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Abstract

This paper describes how tracking and target selection
are used in two behavior systems of the XT-1 vision
architecture for mobile robots. The first system is
concerned with active tracking of moving targets and the
second is used for visually controlled spatial navigation.
We overview the XT-1 architecture and describe the role of
expectation-based template matching for both target
tracking and navigation.

The subsystems for low-level processing, attentional
processing, single feature processing, spatial relations, and
place/object-recognition are described and we present a
number of behaviors that can make use of the different
visual processing stages.

The architecture, which is inspired by biology, has been
successfully implemented in a number of robots which are
also briefly described.

1. Introduction

Many uses of active vision can be divided into the two
tasks of target selection and tracking. This is especially
true for visually guided goal-directed behavior. This article
describes the two most important goal-directed visual
behavior systems in the XT-1 (eXpectation based Template
matching) architecture [5]. This architecture is an attempt
to design a biologically inspired model of a number of
visual tasks such as orienting and anticipatory saccades,
smooth pursuit, landmark and place recognition, and
visually guided locomotion.

The first, of the systems described below, implements
object tracking and is currently used in the LUCS Active
Stereo Vision Head to find and track moving objects. The
second behavior system uses visual tracking to carry out
stimulus-approach (S-A) behavior [2, 7]. This second
behavior-system is currently used in the POLUCS robot as
an important component in spatial navigation. We believe
that these two behavior-systems, which share many
structural features, can be used to great utility in a number
of mobile robot tasks. Below, we describe how target
selection and tracking is implemented in each system.

2. Overview of the XT-1 architecture

The architecture can be divided into five conceptual
levels: low-level processing, attentional processing, single
feature processing, spatial relations, and place/object-
recognition (See figure 1, and [5]). At each higher level the
representations become more complex, but the processing
is fundamentally heterarchical: the information flow is
both bottom-up and top-down, as well as lateral.

The first level is concerned with low-level preprocessing
of video-images. A scale-space pyramidal edge-detection
constitutes the first stage at this level. In the second stage,
the difference between successive edge images is used as a
quick-and-dirty motion detection.

The second process level deals with attentional
processing based on the input from the first level. A
primitive attention module directs the attention of the
tracking subsystem to sudden motion in the environment
and triggers an orienting saccade toward it. When the
navigational subsystem is disengaged, this primitive
attention system is used to select targets for the tracking
system. This module is inhibited while the camera-head is
moving. A second parallel system directs attention to
regions with potentially good features in the image. At the
higher levels, these regions are used as candidate
landmarks.

Unlike the two previous levels which perform global
computations, only local features are processed at the third
level. The single feature processing is applied to regions of
the image that have been selected, either by the attentional
systems, or by top-down influences from higher levels.
The feature-correlator is the central component of this level
and is used both to compute optic flow and to locate
landmark and target features in the image. A search-field
module is used to control where in the image it is fruitful
to compute local feature correlation. The role of this
module is to reduce the amount of computation required by
the system.

At the fourth level, the spatial relations between
individual features are used to represent landmarks in the
navigational subsystem. Such collections of features can
also be sent to the tracking subsystem when the robot



needs to pursue a goal. When the tracking system acts on
its own, the optic flow calculated at the lower level
controls a segmentation process where a region of
homogeneous motion is selected as target.

Finally, at the fifth level, the angular relations between
landmarks come together to form the representation of
places. Such relations can be seen as second order-spatial
relation, i. e., relations between collections of features
which themselves are grouped with their spatial relations.
Note that using this scheme, no object recognition or
complicated segmentation is necessary to categorize a
place. To a first approximation, it appears that also object
recognition is a process at this level.

The top-down influences between the levels of the
architecture are used to direct the computations at each
lower level toward regions of the image with the largest
expected amount of information. For example, the place-
module generates expected landmarks to look for in the
scene. The landmark module, in turn, generates
expectations of the features that are likely to found in the
image. This speeds up the computations considerably in
most cases.

3. Object tracking

Two processes are involved in tracking a moving target.
The first is to find the target in the image, and the second
is to control the motion of the camera head. Many different
approaches are possible in both these areas. In our earlier
systems, the target was found  and tracked using simple
motion detection [3, 4]. This requires that the camera must
be still when the target is to be detected since it cannot
distinguish between target motion and self motion. The
requirement that the camera must be still forced us to use a
design where the head would follow the object using a
succession of small saccade motions. In between the
saccades, the camera was still and attempted to spot the
target again. The length of each saccade was proportional
to the distance from the centre of the camera image to the
centre of the target. Given that the delay between each
sampled image is not to long, this system would
successfully track a moving object.
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Figure 1. Overview of the XT-1 vision architecture.



If the target is moving sufficiently fast compared to the
speed of the camera, it is possible to track a target to some
extent despite the self motion. This approach was used in
our earlier LUCSOR robot to make it approach a waving
hand or to pursue a moving person [3]. When many
moving objects are present, however, this system more or
less breaks down. It also generates very jerky movements
in the camera head since the head is constantly stopped
only to be started again a moment later.

A much better tracking obviously results if the camera
follows the target continuously without stopping. In this
case, however, it will no longer be possible to use motion
detection to find the target. This is the approach taken in
the XT-1 architecture where a number of interwoven
processes are required to find and track a moving target.

3.1. Target selection

Studies of biological systems suggest a number of ways
to select targets for visual tracking. The most important
selection behavior is based on the so called orientation
reaction [2, 6]. This is a reaction found in most animals
with some level of sensory sophistication. Basically, the
role of this reaction is to direct the sensory apparatus of
the animal toward the source of an unexpected event in the
environment. The simplest form of visual orienting
reaction is triggered by the on-set of motion in the visual
field. In animals with movable eyes, the reaction can be
divided into two components [8]. First, the eyes make a
fast saccade toward the center of motion in the image.
Subsequently, a recognition process that can be more or
less complex decides whether the source of the motion
information is to be considered interesting or not. If not,
the eyes return to their initial position. Otherwise they
remain at the potential target.

Second, a decision is made on whether the head should
turn toward the motion or not. If the source of the motion
is too far away from the forward direction of the head. The
head is turned while the eyes compensate for the head
movement until the target is straight ahead of both the
eyes and the head.

In some cases, this sequence of movements is followed
by a more or less complete body turn toward the direction
of the head. This idea was used in the LUCSOR robot to
make it follow a moving person [3]. First the two-degrees
of freedom head would track the visual motion, and
thereafter, the robot body would track the direction of the
camera head during forward locomotion.

The result of the orienting reaction is thus to move a
potential target to the center of the visual field. Typically,
this reaction is multi-modal [8]. For example, an
unexpected sound may trigger an orienting reaction that
will direct the eyes toward the source of the sound.
Similarly, in an animal with movable ears, a sudden visual
stimulus may turn the ears in its direction. [1] describes a
neural network model of how the required multi-sensory
mappings can be learned automatically.

In the object tracking part of the XT-1 architecture,
target selection is performed in a way similar to its

biological counterpart. After the initial edge detection
stage, a primitive motion detection is performed by
comparing two successive edge-images  (See figure 1). The
amount of change at each pixel is used to construct a
primitive attention field across the image. The amount of
attention at a region of the image increases with increased
primitive motion. In the subsequent processing stages, the
amount of computational resources allocated to each region
of the image is proportional to the amount of primitive
attention it receives.

The primitive attention map is also used to generate
orientation movements toward a potential target object.
The selection of the target for the orienting movement in a
multi-sensory robot is further described in [1].

Once the target is in the center of the visual field, it is
possible to segment the moving object from the
background. In the XT-1 architecture, this is done using an
attention-driven visual-flow mechanism.

First, the direction of the visual flow is calculated at the
locations in the image where a sufficient level of attention
has been allocated. The optic-flow computations are thus
data-driven by inputs from a low-level primitive attention
system. The optic-flow computations are based on a
correlation method where features are correlated in a
restricted search area, the search field, between two
successive images. The search field is intimately connected
with expectations since expectations of the target location
and movement govern the shape of the search field. For
example, when an object moves fast in a certain direction,
the search field enlarges in that direction. This is an
adaptive regulation which makes it possible for the
tracking process to follow fast moving objects.

Second, in the segmentation module, local motion
vectors are grouped together based on proximity and
direction to form motion segments. In this stage, optic-
flow is used to make figure-from-ground separation. This
process integrates optic-flow information and categorize
regions of the image with coherent motion. To do this, a
neural network classifies motion-directions into eight
categories. Neighbouring regions with the same direction
preference are evaluated as a group and the largest group is
selected as the object of interest.

In future versions of the architecture, we intend to
include a subsystem above this level which will categorize
the selected segment as a particular object, but much
further research is necessary before this is possible in more
than a few restricted cases.

3.2. Tracking

When a target has been selected, the next task is to track
it with the camera head. In the current implementation of
the architecture, only a single feature is used to represent
the object (but see section 5 below). We have
experimented with object representations using collections
of features, but since those attempts did not increase the
performance of the tracking system, we have temporarily
stayed with the single feature representation.



Figure 2. The LUCS Active Stereo Vision Head.
The head has four degrees-of-freedom (pan,

tilt, 2¥vergence) and is controlled by the
vision-architecture described in the text.

The tracking in the input image is a simple process.
For each new input image, the previous object feature is
searched for in the image using a correlation method. The
previous location of the target controls the size and
location of the search field used by the feature correlator.
This information constitutes a top-down influence on the
correlation process.

The complicated part of the visual tracking lies in the
control of the camera head. The LUCS Active Stereo
Vision Head is a four degrees-of-freedom camera head for
stereo vision (figure 2). The present head is the third
camera head developed at Lund University Cognitive
Science, and the first to use stereo vision. The head is very
cheap and is intended for use with a low cost computer
system such as a 486 with fairly limited capabilities (The
total cost of the prototype is less than 6000 SEK ≈ $900).
This has constrained the possible designs of both the
hardware and software and it should be kept in mind below
that the computer system used is very modest.

Currently, only two of the four degrees-of-freedom are
used for object tracking. To simplify the tracking process,
only the pan and tilt servos are used although the control
system will be extended to the vergence servos in the near
future. The positions of the servos are updated at a
frequency of 25Hz. In theory, it would be possible to
control the positions of the servos directly, but since the
mechanical construction is fairly unreliable, feedback
control is used instead.

It turned out to be impossible to use a single control
rule both when the target is moving slowly and when it is
jumping over the image at a high speed. Again, we used
the biological counterpart as an inspiration. Studies of the
human visual system have shown that object tracking is
often divided into two types of eye movements: smooth
pursuit and saccades. In smooth pursuit, the eyes track the
target with almost constant velocity. Using saccades,

however, the eyes jump in small steps from the previous
location of the target to the next.

The selection of the appropriate behavior is determined
by the distance to the target. If it is close to the middle of
the retina, smooth pursuit is used. When it moves too far
off the center of the image, a saccade is generated which
tries to make up for the lag in the tracking. This suggested
to us the use of a switching control strategy where smooth
tracking is performed as long as the target is close to the
middle of the image. When it moves out of this region, a
saccade is performed that tries to directly place the target in
the center of view.

To summarize, the target selection and tracking divides
the visual field into three regions: peripheral, intermediate,
and focal (figure 3). In the peripheral region, an orienting
reaction is generated towards the center of motion in the
image as described above. The other two regions are used
in object tracking to select whether to perform a saccade or
smooth pursuit. When the target is in the focal region,
smooth pursuit is performed, and if it moves to the
intermediate region, a saccade is generated.

4. Approach and pursuit behavior

Object tracking in itself is of no other use than to keep
the target close to the center of the video-image. Tracking
becomes more interesting, however, when it is used to
control the locomotion of a robot. Given that a robot head
which is mounted on a mobile robot tracks an object, the
direction of the camera head can easily be used to guide an
approach behavior toward the object. Behaviors of this
type are called stimulus-approach behaviors since they
make the robot, or an animal, approach a specific stimulus
[2, 7]. They are the simplest examples of goal-directed
behaviors.

Peripheral Vision

Intermediate
Vision

Focal
Vision

Figure 3. The three regions of the input image.
Peripheral vision. Sudden motion in this region
will generate an orienting reaction toward the

center of motion. Intermediate vision. A target
found in this region will generate a saccade

toward its location in the image during
tracking. Focal vision. A target in this region

can be followed using smooth pursuit.



A special kind of stimulus-approach behavior results
when the whole mobile robot moves toward a moving
target. Such a behavior can be called a pursuit movement.
In the LUCSOR robot, pursuit  behavior was implemented
using a distributed scheme [3]. The camera head would
track the target independently of the body of the robot. The
body, in turn, would receive information of the current
direction of the head relative to the body and would try to
track that direction.

A similar method will be used in the stereo head in the
future to control the movements of the individual servos.
First, the target is tracked in the image from the dominant
camera. Second, the vergence servo for that camera tries to
track the location of the target. Simultaneously, the second
camera will track the feature in the center of the image
from the dominant camera. This will take care of the
vergence control. Third, the pan servo will track the
average direction of the two cameras. Finally, the body of
the mobile robot will track the direction of the camera
head.

Using this scheme, each servo can be controlled in a
distributed manner with only very limited knowledge about
the other parts of the system. To avoid oscillations, each
subsequent stage must move at a decreasing speed. The
body must move slower than the head, which in turn must
move slower than the cameras.

In an environment with sufficiently many potential
targets, stimulus-approach behavior can be used for
navigation since any locomotion sequence can be seen as a
sequence of stimulus-approach behaviors [2, 7]. This idea
is used in the navigational system of the XT-1
architecture. This requires that the target selected at each
time is one that makes the robot approach its final goal.

5. Landmark selection and tracking in
spatial navigation

In the XT-1 architecture, the most complex tracking is
used within the navigational system. Here, the targets used
are landmarks rather than objects. We define a landmark as
any collection of visual features with constant, or almost
constant, spatial relations to each other and the
environment. A collection of features together with their
spatial relations makes up an elastic template for each
landmark.

Like object tracking, spatial navigation rests on the two
processes of target selection and tracking. This part of the
architecture is currently running in the POLUCS robot
(figure 4) which can successfully move toward an initially
invisible goal using only visual input. Like the camera
head described above, very limited computational resources
are needed.

Figure 4 The POLUCS robot that navigates
using visual landmark recognition and

sequences of stimulus-approach behaviors.

5.1. Landmark selection

The target selection in the navigational system is more
complex than that for the object tracking system. While
the previous system only uses a single feature as target,
the navigational system uses several landmarks, that is,
collections of features, at each time. These landmarks are
selected in one of three ways.

First, the robot always keeps one current target
landmark that has already been selected. This is the target
toward which the stimulus-approach behavior directs the
robot. If this target landmark is lost for some reason, the
robot performs an orienting behavior which tries to locate
any known landmark around the robot. When and if such a
landmark is found, it is selected as the current target.

Second, at each location, the robot expects to find other
landmarks closer to the goal that it can approach. A set of
such expected landmarks are always generated by the
navigational system and if any of these potential targets
are found in the image, it is selected as the new target.

Third, the expected landmarks are stored together with
their expected angle from the current forward direction of
the robot. When an expected landmark is too far to the side
to be found within the input image, an anticipatory saccade
is performed toward the expected angle of the landmark. If
it is found, it is selected as the new target. This behavior
makes it possible for the robot to turn 90 degrees or more
when necessary.



5.2. Tracking landmarks

The landmark tracking in the navigational system differs
in many respects from that in the object tracking system.
Most importantly, a landmark is made up of many features
together with their spatial relations. As a consequence, the
feature correlator has a much more resource demanding task
to perform. To calculate the location of the landmark in
the video image, it is necessary to look for a whole
number of features. Again, expectations of the feature
locations are used to speed up the process. When the first
feature is found in the image, its location constrains the
search for the next feature, and so on. Using this scheme
together with the target selection mechanisms described
above, we can comfortably run the landmark tracking
system in real time on a standard Pentium computer.

In the current implementation of the system, the camera
on the mobile robot is stationary. Instead, the whole body
of the robot turns to track a landmark. This works well
when the target landmark is fairly straight ahead, but is
very cumbersome when anticipatory saccades need to be
performed. In future systems, the robot will be equipped
with a movable head similar to the one described above
which will allow the robot to look around and navigate
much faster.

By connecting several landmarks in series, the robot is
able to perform a sequence of stimulus-approach behaviors
that leads it from any initially learned location to a
specified goal. Currently, the system has only been tested
with a single track from start to goal, but the extension of
the system to more advanced spatial representation will not
increase the burden of the visual system very much.
Balkenius [2] describes the neural network model of spatial
navigation that will be incorporated in the POLUCS robot
in the future.

6. Discussion

Both the object tracking system and the navigational
system shares many important properties. They can both
be divided into subsystems for target selection and
tracking, but these systems are implemented in rather
different ways. Nevertheless, the similarity between these
two systems suggest that it may be possible to use the
same mechanisms for both processes.

For example, the multi-feature aspect of the landmark
tracking system could probably be adapted for object
tracking. While this may seem obvious, we have not yet
managed to use a multi-feature approach to object tracking.
The reason for this is that the environment around a
moving object does not move with the object.

Since there is no way for the tracking algorithm to
know which part of the features belong to the target and
which parts belong to the background, they can easily
stick to the background instead of moving with the target.
This makes it very likely that the features fall off the
target when it turns or passes over, for example, a textured
background. To solve this problem a more advanced
segmentation is required. This is not a problem in the

navigational system since a landmark has the property that
it does stick to the background. If not, it will not function
very well as a landmark. For example, it is not a very
good idea to use a person standing in a room as a
landmark.

On the other hand, it is not possible to use motion
information to detect landmarks since the navigating robot
is constantly in motion. To use the same mechanism for
target selection in both the object tracking and the
landmark tracking system, it would be necessary to
subtract self-motion from externally generated motion in
image. This is a fairly complex task for the very limited
computational resources we are using. It may not be too
complicated in theory, but in practice it is very hard. If
this problem can be successfully solved, however, it would
be possible to merge the two systems completely.

A different extension of the architecture would be to
investigate tracking in behaviors that are not goal-directed
in the direct sense described above. This includes behaviors
such as corridor and wall following. In these behavoirs, the
robot is guided by the tracked target but does not move
directly toward it.
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