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Abstract— One of the fundamental requirements of an au-
tonomous vehicle is the ability to determine its location on
a map. Frequently, solutions to this localization problem rely
on GPS information or use expensive three dimensional (3D)
sensors. In this paper, we describe a method for long-term ve-
hicle localization based on visual features alone. Our approach
utilizes a combination of topological and metric mapping, which
we call topometric localization, to encode the coarse topology
of the route as well as detailed metric information required for
accurate localization. A topometric map is created by driving
the route once and recording a database of visual features. The
vehicle then localizes by matching features to this database
at runtime. Since individual feature matches are unreliable, we
employ a discrete Bayes filter to estimate the most likely vehicle
position using evidence from a sequence of images along the
route. We illustrate the approach using an 8.8 km route through
an urban and suburban environment. The method achieves an
average localization error of 2.7 m over this route, with isolated
worst case errors on the order of 10 m.

I. INTRODUCTION

One of the fundamental requirements of an autonomous

vehicle is the ability to determine its location on a map. Fre-

quently, solutions to this localization problem rely on GPS

information or use expensive three dimensional (3D) sensors.

While GPS seems to offer a simple, low-cost solution, the

GPS signal is unavailable in many situations. For example,

in downtown areas, tall buildings can block the GPS signal,

rendering GPS-based vehicle navigation systems useless.

Similar situations can arise in suburban environments, where

trees can block the GPS signal, or in military situations,

where the GPS signal can be jammed. Thus, for practical

autonomy in many environments, a vehicle must be able to

localize in GPS denied situations.

Some researchers have had success in localization using

3D sensors. Most visibly, the Google Car [1] and some

entries in the DARPA Urban Challenge competition [2], [3]

use 3D sensors to help localize the vehicle. Such sensors are

effective for this purpose, but the scanning laser range finders

used in these demonstrations can cost tens of thousands of

dollars and may not be sufficiently durable due to rapidly

moving internal parts. To be practical for autonomous vehi-

cles, we need a more cost effective sensor that can operate

for long periods of time.

In this paper, we use vision-based sensing for long-

term localization (Fig. 1). Our approach uses a single, low-

resolution video camera to capture the appearance of a

route, and then localizes the vehicle with respect to this

original route. Storing and maintaining a database of route

appearance may seem like a daunting task, but already we

Fig. 1. Example of long-term localization on a natural varying environment.
The figure shows left and right views for query (top) and matched (bottom)
images.

have a proof of concept in the Google Streetview project

[4], which has mapped most of the roads in the major cities

in the U.S. and throughout the world. It is easy to envision

storing a visual database like the Streetview maps for the

purpose of visual localization.

The literature on visual localization focuses on two main

types of approaches: metric and topological localization.

Metric localization is achieved by computing the coordinates

of the location of the observer (e.g., latitude and longitude).

The coordinates of the vehicle pose are usually obtained by

triangulation (e.g., structure from motion [5]) or alignment

(e.g., occupancy grids [6]). With topological localization

[7], the position of the observer is found from a finite set

(typically small) of possible locations. Such methods provide

coarse localization information such as “I’m in the kitchen.”

Topological maps are usually represented by graphs, where

nodes indicate possible locations (e.g., the kitchen) and edges

are connections between locations. The weight of an edge

indicates the similarity or proximity between locations (e.g.,

the kitchen is close to the dining room). Metric approaches

provide accurate localization results, but tend to fail and

to drift over time as the vehicle moves large distances in

its environment. Due to its finite state space, topological

approaches provide a robust localization but only rough

position estimates.

In this paper, we propose a fusion of the metric and

topological approaches in order to achieve accurate metric

results while maintaining the robustness of topological
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matching. We call this hybrid approach topometric

localization. To accomplish the topometric localization, we

use a fine-grained topological map, where each node has an

associated coordinate of its real metric location (Fig. 2c).

Finding the node of the current location also means finding

the metric coordinate of the observer. Our focus in this

paper is on long-term, robust localization in large outdoor

environments, but the method could be applied equally

to indoor localization tasks. Our topometric localization

algorithm involves two main stages:

Creation of the map (Section III). A vehicle equipped with

cameras and GPS first travels the route to be recognized.

GPS and inertial sensor units are used to create a graph of

the environment. The graph is metric in the sense that the

nodes contain the exact location of the vehicle. From the

acquired images, visual local features are extracted. Each

feature is stored in a database with a reference to the node

corresponding to its real location.

Localization (Section IV). At runtime, the vehicle drives over

the routes included in the a priori map. Video imagery is pro-

cessed online to obtain features. A Bayes filter estimates the

probability density function of the position of the observer

as the vehicle drives and features are matched with those in

the database.

II. RELATED LITERATURE

The literature on visual localization is huge. We will give

here only a small sample of the most related approaches.

Most visual localization method rely on the extraction of

local features from the images to build a visual database

of the environment. Valgren and Lilienthal [7] evaluated the

use of SIFT and SURF features for long-term topological

localization. The authors used high-resolution panoramic

images acquired over long periods of time to capture the

natural seasonal changes in an outdoor environment. A

comparison of results using variants of the SURF and SIFT

features was performed. The authors concluded that SURF

performs better than SIFT for the purpose of localization in

outdoor environments. Ascani et al. [8] came to a similar

conclusion, finding also that SIFT performs better in indoor

environments. SIFT features were also used indoors using a

topological approach by Andreasson et al. [9] and a metric

approach by Se et al. [10]. Murillo et al. [11] proposes a

two step approach. First, SIFT features are used to obtain

the topological location of the observer. Second, a refinement

of the location is obtained by computing the trifocal tensor

between the best and second best database image matches.

Silveira et al. [5] proposed a metric localization approach

without explicit visual local feature detection. Although

all these methods show promising localization results, the

problem was approached as pure topological or metric, and

the size of the maps varied from small (a few dozen images)

to relatively small (less than 2500 images.)

The fusion of topological and metric localization has

also been approached before mainly in the simultaneous

localization and mapping (SLAM) domain and using 3D

sensors. Tomatis et al. [12], Kouzoubov and D. Austin

[13], Bosse et al. [14], and Blanco et al. [6] used hybrid

approaches to connect local metric submaps using highlevel

topological maps. In all cases, the fusion aims at segmenting

metric maps represented by topological nodes in order to

organize and identify submap relations and loop closures.

Instead of relying on 3D sensor to built metric maps, our

proposed topometric approach integrates metric data directly

into the topological nodes by creating a data base of the

route, as adresssed in the next section.

III. CREATION OF THE MAP DATABASE

In this section, we address generation of the the route map

and the feature database.

A. Route Map

The route map is created as a directed graph. The vertices

of the graph represent locations; the edges represent transi-

tions between locations (Fig. 2b). The map is created with a

constant Euclidean distance between nodes (Fig. 2c), which

we call the sampling factor ρ. The advantage of having nodes

separated at constant distance is that it is simple to predict the

vehicle position within the graph by just using its estimated

displacement. If the vehicle moves with speed s between

two consecutive image acquisitions, its displacement on the

graph is s∆t/ρ nodes, where ∆t is the cycle time (i.e., time

elapsed between the system updates).

B. Visual Information Database

The visual information database is a list of features

extracted from the environment. The features are stored

together with their corresponding ground truth location −
obtained with GPS − on the map. We use the term feature

position to denote the position of the vehicle when the feature

was observed. If the same feature is found in a future run,

(a) Route of the vehicle.
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Fig. 2. Created map and ground truth data for evaluation. The units are
shown in meters. The arrow in 2a shows the start and end position. Figure
2c amplifies the corner of the route marked in 2b. The circled area in 2d
shows the location of the construction site during the test run.



the likelihood that the vehicle is located on the position

referenced by the database feature is increased.

A number of feature descriptors could be used for lo-

calization [15]. Among these, SURF features have shown

to be robust in outdoor environments [7] [8]. In this paper,

we use the upright SURF (U-SURF) feature [16], which is

invariant to scale and to rotations of the vertical axis. A

descriptor vector d ∈ R
64 is built from each detected feature

as specified in [17]. The descriptor contains gradient image

information of the neighborhood surrounding the feature.

The descriptors are used to find matches between two sets of

features: the set of features of the database having a common

graph location (li) and the set of features extracted from the

current view at runtime. The matching is performed with the

nearest neighbor method as in [18].

The visual information database consists of the set

D = {ri, r2, ..., rn} with components ri = {di, li, si},

where di is the U-SURF feature descriptor vector, li is the

location of the feature in the map, and si is the velocity of

the vehicle when the feature was observed.

IV. LOCALIZATION

In this section, we present a Bayesian approach to the

localization problem. The localization is performed using

a discrete Bayes filter, which tracks the probability density

function of the vehicle position as it advances along the route

and new measurements are acquired.

A. Discrete Bayes Filter

The state Xt defines the position of the vehicle in the

map at time t (i.e., the graph vertex xk where the vehicle is

located). The probability of the vehicle located at a particular

position xk in the graph is specified as p(Xt = xk) or simply

p(xk). The vertices of the graph define the universe of possi-

ble values that Xt might assume, i.e., xk, k = 1, 2, 3, ..., N .

A discrete Bayes filter [19] makes a partitioning of the state

space, assigning an individual probability pk,t to each vertex

xk of the graph. This is equivalent to a histogram, where xk

represents a bin and pk,t its value. Thus, the probability pk,t

specifies the belief that the vehicle is located at position xk

of the graph at time t. The discrete probability distribution

is then expressed as the set p(xk) = {pk,t}. The Bayes filter

keeps track of the probabilities as the vehicle moves and new

measurements are acquired.

There are two actions that modify the probability density

function: vehicle motion and measurement. The incorpora-

tion of the motion into the probability density function is

called prediction and is specified as p̄t = p(xk|z1:t−1, u1:t).
The input u1:t specifies all motion controls since initializa-

tion (e.g., velocity of the vehicle); the term z1:t−1 includes

all the measurements up to previous time t − 1.

The second action that modifies the state of the system

is the measurement. The incorporation of a measurement

zt obtained at time t leads to the following posterior dis-

tribution: pt = p(xk|z1:t, u1:t). This is known as an update

of the system and it incorporates both the controls and

measurements up to the current time.

The discrete Bayes filter specifies the required operations

to perform these two steps recursively while considering the

discrete nature of the state space. The algorithm is as follows.

Input: {pk,t−1}, ut, zt

Output: {pk,t}
foreach k do

# Predict

p̄k,t =
∑N

i=1
p(Xt = xk|ut, Xt−1 = xi) pi,t−1;

# Update

pk,t = η p(zt|Xt = xk) p̄k,t

end

The probability p(Xt = xk|ut, Xt−1 = xi) of the pre-

diction step is called state transition probability. It specifies

how the state evolves over time as the vehicle moves in the

environment.

The update step requires the measurement probability

p(zt|Xt = xk), which specifies how measurement probabil-

ities are generated from the system state xk. The scalar

η ensures that the resulting probability density function

integrates to one.

The discrete Bayes filter requires the definition of the state

transition probability and the measurement probability. It also

requires the initial probability density function p0 = {pk,0}.

The following sections are dedicated to derive these functions

for our localization problem using SURF features.

B. State Transition Probability

We will assume that the vehicle moves with velocity st

at time t and that the velocity st is a zero-mean noisy

measurement with variance σ2

s . The translation of the vehicle

between times t − 1 and time t is then dt = st∆t with a

variance of σ2

d = ∆t2σ2. Based on these considerations, the

control input ut of the system is only the velocity st, and

the state transition probability is defined with a Gaussian

probability density function (Fig. 3a):

p(xk|uk, xk−1) =
1√

2πσ2
exp

(

− (xk − µ)2

2σ2

)

(1)

where µ = −st∆t/ρ and σ2 = (ρ∆t σs/ρ)2.

C. Measurement Probability

The measurements are given by the location of the SURF

features matched between the current view and those stored

in the database. SURF matches provide evidence of the

vehicle at a specific location. The challenge here is to find

the probability density function of the measurements given

the state.

The set of SURF features extracted from the current

view is matched with those in the set D = {ri, r2, ..., rn}.

Each component ri = {di, li, si} corresponds to a SURF

feature with an associated location li and the velocity si

of the vehicle while acquiring the feature. The measurement

required for our Bayesian method is the location li of the

matched feature.

We compose the probability of the measurement by a

combination of two density functions. The first probability



density function models the expected distribution of the

feature location along the route. We assume that the mea-

surement li of a matched feature is a noisy observation of

the true feature location. Furthermore, the accuracy of the

measurement decreases with increasing vehicle speed due

to factors such as synchronization, timing, and registration

inaccuracies. We model this effect with a uniform distribution

over an interval proportional to the vehicle velocity (Fig. 3b).

Specifically, we model the probability of measuring a match

at location zi
t = li as

pmatch(zi
t|xk) =







η1 if (zt − xk) ≤ (si ∆t)

ρ
0 otherwise

(2)

where η1 is a normalization factor to make probability

density function integrate to one.

The second density function accounts for the effect of

incorrect matches. We model this as a uniform distribution

over the entire measurement space (Fig. 3c):

prand(zt|xk) = η2 (3)

where η2 is a normalization factor. Incorrect matches arise

most commonly from false positives, which occur mainly

because of noise and model inaccuracies. Incorrect matches

can also occur when the feature matches the correct object

but at a different (and therefore incorrect) location along the

route. This can happen, for example, when the same vehicle

is parked at a different location along the route.

The combined distribution p(zt|xk) is a weighted average

of both density functions:

p(zt|xk) =

[

zmatch

zrand

]T [

pmatch(zt|xk)
prand(zt|xk)

]

(4)

with weighting factors zmatch + zrand = 1 (Fig. 3d).

Equation 4 defines the probability density function for one

single match. If, for a given time t, there are K matches,

then the final probability function is obtained (assuming the
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Fig. 3. State transition and measurement probability density functions.

Fig. 4. Evaluation vehicle.

independence of the measurements) by the product of the

individual probabilities, i.e.,

p(zt|xk) =

K
∏

i=1

p(zi
t|xk). (5)

D. Initialization

The discrete Bayes filter also requires the initial probabil-

ity density function p0 = {pk,0} of the vehicle position. If

the initial position is unknown, a uniform density function

can be used. If there is belief that the vehicle is located at

specific locations xk along the route, the initial probability

for those locations pk,0 should be set higher than the for the

rest of the state space.

E. MAP Estimation

The estimated location of the vehicle at every time step

will be that with the largest probability within the set of

possible locations, i.e., the maximum a posteriori (MAP)

estimate. From the update equation of the Bayes filter

algorithm, the MAP estimate is

Xt = arg max
k

(pk,t). (6)

V. EXPERIMENTAL RESULTS

We conducted our experiments using a test vehicle with

mounted video cameras operating on a 8.8 km test route

under varying environmental conditions.

A. Vehicle

Fig. 4 shows our evaluation vehicle sensor suite. Two

cameras were mounted on the roof of the vehicle, oriented

approximately 45 degrees to the left and right of directly

forward and configured to acquire 256 × 192 pixel images.

The vehicle is also equipped with a GPS sensor for map

generation and acquisition of ground truth data. Note that

GPS measurements are not used in our localization algo-

rithm. Vehicle velocity information is obtained from inertial

sensors.

B. Evaluation Route

For the purpose of analysis and evaluation, we selected

a complex, 8.8 km route that contains a variety of en-

vironments, ranging from urban to residential to parklike

settings (Fig. 2a). The route includes man-made and natural

structures: buildings, traffic signs, foliage, open spaces, and

multiple slopes, as well as moving objects such as vehicles,



pedestrians, cyclists, and motorcyclists. The trajectory makes

a loop, meaning that the vehicle must face all orientations

during the trajectory. This is important in order to test the

robustness of the method to illumination artifacts, such as

specularities made by direct sunlight exposure.

C. Storage and Processing Requirements

A full traverse requires storing and processing between 10
and 14 thousand images. The generation of a SURF database

from such a large amount of data makes it intractable to

access and match features in real time. Therefore, for the

generation of the database, we process and store SURF

features only for images that were obtained with at least 2 m

distance from each other. Observe that this is independent of

the value of the sampling factor ρ. This optimization reduces

the database to a practical size of approximately 1 GB.

At runtime, and in order to further reduce the computa-

tional requirements, we don’t evaluate every SURF feature

in the database but only those in a close neighborhood

of the current best position estimate of the vehicle. Such

a procedure is known as tracking, as opposed to global

localization. Tracking the current position of the vehicle has

the advantage that the estimation can be made robust, since

the probability of false positives decreases with the reduction

of the search space. On the other hand, the reduced search

space to consider is centered on our best position estimate. If

the position of the vehicle is not correctly estimated at any

point, the search space may not contain the real location

of the vehicle, and the estimation will not only fail, but

may diverge from the true solution. With all the above

simplifications, we are able to process the left and right video

data at 2 frames per second using a standard laptop.

D. Data Sets

The database used for the experimental results was ob-

tained by processing a sequence obtained on October 19,

2010 at 11:14 AM, which was a sunny day. The data set

contains significant shadowing and artifacts from the sun

appearing in the images. A maximum of 200 SURF features

per image were extracted. The SURF feature descriptors di,

together with their location li within the map and the velocity

of the vehicle si while acquiring the image, are stored in

a database D. The created map is shown in Fig. 2. The

evaluation data set was acquired nine days later on a cloudy

day at approximately the same time (11:57 AM). Due to the

cloudiness, the light in this sequence was more uniformly

distributed in the environment and was significantly different

from the first data set (Figs 6 and 7).

E. Localization Results

In this section, we demonstrate the efficiency of our

proposed Bayesian approach. The initial probability density

function p0 = {pk, 0} is initialized with a point mass distri-

bution on the ground truth position of the vehicle at the start

of the route. The location of the vehicle at each time step is

obtained from the MAP of the estimated probability density

function. The parameters used for the discrete Bayes filter are

σs = 1 m/s, zmatch = 0.01, zrand = 0.99, and ρ = 0.5 m.

For the tracking, we consider only those measurements at

a maximum distance of ±40 nodes (i.e., ±20 m) from the

current estimated position of the vehicle.

The localization results are shown in Fig. 5. The plots

corresponds to the localization results using the left and right

cameras. Each camera was considered independently, with

each one having its own Bayes filter. The high correlation

between both curves is an indication of the consistency of

the localization algorithm.

The average localization error was 2.68 m for the left

camera and 2.69 m for the right camera with a standard

deviation of 1.36 m in both cases. This is a excellent result

considering that: 1) visual information was only stored with

a minimum distance of 2 m between images; 2) the best

possible location estimate is constrained by the value of ρ,

which is 0.5 m; and 3) the ground truth was obtained with

GPS, which actually provides fairly noisy vehicle position

measurements.

Some error peaks in the plot of Fig. 5 are caused by

inaccuracies of the ground truth data. The image results for

the first peak marked in the plot is shown in Fig. 6a. As

it can be seen from the figure, there is a small error in the

localization of the vehicle, but the error is far from being

9 m, as the plot indicates. The second peak in the plot is

also incorrect. The visual result of that peak is shown in

Fig. 6b, from where it can be seen that the localization is

accurate. On the other hand, the fourth peak corresponding

to the plot of the left camera does actually correspond to a

wrong estimation of the vehicle position, as it can be seen

in Fig. 6d.

The third peak in the curve was produced because the

vehicle traveled different paths. A short street of our prede-

fined route was closed because of a construction site in the

south-west part of the route (see Figs 2d and 6c). We have

increased the tracking area in this part of the sequence to 100
m in order to allow the Bayesian method to find the actual

location once the vehicle rejoined its standard route. Observe

that this is a typical example of what is called kidnapped

robot problem.

The largest error in the estimation occurred for the left

camera around image numbers 9600 and 11100. Extreme

occlusion cases were the cause of these errors (Fig. 7d). In

both cases, the divergence was compensated by the Bayes

filter of the right camera.

VI. SUMMARY AND FUTURE WORK

In this paper, we have developed a method to localize an

autonomous vehicle using only visual inputs. The method

represents visual features using a topometric map and then

localizes against these features using a discrete Bayes filter.

Our experiments show that the method is capable of reliably

localizing a vehicle over long routes in real time. The

method succeeds despite challenging differences between

the reference database and the runtime conditions, including

significant differences in the illumination, occlusions, ground

cover due to seasonal change, and sky appearance (Fig. 7).
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Fig. 6. Localization results for the peaks marked in Fig. 5. The top images
(in each subfigure) show the views acquired by left and right camera of the
current position. The bottom images show the views obtained from the
database for the estimated vehicle location.

Although these initial results are promising, we are continu-

ing the development along several dimensions. First, we are

investigating the effects of long-term environmental changes

on the ability to localize. Second, we are considering short

term effects that can disrupt localization, such as temporary

occlusions from moving vehicles. Finally, we are analyzing

to expand the topology of the route from the single ring

structure evaluated here to the more general case of directed

graph with cycles. This involves the development of new

methods for the automated generation of topometric maps.
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