has the potential to move artificial intelligence

from basic understandings of typical visual

scenes towards more and more human-like un-

derstanding of grounded event structure and

subjective expression.

1 Introduction

Beyond understanding simple objects and concrete

scenes lies interpreting causal structure; making

sense of visual input to tie disparate moments to-

gether as they give rise to a cohesive narrative of

events through time. This requires moving from rea-

soning about single images – static moments, de-

void of context – to sequences of images that depict

events as they occur and change. On the vision side,

progressing from single images to images in context

allows us to begin to create an artificial intelligence

(AI) that can reason about a visual moment given

what it has already seen. On the language side, pro-

gressing from literal description to narrative helps to

learn more evaluative, conversational, and abstract

∗T.H. and F.F. contributed equally to this work.
1Sequential Images Narrative Dataset. This and future re-

leases are made available on www.sind.ai.
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that are sitting next 

to each other. 

Adult male 
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lying down on 

black pavement. 

The sun is setting over 

the ocean and 

mountains. 

Having a good time 

bonding and talking. 

[M] got exhausted 

by the heat.  

Sky illuminated with a 

brilliance of gold and 

orange hues. 
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Figure 1: Example language difference between descrip-

tions for images in isolation (DII) vs. stories for images

in sequence (SIS).

language. This is the difference between, for ex-

ample, “sitting next to each other” versus “having

a good time”, or “sun is setting” versus “sky illumi-

nated with a brilliance...” (see Figure 1). The first

descriptions capture image content that is literal and

concrete; the second requires further inference about

what a good time may look like, or what is special

and worth sharing about a particular sunset.

We introduce the first dataset of sequential im-

ages with corresponding descriptions, which cap-

tures some of these subtle but important differ-

ences, and advance the task of visual storytelling.

We release the data in three tiers of language for

the same images: (1) Descriptions of images-

in-isolation (DII); (2) Descriptions of images-in-

sequence (DIS); and (3) Stories for images-in-

sequence (SIS). This tiered approach reveals the ef-

fect of temporal context and the effect of narrative

language. As all the tiers are aligned to the same

images, the dataset facilitates directly modeling the

relationship between literal and more abstract visual

concepts, including the relationship between visual

imagery and typical event patterns. We additionally

propose an automatic evaluation metric which is best



beach (684) breaking up (350) easter (259)

amusement park (525) carnival (331) church (243)

building a house (415) visit (321) graduation ceremony (236)

party (411) market (311) office (226)

birthday (399) outdoor activity (267) father’s day (221)

Table 1: The number of albums in our tiered dataset for

the 15 most frequent kinds of stories.

correlated with human judgments, and establish sev-

eral strong baselines for the visual storytelling task.

2 Motivation and Related Work

Work in vision to language has exploded, with re-

searchers examining image captioning (Lin et al.,

2014; Karpathy and Fei-Fei, 2015; Vinyals et al.,

2015; Xu et al., 2015; Chen et al., 2015; Young

et al., 2014; Elliott and Keller, 2013), question an-

swering (Antol et al., 2015; Ren et al., 2015; Gao

et al., 2015; Malinowski and Fritz, 2014), visual

phrases (Sadeghi and Farhadi, 2011), video under-

standing (Ramanathan et al., 2013), and visual con-

cepts (Krishna et al., 2016; Fang et al., 2015).

Such work focuses on direct, literal description of

image content. While this is an encouraging first

step in connecting vision and language, it is far from

the capabilities needed by intelligent agents for nat-

uralistic interactions. There is a significant differ-

ence, yet unexplored, between remarking that a vi-

sual scene shows “sitting in a room” – typical of

most image captioning work – and that the same vi-

sual scene shows “bonding”. The latter description

is grounded in the visual signal, yet it brings to bear

information about social relations and emotions that

can be additionally inferred in context (Figure 1).

Visually-grounded stories facilitate more evaluative

and figurative language than has previously been

seen in vision-to-language research: If a system can

recognize that colleagues look bored, it can remark

and act on this information directly.

Storytelling itself is one of the oldest known hu-

man activities (Wiessner, 2014), providing a way to

educate, preserve culture, instill morals, and share

advice; focusing AI research towards this task there-

fore has the potential to bring about more human-

like intelligence and understanding.

3 Dataset Construction

Extracting Photos We begin by generating a list

of “storyable” event types. We leverage the idea that

Flickr Album 

Description 

for Images 

in Isolation 

& 

in Sequences 

Story 1 

Storytelling 

Story 2 

Story 3 

Re-telling 

Preferred Photo 

Sequence  

Story 4 

Story 5 

Figure 2: Dataset crowdsourcing workflow.

Figure 3: Interface for the Storytelling task, which con-

tains: 1) the photo album, and 2) the storyboard.

“storyable” events tend to involve some form of pos-

session, e.g., “John’s birthday party,” or “Shabnam’s

visit.” Using the Flickr data release (Thomee et al.,

2015), we aggregate 5-grams of photo titles and de-

scriptions, using Stanford CoreNLP (Manning et al.,

2014) to extract possessive dependency patterns. We

keep the heads of possessive phrases if they can be

classified as an EVENT in WordNet3.0, relying on

manual winnowing to target our collection efforts.2

These terms are then used to collect albums using

the Flickr API.3 We only include albums with 10 to

50 photos where all album photos are taken within a

48-hour span and CC-licensed. See Table 1 for the

query terms with the most albums returned.

The photos returned from this stage are then pre-

sented to crowd workers using Amazon’s Mechani-

cal Turk to collect the corresponding stories and de-

scriptions. The crowdsourcing workflow of devel-

oping the complete dataset is shown in Figure 2.

Crowdsourcing Stories In Sequence We develop

a 2-stage crowdsourcing workflow to collect natu-

ralistic stories with text aligned to images. The first

stage is storytelling, where the crowd worker selects

a subset of photos from a given album to form a

photo sequence and writes a story about it (see Fig-

ure 3). The second stage is re-telling, in which the

worker writes a story based on one photo sequence

2We simultaneously supplemented this data-driven effort by

a small hand-constructed gazetteer.
3https://www.flickr.com/services/api/
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A black frisbee 

is sitting on 

top of a roof. 

A man playing 

soccer outside of 

a white house 

with a red door. 

The boy is 

throwing a 

soccer ball by 

the red door. 

A soccer ball is 

over a roof by a 

frisbee in a rain 

gutter. 

Two balls and a 

frisbee are on 

top of a roof. 

A roof top 

with a black 

frisbee laying 

on the top of 

the edge of it. 

A man is standing 

in the grass in 

front of the house 

kicking a soccer 

ball.  

A man is in 

the front of 

the house 

throwing a 

soccer ball up.  

A blue and white 

soccer ball and 

black Frisbee are 

on the edge of 

the roof top. 

Two soccer balls 

and a Frisbee are 

sitting on top of 

the roof top. 

A discus got 

stuck up on 

the roof. 

Why not try 

getting it down 

with a soccer 

ball? 

Up the soccer 

ball goes.  

It didn't work so 

we tried a volley 

ball. 

Now the discus, 

soccer ball, and 

volleyball are all 

stuck on the roof. 
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Figure 4: Example descriptions of images in isolation

(DII); descriptions of images in sequence (DIS); and sto-

ries of images in sequence (SIS).

generated by workers in the first stage.

In both stages, all album photos are displayed in

the order of the time that the photos were taken,

with a “storyboard” underneath. In storytelling, by

clicking a photo in the album, a “story card” of the

photo appears on the storyboard. The worker is in-

structed to pick at least five photos, arrange the or-

der of selected photos, and then write a sentence or

a phrase on each card to form a story; this appears as

a full story underneath the text aligned to each im-

age. Additionally, this interface captures the align-

ments between text and photos. Workers may skip

an album if it does not seem storyable (e.g., a col-

lection of coins). Albums skipped by two workers

are discarded. The interface of re-telling is simi-

lar, but it displays the two photo sequences already

created in the first stage, which the worker chooses

from to write the story. For each album, 2 work-

ers perform storytelling (at $0.3/HIT), and 3 work-

ers perform re-telling (at $0.25/HIT), yielding a total

of 1,907 workers. All HITs use quality controls to

ensure varied text at least 15 words long.

Crowdsourcing Descriptions of Images In Iso-

lation & Images In Sequence We also use

crowdsourcing to collect descriptions of images-

in-isolation (DII) and descriptions of images-in-

sequence (DIS), for the photo sequences with sto-

ries from a majority of workers in the first task (as

Figure 2). In both DII and DIS tasks, workers are

asked to follow the instructions for image caption-

ing proposed in MS COCO (Lin et al., 2014) such

as describe all the important parts. In DII, we use

Data 

Set 

#(Txt, Img) 

Pairs (k) 

Vocab 

Size (k) 

Avg. 

#Tok 
%Abs Frazier Yngve Ppl 

Brown 52.1 47.7 20.8 15.2% 18.5 77.2 194.0 

DII 151.8 13.8 11.0 21.3% 10.3 27.4 147.0 

DIS 151.8 5.0 9.8 24.8% 9.2 23.7 146.8 

SIS 252.9 18.2 10.2 22.1% 10.5 27.5 116.0 

Table 2: A summary of our dataset, following the pro-

posed analyses of Ferraro et al. (2015), including the Fra-

zier and Yngve measures of syntactic complexity. The

balanced Brown corpus (Marcus et al., 1999), provided

for comparison, contains only text. Perplexity (Ppl) is

calculated against a 5-gram language model learned on a

generic 30B English words dataset scraped from the web.

man sitting  black chatting amount trunk went [female] see 

woman white   large gentleman goers facing got today saw 

standing two front enjoys sofa bench [male] decided came 

holding young group folks egg enjoying took really started 

wearing image shoreline female great time 

Desc.-in-Iso. Desc.-in-Seq. Story-in-Seq. 

Table 3: Top words ranked by normalized PMI.

the MS COCO image captioning interface.4 In DIS,

we use the storyboard and story cards of our story-

telling interface to display a photo sequence, with

MS COCO instructions adapted for sequences. We

recruit 3 workers for DII (at $0.05/HIT) and 3 work-

ers for DIS (at $0.07/HIT).

Data Post-processing We tokenize all sto-

rylets and descriptions with the CoreNLP tok-

enizer, and replace all people names with generic

MALE/FEMALE tokens,5 and all identified named

entities with their entity type (e.g., location).

The data is released as training, validation, and test

following an 80%/10%/10% split on the stories-in-

sequence albums. Example language from each tier

is shown in Figure 4.

4 Data Analysis

Our dataset includes 10,117 Flickr albums with

210,819 unique photos. Each album on average has

20.8 photos (σ = 9.0). The average time span of each

album is 7.9 hours (σ = 11.4). Further details of each

tier of the dataset are shown in Table 2.6

We use normalized pointwise mutual information

to identify the words most closely associated with

each tier (Table 3). Top words for descriptions-

4https://github.com/tylin/coco-ui
5We use those names occurring at least 10,000 times.

https://ssa.gov/oact/babynames/names.zip
6We exclude words seen only once.



METEOR BLEU Skip-Thoughts

r 0.22 (2.8e-28) 0.08 (1.0e-06) 0.18 (5.0e-27)

ρ 0.20 (3.0e-31) 0.08 (8.9e-06) 0.16 (6.4e-22)

τ 0.14 (1.0e-33) 0.06 (8.7e-08) 0.11 (7.7e-24)

Table 4: Correlations of automatic scores against human

judgements, with p-values in parentheses.

in-isolation reflect an impoverished disambiguat-

ing context: References to people often lack so-

cial specificity, as people are referred to as simply

“man” or “woman”. Single images often do not

convey much information about underlying events

or actions, which leads to the abundant use of pos-

ture verbs (“standing”, “sitting”, etc.). As we turn to

descriptions-in-sequence, these relatively uninfor-

mative words are much less represented. Finally, top

story-in-sequence words include more storytelling

elements, such as names ([male]), temporal refer-

ences (today) and words that are more dynamic and

abstract (went, decided).

5 Automatic Evaluation Metric

Given the nature of the complex storytelling task,

the best and most reliable evaluation for assessing

the quality of generated stories is human judgment.

However, automatic evaluation metrics are useful to

quickly benchmark progress. To better understand

which metric could serve as a proxy for human eval-

uation, we compute pairwise correlation coefficients

between automatic metrics and human judgments on

3,000 stories sampled from the SIS training set.

For the human judgements, we again use crowd-

sourcing on MTurk, asking five judges per story to

rate how strongly they agreed with the statement “If

these were my photos, I would like using a story like

this to share my experience with my friends”.7 We

take the average of the five judgments as the final

score for the story. For the automatic metrics, we use

METEOR,8 smoothed-BLEU (Lin and Och, 2004),

and Skip-Thoughts (Kiros et al., 2015) to compute

similarity between each story for a given sequence.

Skip-thoughts provide a Sentence2Vec embedding

which models the semantic space of novels.

As Table 4 shows, METEOR correlates best with

human judgment according to all the correlation co-

7Scale presented ranged from “Strongly disagree” to

“Strongly agree”, which we convert to a scale of 1 to 5.
8We use METEOR version 1.5 with hter weights.

Beam=10 Greedy -Dups +Grounded

23.55 19.10 19.21 –

Table 6: Captions generated per-image with METEOR

scores.

Beam=10 Greedy -Dups +Grounded

23.13 27.76 30.11 31.42

Table 7: Stories baselines with METEOR scores.

efficients. This signals that a metric such as ME-

TEOR which incorporates paraphrasing correlates

best with human judgement on this task. A more

detailed study of automatic evaluation of stories is

an area of interest for a future work.

6 Baseline Experiments

We report baseline experiments on the storytelling

task in Table 7, training on the SIS tier and testing

on half the SIS validation set (valtest). Example out-

put from each system is presented in Table 5. To

highlight some differences between story and cap-

tion generation, we also train on the DII tier in iso-

lation, and produce captions per-image, rather than

in sequence. These results are shown in Table 7.

To train the story generation model, we use a

sequence-to-sequence recurrent neural net (RNN)

approach, which naturally extends the single-image

captioning technique of Devlin et al. (2015) and

Vinyals et al. (2014) to multiple images. Here, we

encode an image sequence by running an RNN over

the fc7 vectors of each image, in reverse order. This

is used as the initial hidden state to the story decoder

model, which learns to produce the story one word

at a time using softmax loss over the training data

vocabulary. We use Gated Recurrent Units (GRUs)

(Cho et al., 2014) for both the image encoder and

story decoder.

In the baseline system, we generate the story us-

ing a simple beam search (size=10), which has been

successful in image captioning previously (Devlin et

al., 2015). However, for story generation, the re-

sults of this model subjectively appear to be very

poor – the system produces generic, repetitive, high-

level descriptions (e.g., “This is a picture of a dog”).

This is a predictable result given the label bias prob-

lem inherent in maximum likelihood training; recent

work has looked at ways to address this issue di-

rectly (Li et al., 2016).



+Viterbi This is a picture of a family. This is a picture of a cake. This is a picture of a dog. This is a

picture of a beach. This is a picture of a beach.

+Greedy The family gathered together for a meal. The food was delicious. The dog was excited to be

there. The dog was enjoying the water. The dog was happy to be in the water.

-Dups The family gathered together for a meal. The food was delicious. The dog was excited to be

there. The kids were playing in the water. The boat was a little too much to drink.

+Grounded The family got together for a cookout. They had a lot of delicious food. The dog was happy to

be there. They had a great time on the beach. They even had a swim in the water.

Table 5: Example stories generated by baselines.

To establish a stronger baseline, we explore sev-

eral decode-time heuristics to improve the quality of

the generated story. The first heuristic is to lower

the decoder beam size substantially. We find that

using a beam size of 1 (greedy search) significantly

increases the story quality, resulting in a 4.6 gain in

METEOR score. However, the same effect is not

seen for caption generation, with the greedy caption

model obtaining worse quality than the beam search

model. This highlights a key difference in generat-

ing stories versus generating captions.

Although the stories produced using a greedy

search result in significant gains, they include many

repeated words and phrases, e.g., “The kids had a

great time. And the kids had a great time.” We intro-

duce a very simple heuristic to avoid this, where the

same content word cannot be produced more than

once within a given story. This improves METEOR

by another 2.3 points.

An advantage of comparing captioning to story-

telling side-by-side is that the captioning output may

be used to help inform the storytelling output. To

this end, we include an additional baseline where

“visually grounded” words may only be produced

if they are licensed by the caption model. We define

the set of visually grounded words to be those which

occurred at higher frequency in the caption training

than the story training:

P (w|Tcaption)

P (w|Tstory)
> 1.0 (1)

We train a separate model using the caption an-

notations, and produce an n-best list of captions for

each image in the valtest set. Words seen in at

least 10 sentences in the 100-best list are marked

as ‘licensed’ by the caption model. Greedy decod-

ing without duplication proceeds with the additional

constraint that if a word is visually grounded, it can

only be generated by the story model if it is licensed

by the caption model for the same photo set. This

results in a further 1.3 METEOR improvement.

It is interesting to note what a strong effect rel-

atively simple heuristics have on the generated sto-

ries. We do not intend to suggest that these heuris-

tics are the right way to approach story generation.

Instead, the main purpose is to provide clear base-

lines that demonstrate that story generation has fun-

damentally different challenges from caption gener-

ation; and the space is wide open to explore for train-

ing and decoding methods to generate fluent stories.

7 Conclusion and Future Work

We have introduced the first dataset for sequen-

tial vision-to-language, which incrementally moves

from images-in-isolation to stories-in-sequence. We

argue that modelling the more figurative and so-

cial language captured in this dataset is essential for

evolving AI towards more human-like understand-

ing. We have established several strong baselines

for the task of visual storytelling, and have moti-

vated METEOR as an automatic metric to evaluate

progress on this task moving forward.
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