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Abs t rac t .  Passive sensing of human hand and limb motion is important 
for a wide range of applications from human-computer interaction to 

athletic performance measurement. High degree of freedom articulated 

mechanisms like the human hand axe difficult to track because of their 
large state space and complex image appearance. This article describes 

a model-based hand tracking system, called DigitEyes, that can recover 

the state of a 27 DOF hand model from ordinaly gray scale images at 

speeds of up to 10 tiz. 

1 Introduction 

Sensing of human hand and limb motion is important  in applications from 

Human-Computer  Interaction (HCI) to athletic performance measurement. Cur- 

rent commercially available solutions are invasive, and require the user to don 

gloves [15] or wear targets [8]. This paper describes a noninvasive visual hand 

tracking system, called DigitEyes. We have demonstrated hand tracking at speeds 

of up to 10 Hz using line and point features extracted from gray scale images of 

unadorned, unmarked hands. 

Most previous real-time visual 3D tracking work has addressed objects with 

6 or 7 spatial degrees of freedom (DOF)[5, 7]. We present tracking results for 

branched kinematic chains with as many as 27 DOF (in the case of a human hand 

model). We show that simple, useful features can be extracted from natural im- 

ages of the human hand. While difficult problems still remain in tracking through 

occlusions and across complicated backgrounds, these results demonstrate the 

potential  of vision-based human motion sensing. 

This paper has two parts. First, we describe the 3D visual tracking prob- 

lem for objects with kinematic chains. Second, we show experimental results of 

tracking a 27 DOF hand model using two cameras. 

2 The Articulated Mechanism Tracking Problem 

Visual tracking is a sequential estimation problem: given an image sequence, 

recover the time-varying state of the world [5, 7, 14]. The solution has three basic 
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components: state model, feature measurement, and state estimation. The state 

model specifies a mapping from a state space, which characterizes all possible 

spatial configurations of the mechanism, to a feature space. For the hand, the 

state space encodes the pose of the palm (seven states for quaternion rotation 

and translation) and the joint angles of the fingers (four states per finger, five for 

the thumb), and is mapped to a set of image lines and points by the state model. 

A state estimate is calculated for each image by inverting the model to obtain 

the state vector that best fits the measured features. Features for the unmarked 

hand consist of finger link and tip occluding edges~ which are extracted by local 

image operators. 

Articulated mechanisms are more difficult to track than a single rigid ob- 

ject for two reasons: their state space is larger and their appearance is more 

complicated. First, the state space must represent additional kinematic DOFs 

not present in the single-object case, and the resulting estimation problem is 

more expensive computationMly. In addition, kinematic singularities are intro- 

duced that are not present in the six DOF case. Singularities arise when a small 

change in a given state has no effect on the image features. They are currently 

dealt with by stabilizing the estimation algorithm. Second, high DOF mech- 

anisms produce complex image patterns as their DOFs are exercised. People 

exploit this observation in making shapes from shadows cast by their hands. 

To reduce the complexity of the hand motion, we employ a high image ac- 

quisition rate (10-15 Hz depending on the model) which limits the change in the 

hand state, and therefore image feature location, between frames. As a result, 

state estimation and feature measurement are local, rather than global, search 

problems. In the state space, we exploit this locality by linearizing the nonlin- 

ear state model around the previous estimate. The resulting linear estimation 

problem produces state corrections which are integrated over time to yield an 

estimated state trajectory. In the image, the projection of the previous estimate 

through the state model yields coordinate frames for feature extraction. We cur- 

rently assume that the closest available feature is the correct match, which limits 

our system to scenes without occlusions or complicated backgrounds. 

Previous work on tracking general articulated objects includes [14, 10, 9]. 

In [14], Yamamoto and Koshikawa describe a system for human body tracking 

using kinematic and geometric models. They give an example of tracking a single 

human arm and torso using optical flow features. Pentland and Horowitz [10] 

give an example of tracking the motion of a human figure using optical flow 

and an articulated deformable model. A much earlier system by O'Rourke and 

Badler [9] analyzed human body motion using constraint propagation. 

In addition to the work on general articulated object tracking, several au- 

thors have developed speciMized techniques for visual human motion analysis. 

This previous work differs from ours in two ways. First, markers or gloves are 

often used to simplify motion analysis [4]. Second, analysis is typically restricted 

to a subset of the totM hand motion, such as a set of gestures [2] or rigid motion 

of the palm [1]. In [4], Dorner describes a system for interpreting American Sign 

Language from image sequences of a single hand. Dorner's system uses the full 
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set of the hand's DOFs, and employs a glove with colored markers to simplify 

feature extraction. Darrell and Pentland describe a system for learning and rec- 

ognizing dynamic hand gestures in [2]. Their approach avoids the problems of 

hand modeling, but doesn't address 3D tracking. In other hand-specific work, 

Kang and Ikeuchi describe a range sensor-based approach to hand pose estima- 

tion [6], used in their Assembly Plan from Observation system. See [11] for a 

more extensive bibliography. 

In order to apply the DigitEyes system to specific applications, such as ItCI, 

two practical requirements must be met. First, the kinematics and geometry of 

the target hand must be known in advance, so that a state model can be con- 

structed. Second, before local hand tracking can begin, the initial configuration 

of the hand must be known. We achieve this in practice by requiring the subject 

to place their hand in a certain pose and location to initiate tracking. A 3D 

mouse interface based on visual hand tracking is presented in [11]. 

In the sections that follow, we describe the DigitEyes articulated object track- 

ing system in more detail, along with the specific modeling choices required for 

hand tracking. 

3 S t a t e  M o d e l  f o r  A r t i c u l a t e d  M e c h a n i s m s  

The state model encodes all possible mechanism configurations and their cor- 

responding image feature patterns as a two-part mapping between state and 

feature spaces. The first part is a kinematic model which captures all possible 

spatial link positions, while the second part is a feature model which describes 

the image appearance of each link shape. 

3.1 K inema t i c  Models :  Appl ica t ion  to  t h e  H u m a n  H a n d  

We model kinematic chains, like the finger, with the Denavit-Hartenburg (DH) 

representation, which is widely used in robotics [13]. Since feature models require 

geometric information not captured in the kinematics, the Dtt description of each 

link is augmented with an additional transform from the link frame to a shape 
frame, which describes the position of the visible link geometry in space. A solid 

model in the shape frame generates features through projection into the image. 

We model the hand as a collection of 16 rigid bodies: 3 individual finger 

links (called phalanges) for each of the five digits, and a palm. From a kinematic 

viewpoint, the hand consists of multi-branched kinematic chains attached to a 

six DOF base. We make several simplifying assumptions in modeling the hand 

kinematics. First, we assume that each of the four fingers of the hand are planar 

mechanisms with four degrees of freedom (DOF). The abduction DOF moves the 

plane of the finger relative to the palm, while the remaining 3 DOF determine 

the finger's configuration within the plane. Fig. 1 illustrates the planar finger 

model. Each finger has an anchor point, which is the position of its base joint 

center in the frame of the palm, which is assumed to be rigid. The base joint 

is the one farthest (kinematically) from the finger tip. We use a four parameter 
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Fig, 1. Kinematic models, illustrated for fourth finger and thumb. The arrows illustrate 
the joint axes for each link in the chain. 

quaternion representation of the palm pose, which eliminates rotational singu- 

larities at the cost of a redundant parameter. The total hand pose is described 

by a 28 dimensional state vector. 

The thumb is the most difficult digit to model, due to its great dexterity and 

intricate kinematics. We currently employ the thumb model used in Rijpkema 

and Girard's grasp modeling system [12] (see Fig. 1). They were able to obtain 

realistic animations of human grasps using a five DOF model. Dtt parameters 

for the first author's right hand, used in the experiments, can be found in [11]. 

Real fingers deviate from our modeling assumptions in three ways. First, most 

fingers deviate slightly from planarity. This deviation could be modeled with 

additional kinematic transforms, but we have found the planar approximation 

to be adequate in practice. Second, the last two joints of the finger, counting 

from the palm outwards, are driven by the same tendon and are not capable of 

independent actuation. It is simpler to model the DOF explicitly, however, than 

to model the complicated angular relationship between the two joints. The third 

and most significant modeling error is change in the anchor points during motion. 

We have modeled the palm as a rigid body, but in reality it can flex. In gripping 

a baseball, for example, the palm will conform to its surface, causing the anchor 

points to deviate from their rest position by tens of millimeters. Fortunately, for 

free motions of the hand in space, the deviation seems to be small enough to be 

tolerated by our system. 

The modeling framework we employ is general. To track an arbitrary articu- 

lated structure, one simply needs its DH parameters and a set of shape models 

that describe its visual appearance. Within the subproblem of hand tracking, 

this allows us to develop a suite of hand models whose DOFs are tailored to 

specific applications. 

3.2 Feature  Models:  Descr ipt ion  of  Hand Images  

The output of the hand state model is a set of features consisting of lines and 

points generated by the projection of the hand model into the image plane. 
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Fig. 2. Features used in hand tracking are illustrated for finger links 1 and 2, and the 
tip. Each infinite line feature is the projection of the finger link central axis. 

Each finger link, modeled by a cylinder, generates a pair of lines in the image 

corresponding to its occlusion boundaries. The bisector of these lines, which 

contains the projection of the cylinder central axis, is used as the link feature. The 

link feature vector [ab p] gives the parameters of the line equation a x + b y - p  = O. 

Using the central axis line as the link feature eliminates the need to model the 

cylinder radius or the slope of the pair of lines relative to the central axis, which is 

often significant near the finger tips. We use the entire line because the endpoints 

are difficult to measure in practice. Fig. 2 shows two link feature lines extracted 

from the first two links of a finger. 

Each finger tip, modeled by a hemisphere, generates a point feature by pro- 

jection of the center into the image. The finger tip feature vector [x y] gives the 

tip position in image coordinates, as illustrated in Fig. 2. The total hand ap- 

pearance is described by a (3m + 2n)-dimensional vector, made up of link and 

tip features, where m and n are the number of finger links and tips, respectively, 

in the model. 

Other feature choices for hand tracking are possible, but the occlusion con- 

tours are the most powerful cue. Hand albedo tends to be uniform, making 

it difficult to use correlation features. Shading is potentially valuable, but the 

complicated illuminance and self-shadowing of the hand make it difficult to use. 

4 Feature Measurement: Detection of Finger Links and 

Tips 

Local image-based trackers are used to measure hand features. These trackers 

are the projections of the spatial hand geometry into the image plane, and they 

serve to localize and simplify feature extraction. A finger link tracker, drawn 

as a "T'-shape, is depicted along with its measured line feature in Fig. 3. The 

stem of the "T" is the projection of the cylinder center axis into the image. The 

image sampling rate ensures that the true feature location is near the projected 

tracker. 

Once the link tracker has been positioned, line features are extracted by 

sampling the image in slices perpendicular to the central axis. For each slice, the 

derivative of the 1D image profile is computed. Peaks in the derivative with the 
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Fig. 3. Image trackers, detected features, and residuals for a link and a tip are shown 

using the image from Fig. 2. Slashed lines denote the link residual error between the 
T-shaped tracker and its extracted line measurement. Similarly, the tip tracker (carat 

shape) is connected to its point feature (cross) by a residual vector. 

correct sign correspond to the intersection of the slice with the finger silhouette. 

The extracted intensity profile and peak locations for a single slice are illustrated 

in Fig. 4. Line fitting to each set of two or more detected intersections gives a 

measurement of the projected link axis. If only one silhouette line is detected for 

a given link, the cylinder radius can be used to extrapolate the axis line location. 

Currently, the length of the slices (search window) is fixed by hand. Finger tip 

positions are measured through a similar procedure. 

Using local trackers and sampling along lines in the image reduces the pixel 

processing requirements of feature measurement, permitting fast tracking. 

5 State Est imation for Articulated Mechanisms 

State estimation proceeds by making incremental state corrections between frames. 

One cycle of the estimation algorithm goes as follows: The current state esti- 

mate is used to predict feature locations in the next frame and position feature 

trackers. After image acquisition and feature extraction, measured and predicted 

feature values are compared to produce a state correction, which is added to the 

current estimate to obtain a new state estimate. The difference between mea- 

sured and predicted states is modeled by a residual vector, and the state correc- 

tion is obtained by minimizing its magnitude squared. A high image sampling 

rate allows us to linearize the nonlinear mapping from state to features around 

an operating point, which is recomputed at each frame, to obtain a linear least 

squares problem in the model Jacobian. The following subsections describe the 

residual model and estimation algorithm in detail. 

5.1 R e s i d u a l  Mode l :  L ink  a n d  T ip  I m a g e  A l i g n m e n t  

The tip residual measures the Euclidean distance in the image between predicted 

(ci) and measured (tl) tip positions. The residual for the ith tip feature is a 
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Fig. 4. A single link tracker is shown along with its detected boundary points. One 

slice through the finger image of a finger is also depicted. Peaks in the derivative give 

the edge locations. 

vector in the image plane defined by 

v (q) = c (q) - , ( 1 )  

where ci is the projection of the tip center into the image as a function of the 

hand state. 

The link residual is a scalar that measures the deviation of the projected 

cylinder axis from the measured feature line. It is illustrated for a single finger 

link in Fig. 3. The residual at a point along the axis equals the perpendicular 

distance to the feature line. We incorporate the orthographic camera model into 

the residual equation by setting m = [ab 0] t and writing 

/i(q) = m*pi(q) --p , (2) 

where pi(q) is the 3D position of a point on the cylinder link in camera coordi- 

nates, and [a b p] are the line feature parameters. The total link residual consists 

of one or more point residuals along the cylinder axis (at the base and tip), each 

given by (2). Note that  both residuals are linear in the model point positions. 

The feature residuals for each link and tip in the model are concatenated into 

a single residual vector, R(q). If the magnitude of the residual vector is zero, 

the hand model is perfectly aligned with the image data. 

5.2 Estimation Algorithm: Nonlinear Least Squares 

The state correction is obtained from the residual vector by minimizing H(q) = 
1 II R(q)  II 2. We employ the Levenburg-Marquardt (LM) algorithm for nonlinear 

least squares problems [3]. The source of nonlinearity in the state model for 

articulated mechanisms is trigonometric terms in the forward kinematic model. 

The other source of nonlinearity, inverse depth coefficients in the perspective 

camera model, is absent in our orthographic formulation. 

Let R(clj ) be the residual vector for image j .  The LM state update equation 

is given by 

qj+l = qj -- [J~Jj -k- S] - IJ~Rj  , (3) 
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where J j  is the Jacobian matrix for the residual Rj ,  both of which are evaluated 

at qj. S is a constant diagonal conditioning matrix used to stabilize the least 

squares solution. J j  is formed from the link and tip residual Jacobians. The same 

basic approach was used by Lowe in his rigid body tracking system [7]. 

In the remainder of this section, we derive the link Jacobian and discuss its 

computation. The tip Jacobian derivation proceeds identically, and can be found 

in [11]. To calculate the link Jacobian we differentiate (2) with respect to the 

state vector, obtaining 

Old(q) _ m'Opi(q) (4) 

0q 0q 

The above gradient vector for link i is one row of the total Jacobian matrix. 

Geometrically, it is formed by projecting the kinematic Jacobian for points on 

the link, Opi(q)/Oq, in the direction of the feature edge normal. 

The kinematic ~acobian in (4) is composed of terms of the form 0pi /0qi ,  

which arise frequently in robot control. As a result, these Jacobian entries can 

be obtained directly from the model kinematics by means of some standard 

formulas (see [13], Chapter 5). There are three types of Jaeobians, corresponding 

to joint rotation, spatial translation, and spatial rotation DOFs. All points must 

be expressed in the frame of the camera producing the measurements. For a 

revolute (rotational) DOF joint qj we have 

0p___~ = 
• ( w -  , ( 5 )  

where wj is the rotation axis for joint j expressed in the camera frame, and d~ 

is the position of the joint j frame in camera eoords. There will be a similar 

calculation for each camera being used to produce measurements. 

The Jacobian calculation for the palm DOFs must reflect the fact that palm 

motion takes place with respect to the world coordinate frame, but must be 

expressed in the camera frame. We obtain the rotation and translation compo- 

nents: 
~ = ~ = x , (6) 
0v Re and 0qj 

where v is the palm velocity with respect to the world frame and qj is a compo- 

nent of the quaternion specifying palm rotation. In addition, R~ is the camera 

to world rotation and J~ is a Jacobian mapping quaternion velocity to angular 

velocity, with [.]j denoting the j th  column of a matrix. 

5.3 Tracking wi th  Mul t ip le  Cameras  

The tracking framework presented above generalizes easily to more than one 

camera. When multiple cameras are used, the residual vectors from each camera 

are concatenated to form a single global residual vector. This formulation can 

exploit partial observations. If a finger link is visible in one view but not in the 

another due to occlusion, the single view measurement is still incorporated into 

the residual, and therefore the estimate. 
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6 Experimental  Results: Hand Tracking With Two 

Cameras 

The DigitEyes system was used to track a full 27 DOF hand model, using two 

camera image sequences. Because the hand motion must avoid occlusions for 

successful tracking, the available range of travel is not large. It is sufficient, 

however, to demonstrate recovery of articulated DOFs in conjunction with palm 

motion. Figure 5 (at the end of the paper) shows sample images, trackers, and 

features from both cameras at three points along a 200 frame sequence. The two 

cameras are set up about a foot and a half apart with optical centers verging near 

the middle of the tracking area. Fig. 6 shows the estimated model configurations 

corresponding to the sample points. In the left column, the estimated model is 

rendered from the viewpoint of the first camera. In the right column, it is shown 

from an arbitrary viewpoint, demonstrating the 3D nature of our tracking result. 

The estimated state trajectories for the entire sequence are given in Figs. 7 and 

8. 

Direct measurement of tracker accuracy is difficult due to the lack of ground 

t ru th  data. We plan to use a Polhemus sensor to measure the accuracy of the 6 

DOF palm state estimate. Obtaining ground truth measurements for joint angles 

is much more difficult. One possible solution is to wear an invasive sensor, like the 

DataGlove, to obtain a baseline measurement. By fitting the DataGlove inside 

a larger unmarked glove, the effect of the external finger sensors on the feature 

extraction can be minimized. 

7 Implementation Details 

The DigitEyes system is built around a special board for real-time image process- 

ing, called IC40. Each IC40 board contains a 68040 CPU, 5 MB of dual-ported 

RAM, a digitizer, and a video generator. The key feature of this board is its abil- 

ity to deliver digitized images to processor memory at video rate with no compu- 

tational overhead. This removes an important  bottleneck in most workstation- 

based tracking systems. Ordinary C code can be compiled and down-loaded to 

the board for execution. 

In the multicamera implementation, there is an IC40 board for each cam- 

era. The total computation is divided into two parts: feature extraction and 

state estimation. Feature extraction is done in parallel by each board, then the 

extracted features are passed over the VME bus to a Sun workstation, which 

combines them and solves the resulting least squares problem to obtain a state 

estimate. Estimated states are passed over the Ethernet to a Silicon Graphics 

Indigo 2 workstation for model rendering and display. 

8 Conclusion 

We have presented a visual tracking framework for high DOF articulated mech- 

anisms, and its implementation in a tracking system called DigitEyes. We have 
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demonstrated real-time hand tracking of a 27 DOF hand model using two cam- 

eras. We will extend this basic work in two ways. First, we will modify our feature 

extraction process to handle occlusions and complicated backgrounds. Second, 

we will analyze the observability requirements of articulated object tracking and 

address the question of camera placement. 
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Fig. 5. Three pairs of hand images from the continuous motion estimate plotted in 

Figs. 7 and 8. Each stereo pair was obtained automatically during tracking by storing 

every fiftieth image set to disk. The samples correspond to frames 49, 99, and 149. 

Fig. 6. Estimated hand state for the image samples in Fig. 5, rendered from the Camera 

0 viewpoint (left) and a viewpoint underneath the hand (right). 
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Fig .  7. Estimated palm rotation and translation for motion sequence of entire h~nd. 

Q~-Q~ are the quaternion components of rotation, while Tx-T~ are the translation. 

The sequence lasted 20 seconds. 
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are similar to the first. Refer to Fig. 1 for variable definitions. 


