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Abstract: This paper describes a visual tracking control law of an Unmanned Aerial Vehicle 
(UAV) for monitoring of structures and maintenance of bridges. It presents a control law based 
on computer vision for quasi-stationary flights above a planar target. The first part of the UAV’s 
mission is the navigation from an initial position to a final position to define a desired trajectory 
in an unknown 3D environment. The proposed method uses the homography matrix computed 
from the visual information and derives, using backstepping techniques, an adaptive nonlinear 
tracking control law allowing the effective tracking and depth estimation. The depth represents 
the desired distance separating the camera from the target. 
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1. INTRODUCTION 
 
Visual servoing techniques concern the problem of 

using a camera to provide information of position and 
attitude of a robotic system as well as to help tracking 
a certain predetermined trajectory. Micro aerial 
vehicles (called also Unmanned Aerial Vehicles) are 
often required to execute complex tasks (such as 
inspection or long time hovering) in unknown 
environments. To enable autonomous detection and 
navigation of these UAV, almost all control theories 
are built around a vision system by using visual 
servoing as a control method [1,2]. A typical vision 
system will include a camera, an Inertial Navigation 
System (INS) in order to compute the attitude, 
orientation and velocity of the vehicle. Many vision 
applications involving mobile robotic systems have 
been considered [3-5]. Most UAV’s are underactuated 
systems, their coupled dynamics add a complexity to 
visual control problems. Many control laws were 
presented for aerial systems such as helicopters [6-9] 
for outdoor use as well as indoor operations [1,10]. 
Visual servoing techniques could be classified into 
three main classes [11]: Position Based Visual Servo 
(PBVS or 3D), Image Based Visual Servo (IBVS or 
2D) and the Homography Based Visual Servo (HBVS 
or 2 1

2 D). 3D visual servoing needs a full reconstruct-
tion of the target pose with respect to the camera, it 
leads to a state estimation problem in the cartesian 

frame [12-14] and a classical state-space control 
design [6,8,9]. The main drawback of the PBVS 
methods is the need of a perfect knowledge of the 
target geometrical model [11], hence it is highly 
sensitive to camera calibration errors. The second 
class, known as 2D visual servoing, aims to control 
the dynamics of features directly in the image plane. 
Many extensions to the classical IBVS methods have 
been proposed for the control of non-linear dynamic 
systems, as the robust backstepping [1,15] and 
optimal control techniques [16].  

This paper is based on the homography method 
(2 1

2 D visual servoing) presented in [17,18] that 
consists of combining 2D and 3D visual features. The 
advantages of this method are that an accurate model 
of the environment is not required and the attractive 
domain is not limited. More precisely, a homography 
matrix is estimated from the planar feature points 
extracted from two images (corresponding to the 
current and desired poses), and from this matrix, we 
estimate the relative position (translation vector and 
rotation matrix) of these two views. Many works have 
been in this line of thinking for robot manipulators 
[19-21] and wheeled mobile robots [22]. 
Homography-based strategies have succeeded to 
regulate the system’s pose (position/orientation 
couple) to a constant position defined by a reference 
image. However using only one reference image 
results in some difficulties because the reference 
depth is an unobservable parameter [23]. In such cases, 
decoupling translation and rotation components could 
be useful. However, if depth information is needed 
another solution must be considered: let the system 
track a desired trajectory and design an adaptive 
update law to estimate depth information.  

Due to new image technologies and advances in 
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control, many researches have been interested lately to 
Trajectory Tracking. In [24], the authors proposed a 
visual tracking controller based on a linearized system 
of equations and Extended Kalman Filtering (EKF) 
techniques. Mahony and Hamel [25] considered a 
visual servo controller by tracking parallel linear 
visual features using nonlinear backstepping 
techniques.  

This work could be viewed as an extension to the 
work done in [22] where the authors considered the 
kinematic equations of a mobile robot. In this paper, 
we consider a general mechanical dynamical model of 
a flying robot capable of quasi-stationary maneuvers. 
We will then derive a control law that forces the 
trajectory to track a prerecorded image sequences 
(desired trajectory). This desired trajectory could be 
taken from an operator-driven teach pendant step done 
preliminary. At each step the current image and the 
desired image will be compared to a reference image 
by homography matrices. To determine the full 
translation vector, we will estimate the reference 
depth information using the proposed adaptive control 
law. Unlike methods using EKF (Extended Kalman 
Filter), the Lyapunov-like analysis is based on the 
nonlinear dynamical model of the flying vehicle. The 
main contribution of this paper is a new method for 
visual servo controlling of a UAV in an unknown 
environment after an analysis of prerecorded image 
sequence. The method does not need any special 
predetermined landmarks, in addition the depth is 
estimated using an adaptive law. The major drawback 
is the lack of experimental results. In addition, the 
gravity cosine direction, which is an inertial measure, 
is computed from visual features under the condition 
that the gravity vector is orthogonal to the target. The 
outline of the paper is as follows: we present the 
mathematical model of a flying UAV in Section 2, and 
the camera modelling is derived in Section 3. The 
tracking control law for the complete dynamics and 
the adaptive update law are presented in Section 4. We 
provide simulations and results discussion in Section 5.  

 
2. UAV DYNAMIC EQUATIONS 

 
In this section, we will derive mechanical equations 

for a general model of a UAV’s in hover or quasi-
stationary flights.  

Let { , , }x y zF E E E∗ =  denote a right-handed inertial 
or world frame such that Ez denotes the vertical 
direction downwards into the earth. Let ξ ( , , )x y z=  
denote the position of the center of mass of the object 
in the frame F∗ relative to a fixed origin in .F∗  Let 

1 2 3{ , , }a a aF E E E=  be a (right-hand) body fixed frame. 
The orientation of the airframe is given by a rotation 

,R F F∗: →  where (3)R SO∈  is an orthogonal rotation 

matrix. 
Let V F∈  denote the linear velocity and Ω F∈  

denote the angular velocity of the airframe both 
expressed in the body fixed frame. Let m  denote the 
mass of the rigid object and let 3 3×∈ℜI  be the 
constant inertia matrix around the center of mass 
(expressed in the body fixed frame F ). Using Newton 
formalism, it yields the following dynamic model for 
the motion of a rigid object:  

,RVξ =      (1) 
Ω ,mV m V F= − × +    (2) 

sk(Ω),R R=     (3) 
Ω× Ω Γ,Ω = − +I I    (4) 

where F  is the vector forces and Γ  is the vector 
torques. The notation sk(Ω)  denotes the skew-
symmetric matrix such that sk(Ω) Ω×v v=  for the 

vector cross-product × and any vector 3.v∈ℜ  The 
vector force F  is defined as follows :  

3 3.TF mgR e Te= −    (5) 

In the above equation, g  is the acceleration due to 
gravity, and T  represents the thrust magnitude, it is 
also the unique control input for the translational 
dynamics.  

 
3. CAMERA MODELLING AND 

HOMOGRAPHY MATRIX 
 
In this section we will present a brief discussion of 

the camera projection model and then introduce the 
homography relations. 

 
3.1. Projection models 

Visual information is a projection from the 3D 
world to the 2D camera image surface. The pose of 
the camera determines a rigid body transformation 
from the current camera fixed frame F to the reference 
frame F∗  and subsequently from the desired image 
frame dF  to .F∗  One has  

ξ,P RP∗ = +     (6) 

ξ ,d d dP R P∗ = +     (7) 

as a relation between the coordinates of the same 
point in the current body fixed frame ( P F∈ ) and the 
desired body frame ( d dP F∈ ) with respect to the 

world frame ( P F∗ ∗∈ ). And where ξ  and ξd  are 

expressed in the reference frame .F∗  
Remark 1: There are 2 kinds of projection used in 
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vision: the spherical and the flat projections. The 
spherical projection identifies the projection plane as 
the spherical surface and the image point p  is given 
by 1 ( , , ).Pp X Y Z| |=  However, in the flat projection 

the point is projected on a plane with its 
image 1 ( , , ).Zp X Y Z=  Indeed, since equality in 
projective geometry is an equality ‘between 
directions’, both points are on the same ray emanating 
from the origin and are thus not distinguished. In the 
following analysis, we will assume a calibrated 
camera but we do not distinguish between spherical or 
flat projections.  

 
3.2. Planar homography 

Let ,ip  ,idp  and ip∗  be the 3 images of the same 

point 'P  on the target when the camera is aligned 
respectively with the frames ,F  ,dF  and .F∗  

Assuming we have a planar surface π  containing 
a set of target points, the plane could be expressed as: 

{ }3 *π : 0 ,TP R n P d∗ ∗ ∗= ∈ − =  

where d∗  is the distance of the plane to the origin of 
.F∗  ,n  ,dn  and n∗  are the normal unit vectors to 

respectively the actual, the desired and the reference 
image planes. Let us define ξTt R= −  (resp. 

ξTt R= − ). From (6) and (7) and since all target 
points lie in a single planar surface π,  one has 

*
α , 1,..., ,

T
T

i i
tnp R p i k
d

∗
∗

⎛ ⎞
= + =⎜ ⎟⎜ ⎟

⎝ ⎠
  (8) 

*
α , 1,..., .

T
T d

id d d i
t n

p R p i k
d

∗
∗

⎛ ⎞
= + =⎜ ⎟⎜ ⎟

⎝ ⎠
 (9) 

The factors α  and αd  are positive constants 

depending on the unknown parameter d∗  which is 
the distance between the target and the desired plane. 

The projective mapping ( )*
:

TT tn
d

H R ∗= +  (respec-

tively 
*

:
T

dt nT
d d d

H R ∗
⎛ ⎞= +⎜ ⎟
⎝ ⎠

) is called a homography 

matrix, it relates the images of points on a target plane 
when viewed from two different poses (defined by the 
coordinate systems F  and dF  with respect to F∗ ). 
More details on the homography matrix could be 
found in [18]. The homography matrix contains the 
pose information ( ,ξ)R  (resp. ( ,ξ )d dR ) of the 
camera whose extraction can be quite complex. Many 

algorithms could be found in the literature (see for 
example [18,26,27]). 

One quantity d
d

r ∗=  (resp. dd
d d

r ∗= ) could be 

calculated easily. the equation of the plane π  could 
be written as ( , )n P d=  for the usual inner product 

( , ).⋅ ⋅  Thus ( , )Tn R P t d∗ + =  giving ( , )Tn R P d∗ =  

.Tn t−  Therefore, ( , ) TRn P d n t∗ = − and it follows 
that: 

,

.T

n Rn

d d n t

∗

∗

=

= −
 

With changing the plane representation, we get the 
following relation: 

1 .
Tn tr

d∗
= +

 

It can also be shown that 

det( ) det( ) (1 ) .
T T

T t n tnH R r
d d

∗

∗ ∗
= + = + =

 

Similarly, we have det( ) .d dH r=  
 

4. TRACKING CONTROL STRATEGY 
 
In the following analysis, it is assumed that the 

camera fixed frame coincides with the body frame. 
Let 'P  denote the observed point of reference of the 
planar target, and P∗ be the representation of 

'P in the 
camera fixed frame at the reference position (Fig. 1). 

The control objective is to ensure that the 
coordinate frame F tracks the desired frame Fd (i.e., 
the current image point p tracks the desired image 
point dp ). The tracking problem reduces to find a 
control input depending on the measured and the 
estimated states such that the errors 

1

2

( ) ( ),

( ) ( )

T

T
d d

e t P R P

e t P R P

∗

∗

= −

= −
 

are asymptotically stable. 
Note that the two error terms 1( )e t  and 2 ( )e t  are 

not defined in terms of visual information. Following 
[18], the camera can be controlled in the image space 
and in the Cartesian space at the same time. They 
propose the use of three independent visual features, 
such as the image coordinates of the target point 
associated with the ratio r delivered by determinant of 
the homography matrix. Consequently, let us consider 
the reference point 'P  lying in the reference plan π  
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and define the scaled cartesian coordinates using 
visual information as follow: 

*
.

T

r T
n pP rp
n p

∗
=  

Knowing that 

*
,

T

T
P n p r
P n p

∗

∗
|| ||

=
|| ||

 

it follows that we can reformulate the errors 1( )e t  
and ( )de t  in terms of the available visual information 

 
*

,
T

T
T

n pε rp R p
n p

∗⎛ ⎞
∗⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

= −    (10) 

 
*

.
T

T
d d d dT

d d

n pε r p R p
n p

∗⎛ ⎞
∗⎜ ⎟

⎜ ⎟⎜ ⎟
⎝ ⎠

= −   (11) 

From the above discussion and from (1) the 
dynamics of the errors are given by 

 Ω× ε ρ ,Vε = − −    (12) 
 Ω× ε ρ ,d d dVε = − −    (13) 

where 1ρ
P∗|| ||

=  is an unknown parameter, it will be 

estimated by an adaptive update law using a double 
estimator [28]. The term dV  which is the velocity of 
the vehicle along the desired trajectory is an unknown 
term and could not be measured, however dε  can be 
determined from the visual information. The desired 
trajectory will be used as a feed-forward in the control 
strategy. Note that to ensure the identification of ρ,  
the following assumptions must be satisfied: 
1. The desired visual error dε  is fourth order 

differentiable. This is due to the appearance of 
,dε ,dε

(3) ,dε  and (4)
dε  in the controller 

expression and the adaptive update law. For the 
sake of our analysis, the first three derivatives of 

dε  must be known. 
2. The desired visual error derivative ,dε  does not 

vanish for all 0.t >  
3. Let (ξ ( ) ( ))d dt R t,  be the desired trajectory which 

includes orientation information expressed in the 
inertial space. This trajectory (as well as the 
velocity Vd) ould not be computed since the 
distance between the mobile and the target is not 
measurable. Rather than working with the 
complete trajectory, one may choose Rd to be the 
identity rotation and then compute the visual 
variable .dε  

4. To compute the gravity cosine direction from 
visual information, we assume that the plane π  is 
perpendicular to the line of sight of the camera 
when aligned to the reference frame .F∗  In other 
terms, 3.n e∗ =  

Smooth desired visual error functions dε  must be 
generated from the prerecorded image sequence. dε  
could be a smooth function of time and therefore 
derivatives would be easily extracted (cf. assumption 
14). 

We choose a given desired trajectory, and then look 
to a control law that achieves regulation of the error 

1(δ )T
d dε R R ε= −  towards zero. Recalling assump-

tion 14, the desired rotation will be chosen to be the 
identity rotation, then the error 1δ  could be written as 

1δ .T
dε R ε= −  

In addition to the basic tracking problem, it is desired 
that the control law estimates online the unknown 
value of ρ.  

The dynamics of 1δ  is given by 

11 Ω×δ ρ .T
dV R εδ = − − −  

Following a standard trick in adaptive control when 
there is an unknown input gain, two dynamic variable 
estimates are introduced: ρ̂  being the estimator of 

ρ  and b̂  the estimator of 1
ρ .b =  This procedure is 

used to avoid the division by ρ̂  which could take a 
null value. We will choose a virtual input velocity Vv 
defined as 

1
1

ˆ( δ ).v T
d

k
V b R

m
ε= −  

 

Fig. 1. Camera projection diagram showing the
reference frame ( F∗ ), the current frame (F)
and the desired frame ( dF ). 
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With this choice, one has 

1 21 Ω×δ ρδ ρ ,T v
dR Vεδ = − − − −  

where the error 2δ
vV V= −  is the difference 

between the velocity and its virtual input. Let 
ˆρρ ρ= −  and 1

ρ
ˆb b= −  be the estimation errors. 

With the above choice of virtual control ,vV  the 
time derivative of the error 1δ  becomes 

1 1
1 1 2 11 Ω×δ δ ρδ ρ δ ε ,T

d
k kb R
m mδ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − − − + − (14) 

Define the following storage function 

2 2
1 1 1

1

1 1δ ρ , γ 0
2 2γ

S b= | | + >  

since the unknown constant ρ  is positive, 1S  is 
positive definite in 1δ  and .b  Taking the time 
derivative of S1 one has 

21 1
1 1 2 1 11

1

ρ ˆδ ρδ δ ρ δ δ ε .
γ

T T T
d

k kb R bbS m m
⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

= − − + − −  

Cancelling the terms containing the unknown error 
,b  we choose the following dynamics for the 

estimator b̂  

 1
1 1 1

ˆ γ δ δ T
d

kb R
m

ε
⎛ ⎞= −⎜ ⎟
⎝ ⎠

   (15) 

with the above choice, one has 

21
1 1 21 δ ρδ δ .Tk

S m
= − −  

Deriving 2δ  and recalling (15) 

2
vV V= −δ  

2 1
2 2 3 1

ˆ ˆΩ×δ δ δ δ ,
k k

b V
m m

ρ ρ= − − + + +   (16) 

where the error 3δ
vF F= −  is the difference 

between the input and the virtual input Fv which is 
given by 

1

ˆ
vF b

k
= 1

1( δ )T
d

k
R

m
ε− 1 ˆ ˆk

b V
m

ρ− 1 ˆ T
d

k
bR

m
ε−  

2
1 2

ˆ ˆδ δ .T
d

k
bR

m
ρε− + −              (17) 

At this stage we define a second storage function S2 

2 2 2
2 1 2

1

1 1 1δ δ ρ
2 2 2γ

S b= | | + | | +  

and its time derivative given by 

2 21 1 1
1 2 1 2 2 3 22

ˆδ δ δ δ δ δ δ .T Tk k k
b VS m m m

ρ ρ= − − − + +  

In terms of the error variables, the 2δ  derivative may 
be written as 

 2 1
2 1 2 32 ˆΩ×δ δ δ δ .

k k
b V

m m
ρ ρδ = − + − + +  (18) 

To continue with the backstepping procedure, we 
derive (17) to get the dynamics of 3δ  which is quite 
complex due to its dependance on many parameters, 
we will present the time derivative of 3δ  in a simple 
form 

 33 ˆΩ×δ Ω ,F F Y X Aρ ρδ = − + × + − − −  (19) 

where X is the part related to the unknown variable 
,ρ  Y  gathers almost all known or measurable terms 

and A  is the part multiplying ˆ.ρ  ,X  ,Y  and A  
are functions of all known parameters (see the 
appendix for complete equations). 

Applying two operations (derivation and cross 
multiplying byΩ ) to (5) and then adding 

3 3Ω sk( )Ω.F F Te T e× + = − +  

Choosing the virtual input to be: 

 3 3 2 3 3ˆ[ sk( )Ω] δ δ .vTe T e A Y kρ− + = + − −  (20) 

Knowing that 3 3ker[sk( )]e e∈ , the two terms of the 
above equation are independent, we will separate 
them by multiplying (20) by 3e  

 ( )3 2 3 3ˆ δ δ ,TT e A Y kρ= − + − −   (21) 

and then multiply (20) by the projection plane 

3 3 3Π I T
e e e= −  

 ( )33 2 3 3ˆ[ sk( )Ω] Π δ δ .v
eT e A Y kρ= + − −  (22) 

The storage function associated with this stage of 
backstepping is 

22 2 2 2
3 1 2 3

1 2

1 1 1 ρ 1δ δ δ .
2 2 2 2γ 2γ

S b ρ= | | + | | + | | + + (23) 

Taking the derivative of S2 yields 
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2 2 231 2
3 1 2 3 3 4

1
2 3 1 2

2

δ δ δ δ δ

1ˆ ˆδ (δ δ δ ) ,
γ

T

T T T

kk kS
m m m
k b V X
m

ρ ρ ρρ

= − | | − | | − | | +

+ − + −
 (24) 

where 4δ  is the input error 

4 3 3δ sk( )Ω [ sk( )Ω] .vT e T e= −  

Due to the special form of the error 4δ ,  it could be 
shown that this error lies on the plane 

3
Π ,e  in other 

terms we have the relation: 
3 4 4π δ δ .e =  

To cancel the contribution of the parametric error 
ρ  in (24), we choose the dynamics of ρ̂  as: 

 1
2 2 1 2 3

ˆˆ γ δ δ δ δ .T T Tk b V X
m

ρ ⎡ ⎤= − −⎢ ⎥⎣ ⎦
  (25) 

The last step of this procedure is to compute the 
torque control. For the sake of simplicity, we will use 
the high gain control. Consider the derivative of 4δ  

4 3 3δ sk( )(Ω Ω ) sk( )( ).v vT e T e= − + Ω −Ω  

We will choose a control law for Ω  with a gain high 
enough to neglect the effect of vΩ  (with this strategy, 

we can assume that 0vΩ = ). Let 

 
3 34Π Π (Ω Ω )v

e e
Tk
T

⎛ ⎞
Ω = − + −⎜ ⎟

⎝ ⎠
  (26) 

with 1 2 3Ω [Ω Ω Ω ] .v v v v T=  The first two terms 1Ω
v  

and 2Ωv  could be computed from (22), and 3Ω  will 
be extracted from (28). Recalling (4), the torque input 
Γ  is introduced via the derivative Ω  

 Γ Ω× Ω.= Ω +I I    (27) 

The dynamical structure of this kind of flying 
vehicle and the appropriate backstepping control 
strategy requires only the control inputs ,T  Γ  to 
achieve the desired trajectory tracking. This leaves the 
input 3Ω  free to stabilize the yaw speed from the 
following equation: 

 3 5 3 5Ω , 0.k kΩ = − >    (28) 

Then the proposed control algorithm will achieve 
the monotonic decrease of the following Lyapunov 
function 

2 2 2 2
1 2 3 4

1 1 1 1δ δ δ δ
2 2 2 2

L = | | + | | + | | + | |  

2 22
3

1 2

ρ 1 1Ω
2γ 2γ 2b ρ+ + +  

and its time derivative given by 

 

2 2 231 2
1 2 3

2 24
4 3 4 5 3

δ δ δ

δ δ δ ΩT

kk kL
m m m
k k
m

= − | | − | | − | |

− | | + −
  (29) 

the above equation is negative definite if the following 
conditions are satisfied 

 1 0,k >     (30) 
 2 0,k >     (31) 
 3 0,k >     (32) 

 
2

4
3

.
2
mk
k

>     (33) 

Theorem 1: Consider the dynamics of the flying 
vehicle. Let the control T  and Γ  be given by (21) 
and (27). In addition let all the conditions given by 
(30) to (33) be satisfied. Therefore, the proposed 
control algorithm ensures the asymptotic convergence 
of the error 1δ  and the exponential stability of 3Ω .  
In addition, the control law ensures the convergence 
of the parameters to their true values: 

0 0.b ρ→ , →  

Proof: Applying Lyapunov argument in (29), one 
can conclude that the errors 1δ ,  2δ ,  3δ ,  and 4δ  
converge asymptotically to zero. From (28), one can 
ensure the exponential stability of 3Ω .  

To prove the convergence of the estimator 
parameter errors b  and ,ρ  we appeal to LaSalles 
principle. The invariant set is contained in the set 
defined by the conditions δ 0i ≡  ( 1,2,3,4).i =  

Recalling (15) and (25), it follows that ˆ 0b =  and 
ˆ 0ρ =  on the invariant set. Taking the expressions of 

the derivatives of the errors 1δ  and 2δ ,  it follows that 

 ρ 0,dbε =     (34) 

 2ˆ 0.dbρ ε =     (35) 

From (34) and knowing that ρ  is a constant, and 
under the assumption that 0dε ≠  on the invariant 
set, we ensure the convergence of b  to zero. In this 
way b̂  will converge to a constant .b  The second 
equation (35) ensures the convergence of ρ  to zero 

( b̂ is a constant). Consequently, this ensures the 
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asymptotical convergence of b̂  and ρ̂  to their true 
values. 

 
5. SIMULATION RESULTS 

 
In this section, we present some simulation 

examples in order to evaluate the effectiveness of the 
proposed control and estimation laws. The experiment 
considers a desired trajectory defined in the image 
plane as a circle centered at (0,0,5)  and of radius 1. 
The points idp  and the corresponding parameters 
were computed off line before the start of the tracking 
mission. The reference image is composed from five 
points: four on the vertices of a planar square and one 
on its center. The available information are the pixel 
coordinates of the five points observed by the camera. 

The simulations are based on the X4-flyer model 
which is a system consisting of four individual 
electric fans, linked to a rigid cross frame as shown in 
Fig. 2. It operates as an omnidirectional UAV. Vertical 
motion is controlled by collectively increasing or 
decreasing the power of all four motors. Lateral 
motion is achieved by controlling differentially the 
motors generating a pitch/roll motion of the airframe 
that inclines the collective thrust and leads to lateral 
acceleration. Yaw control is derived from the reactive 
couple applied to the airframe due to rotor drag. 

The parameters used for the dynamical model are 

1.5,m =  diag[0.4,0.4,0.6]=I  and 10.g =  Initially, 
the robot is assumed to hover at a position (5,4,12).  
It is assumed that the plane of the reference image is 
parallel with the target plane at a distance 3b =  (i.e., 
ρ 1 3= / and the unit vector normal to the target plane is 

equal to the direction of the gravity 3n e∗ =  as 
mentioned in assumption 4). 

The first simulation is a counter-example where we 
consider a stabilization mission. Using the same 
proposed law, the position of the flying vehicle will 
successfully converge to the desired position (Fig. 3). 

However, from Fig. 4, the depth information given by 
ρ̂  and b̂  could not be estimated (due to the fact 
that 0dε = ). In this case, the desired trajectory is a 
fixed point given by the coordinates of the desired 
arrival point (0,0,5).  

The second simulation example considers a desired 
trajectory defined in the image plane as a circle 
centered at (0,0,5) and of radius 1. For the adaptive 
update law, the initial guesses of 0ρ̂  and 0b̂  are as 
follows: 

0

0
0

ˆ 0.25,
1ˆ .
ˆb

ρ

ρ

=

=
 

The control design used the following gains, 

1 2

3 4

1 2

2.5, 1.2,
2.0, 2.5,

γ 1 400, γ 1 80.

k k
k k

= =
= =

= / = /

 

 

 
Fig. 2. A prototype X4-flyer. 

Fig. 3. Evolution of the position of the mobile
throughout a stabilization mission. 

 

Fig. 4. Divergence of the two estimations: ρ̂

(dashed line) and b̂  (solid line) during a
stabilization mission. 
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The gains 1γ  and 2γ  of the adaptive law must be 
chosen very carefully. Some tuning must be 
performed to choose the control gains then adjust the 
adaptive gains. 

In Figs. 5, 6, and 7 are the results of the simulation 
described above. From Fig. 5, it is clear that the 
position of the vehicle is tracking smoothly a circle 
contained in the desired plan 5.z =  Fig. 6 describes 
the trajectory of the image in the image plane, it 
shows more explicitly the convergence to the desired 
trajectory defined by complete circles of radius 1.r =  
Fig. 7 shows us the convergence of the estimations of 
ρ  and b  to the exact values ( 1

3ρ =  and 3b = ). 
To show the robustness of our estimators, a white 

noise was added to the image acquisition process to 
simulate the input noise as well as the disturbances 
encountered in an unknown environment (low and 
high frequencies). Fig. 8 shows the results of the two 
estimations ρ̂  and b̂  along the mission. It may be 
seen that the added noise did not degrade the 
performance of the estimators. The two estimations 
converge, with some fluctuations, to their true values. 

In these simulations, the desired trajectory was 
totally known and incorporated in the algorithm as a 
circle equation. We did not take into account the point 
matching problem and all its subsequent difficulties as 
feature points loss and reselecting new points. We thus 
assume here that all features points must always stay 
in the camera’s field of view. 

 
6. CONCLUSION 

 
In this paper, we have proposed a control law to 

force an unmanned aerial vehicle (UAV) to track a 
desired trajectory defined by a series of prerecorded 
images. Euclidean homographies were extracted using 
three views: a current image, the corresponding 
desired image and a unique reference image. 
Extracting the pose parameters from the 
homographies will leave us with unknown parameters 
depending on the depth from the target to the 

Fig. 5. Evolution of the position of the mobile. 
 

 
Fig. 6. Evolution of the point on the image plane. 
 

Fig. 7. Evolution of 2 estimations: ρ̂  (dashed line)

and b̂  (solid line). 
 

Fig. 8. Evolution of 2 estimations: ρ̂  (dashed line)

and b̂ (solid line) with added white noise to
image acquisition. 
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reference image. Thus, an adaptive update law for the 
estimation of this unknown constant parameter was 
also presented. Simulations are provided to prove the 
convergence of the estimator as well as the controller.  

This work is part of a research direction in the 
autonomous UAV’s flights where a big work still to be 
done. In addition, the linear and rotational velocities 
of the vehicle must be accurately known, in this field 
the authors are also working on nonlinear state 
observers. 

 
APPENDIX 

This appendix gives the complete equation of the 
derivative of 3δ .  Recalling (19) 

33 ˆΩ×δ Ω× F F Y X Aρ ρδ = − + + − − − . 

The three expressions of , ,A X  and Y  are given 
by 

1
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The notation ( )ˆ k
b  and ( )ˆ u

b  denote respec-tively 

the known (or measurable) and unknown parts of the 

expression of ˆ.b  In other terms, b̂ could be written as 

b̂ = ( )ˆ k
b + ( )ˆ .

u
bρ  
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