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Visual Tracking of Human Visitors under

Variable-Lighting Conditions for a Responsive

Audio Art Installation
Andrew B. Godbehere, Akihiro Matsukawa, Ken Goldberg

Abstract—For a responsive audio art installation in a skylit
atrium, we introduce a single-camera statistical segmentation
and tracking algorithm. The algorithm combines statistical
background image estimation, per-pixel Bayesian segmentation,
and an approximate solution to the multi-target tracking prob-
lem using a bank of Kalman filters and Gale-Shapley matching.
A heuristic confidence model enables selective filtering of tracks
based on dynamic data. We demonstrate that our algorithm has
improved recall and F2-score over existing methods in OpenCV
2.1 in a variety of situations. We further demonstrate that
feedback between the tracking and the segmentation systems
improves recall and F2-score. The system described operated
effectively for 5-8 hours per day for 4 months; algorithms are
evaluated on video from the camera installed in the atrium.
Source code and sample data is open source and available in
OpenCV.

I. INTRODUCTION

We present the design of a computer vision system that

separates video into “foreground” and “background”, and

then segments and tracks people in the foreground while

being robust to variable lighting conditions. The system we

present ran a successful interactive audio art installation

called “Are We There Yet?” from March 31 - July 31

2011 at the Contemporary Jewish Museum in San Francisco,

California. Using video collected during the operation of the

installation, under variable illumination created by myriad

skylights, we demonstrate a significant performance improve-

ment over existing methods in OpenCV 2.1. The system runs

in real-time (15 frames per second), requires no training

datasets or calibration, and uses only a couple seconds of

video to initialize.

Our system consists of two stages: first is a probabilis-

tic foreground segmentation algorithm that identifies pos-

sible foreground objects using Bayesian inference with an

estimated time-varying background model and an inferred

foreground model, described in Section II. The background

model consists of nonparametric distributions on RGB color-

space for every pixel in the image. The estimates are adap-

tive; newer observations are more heavily weighted than

old observations to accommodate variable illumination. The

second portion is a multi-visitor tracking system, described in

Section III, which refines and selectively filters the proposed

foreground objects. Selective filtering is achieved with a

heuristic confidence model, which incorporates error covari-

ances calculated by the multi-visitor tracking algorithm. For

the tracking subsystem, in Section III, we apply a bank of

Kalman filters [18] and match tracks and observations with

the Gale-Shapley algorithm [13], with preferences related to

the Mahalanobis distance weighted by the estimated error

covariance. Finally, a feedback loop from the tracking subsys-

tem to the segmentation subsystem is introduced: the results

of the tracking system selectively update the background im-

age model, avoiding regions identified as foreground. Figure

1 illustrates a system-level block diagram. Figure 2 offers an

example view from our camera and some visual results of

our algorithm.

The operating features of our system are derived from

the unique requirements of an interactive audio installation.

False negatives, i.e. people the system has not detected, are

particularly problematic because they expect a response from

the system and become frustrated or disillusioned when the

response doesn’t come. Some tolerance is allowed for false

positives, which add audio tracks to the installation; a few add

texture and atmosphere. However, too many false positives

creates cacophony. Performance of vision segmentation algo-

rithms is often presented in terms of precision and recall [30];

many false negatives corresponds to a system with low recall.

Many false positives lowers precision. We discuss precision,

recall, and the F2-score in Section I-D.

Section IV contains an experimental evaluation of the

algorithm on video collected during the 4 months the system

operated in the gallery. We evaluate performance with recall

and the F2-score [16], [24]. Our results on three distinct

tracking scenarios indicate a significant performance gain

over the algorithms in OpenCV 2.1, when used with the

recommended parameters. Further, we demonstrate that the

feedback loop between the segmentation and tracking sub-

systems improves performance by further increasing recall

and the F2-score.

A. Related Work

The structure of the computer vision system we propose

is inspired by algorithms in OpenCV 2.1 [5], [8], [17], [22],

which offers a variety of probabilistic foreground detectors,

including both parametric and nonparametric approaches,

along with several multi-target tracking algorithms, utilizing,

for example, the mean-shift algorithm [10] and particle filters

[28]. Another approach applies the Kalman Filter on any

detected connected component, and doesn’t attempt collision



Figure 2. Example output of our algorithm. Left: Raw image from gallery during operation. Center: Extracted foreground regions. Right: Bounding boxes
of tracked foreground objects and annotated confidence levels.
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Figure 1. Algorithm Block Diagram. An image I(k) is quantized in
color-space, and compared against the statistical background image model,

Ĥ(k), to generate a posterior probability image. This image is filtered with
morphological operations and then segmented into a set of bounding boxes,
M(k), by the connected components algorithm. The Kalman filter bank

maintains a set of tracked visitors Ẑ(k), and has predicted bounding boxes

for time k, Z̆(k). The Gale-Shapley matching algorithm pairs elements of

M(k) with Z̆(k); these pairs are then used to update the Kalman Filter

bank. The result is Ẑ(k), the collection of pixels identified as foreground.
This, along with image I(k), is used to update the background image model

to Ĥ(k + 1). This step selectively updates only the pixels identified as
background.

resolution. We evaluated these algorithms for possible use

in the installation, although they exhibited low recall, i.e.

people in the field of view of the camera were too easily lost,

even while moving. This problem arises from the method by

which the background model is updated: every pixel of every

image is used to update the histogram, so pixels identified as

foreground pixels are used to update the background model.

The benefit is that a sudden change in the appearance of the

background in a region is correctly identified as background;

the cost is the frequent misidentification of pedestrians as

background. To mitigate this problem, our approach uses

dynamic information from the tracking subsystem to filter

results of the segmentation algorithm, so only the probability

distributions associated with background pixels are updated.

The class of algorithm we employ is not the only class

available for the problem of detecting and tracking pedestri-

ans in video. A good overview of the various approaches is

provided by Yilmaz et al. [40]. Our foreground segmentation

algorithm is derived from a family of algorithms which model

every pixel of the background image with probability distri-

butions, and use these models to classify pixels as foreground

or background. Many of these algorithms are parametric [9],

[14], leading to efficient storage and computation. In outdoor

scenes, mixture-of-gaussian models capture complexity in

the underlying distribution that single gaussian distribution

models miss [17], [31], [34], [41]. Ours is nonparametric:

it estimates the distribution itself rather than its parameters.

For nonparametric approaches, kernel density estimators are

typically used, as distributions on color-space are very high-

dimensional constructs [11]. To efficiently store distributions

for every pixel, we make a sparsity assumption on the

distribution similar to [23], i.e. the random variables are

assumed to be restricted to a small subset of the sample space.

Other algorithms use foreground object appearance mod-

els, leaving the background unmodeled. These approaches

use support-vector-machines, AdaBoost [12], or other ma-

chine learning approaches in conjunction with a training

dataset to develop classifiers that are used to detect objects of

interest in images or videos. For tracking problems, pedes-

trian detection may take place in each frame independently

[1], [37]. In [29], these detections are fed into a particle-

filter multi-target tracking algorithm. These single-frame de-

tection approaches have been extended to detecting patterns

of motion, and Viola et al. [38] show that incorporation

of dynamical information into the segmentation algorithm

improves performance. Our algorithm is based on different

operating assumptions, notably requiring very little training

data; initialization uses only a couple seconds of video.

A third, relatively new approach, is Robust-PCA [7],

which neither models the foreground nor the background,

but assumes that the video sequence may be decomposed

as I = L + S, where L is low-rank and S is sparse. The

relatively constant background image generates a “low-rank”

video sequence, and foreground objects passing through the

image plane introduce sparse errors into the low-rank video

sequence. Candes et al. [7] demonstrate the efficacy of this

approach for pedestrian segmentation, although the algorithm

requires the entire video sequence to generate the segmenta-

tion, so it is not suitable for our real-time application.

Generally, multi-target tracking approaches attempt to find

the precise tracks that each object follows, to maintain

identification of each object [4]. For our purposes, this is

unnecessary, and we avoid computationally intensive ap-

proaches like particle-filters [28], [29], [39]. Our sub-optimal

approximation of the true maximum likelihood multi-target

tracking algorithm allows our system to avoid exponential

complexity [4] and to run in real-time. Similar object-to-track

matching utilizing the Gale-Shapley matching algorithm is

explored in [2].

Other authors have pursued applications of control algo-



rithms to art [3], [15], [19], [20], [21], [32], and the emerging

applications signal a growing maturity of control technology

in its ability to coexist with people.

B. Notation

We consider a length N image sequence, denoted {I}N−1
k=0 .

The kth image in the sequence is denoted I(k) ∈ Cw×h,

where w and h are the image width and height in pixels,

respectively, and C = {(c1, c2, c3) : 0 ≤ ci ≤ q − 1} is

the color-space for a 3-channel video. For our 8-bit video,

q = 256, but quantization described in Section II-A will alter

q. We downsample the image by a factor of 4 and use linear

interpolation before processing, so w and h are assumed to

refer to the size of the downsampled image. Denote the pixel

in column j and row i of the kth image of the sequence as

Iij(k) ∈ C. Denote the set of possible subscripts as I ≡
{(i, j) : 0 ≤ i < h, 0 ≤ j < w}, referred to as the “index

set”, and (0, 0) is the upper-left corner of the image plane.

For this paper, if A ⊂ I, let Ac ⊂ I and A
⋃

Ac = I. Define

an inequality relationship for tuples (x, y) as (x, y) ≤ (u, v)
if and only if x ≤ u and y ≤ v.

The color of each pixel is represented by a random

variable, Iij(k) ∼ Hij(k), where Hij(k) : C → [0, 1] is

a probability mass function. Using a “lifting” operation L,

map each element c ∈ C to unique axes of R
q3

with value

[Hij(k)](c) to represent probability mass functions as vectors

(or normalized histograms), a convenient representation for

the rest of the paper. Note that ~1T Hij(k) = 1, when

conceived of as a vector; ~1 ∈ R
q3

. Denote an estimated

distribution as Ĥij(k). Let Ĥ(k) = {Ĥij(k) : (i, j) ∈ I}
represent the background image model, as in Figure 1.

A foreground object is defined as an 8-connected col-

lection of pixels in the image plane corresponding to a

visitor. Define the set of foreground objects at time k as

X(k) = {χn ⊂ I : n < R(k)}, where χn represents an 8-

connected collection of pixels in the image plane, and R(k)
represents the number of foreground objects at time k. Let

F (k) =
⋃

χ∈X(k) χ be the set of all pixels in the image asso-

ciated with the foreground. We define the minimum bounding

box around each contiguous region of pixels with the upper

left and lower right corners: let x+
n = arg min(i,j)∈I(i, j) s.t.

(i, j) ≥ (u, v) ∀(u, v) ∈ χn, and x−
n = arg max(i,j)∈I(i, j)

s.t. (i, j) ≤ (u, v) ∀(u, v) ∈ χn. The set of pixels within

the minimum bounding box of χn is χ̄n = {(i, j) : x−
n ≤

(i, j) ≤ x+
n }. Then, let F (k) =

⋃

n<R(k) χn, the set of

all pixels within the minimum bounding boxes around each

foreground object. F (k) ⊂ I is referred to as the foreground

bounding box support of the image I(k).
The tracking algorithm returns a set Ẑ(k) ⊂ I, indicating

the pixels identified as foreground, described in more detail

in Section III. Throughout, variants of the symbol Z will refer

to collections of tracks, not to the set of integers.

C. Assumptions

With this notation, we make the following assumptions:

1) Foreground regions of images are small: let B(k) ≡
F (k)c represent the set of pixels associated with the back-

ground. Assume that |B(k)| ≫ |F (k)|.

2) The color distribution of a given pixel changes slowly

relative to the frame rate. The appearance is allowed to

change rapidly, as with a flickering light, but the distribution

of colors at a given pixel must remain essentially constant

between frames. In practice, this condition is only violated

in extreme situations, as when lights are turned on or off.

High-level logic helps the algorithm recover from a violation

of this assumption : Interpreting Hij(k) as a vector, ∃ǫ > 0
such that for all i, j, k, ||Hij(k) − Hij(k + 1)|| < ǫ, where

ǫ is small.

3) To limit memory requirements, we store only a small

number of the total possible histogram bins. To avoid a loss

of accuracy, we make an assumption that most elements of

Hij(k) are 0 : the support of the probability mass function

Hij(k) is sparse over C.

4) By starting the algorithm before visitors enter the

gallery, we assume that the image sequence contains no

foreground objects for the first few seconds : ∃K > 0 such

that R(k) = 0 ∀k < K.

5) Pixels corresponding to visitors have a color distribu-

tion distinct from the background distribution: consider a

foreground pixel Iij(k) such that (i, j) ∈ F (k), has proba-

bility mass function Fij(k). The background distribution at

the same pixel is Hij(k). Interpreting distributions as vectors,

||Fij(k)−Hij(k)|| > δ for some δ > 0. While this property

is necessary in order to detect a visitor, it is not sufficient,

and we use additional information for classification.

6) Visitors move slowly in the image plane relative to the

camera’s frame-rate : Formally, assuming χi(k) and χi(k +
1) refer to the same foreground object at different times,

there is a significant overlap between χi(k) and χi(k + 1):
|χi(k)∩χi(k+1)|
|χi(k)∪χi(k+1)| > O, O ∈ (0, 1), where O is close to 1.

7) Visitors move according to a straight-line motion model

with Gaussian process noise in the image plane : such

a model is used in pedestrian tracking [25] and is used

in tracking the location of mobile wireless devices [27].

Further, the model can be interpreted as a rigid body traveling

according to Newton’s laws of motion. We also assume that

the time between each frame is approximately constant, so

the Kalman filter system matrices of Section III are constant.

D. Problem Statement

Performance of each algorithm is measured as a function

of the number of pixels correctly or incorrectly identified

as belonging to the foreground bounding box support, F (k).
First, tp refers to the number of pixels the algorithm correctly

identifies as foreground pixels: tp(k) = |F (k)
⋂

Ẑ(k)|. fp
is the number of pixels incorrectly identified as foreground

pixels: fp(k) = |F (k)c
⋂

Ẑ(k)|. Finally, fn is the number

of pixels identified as background that are actually fore-

ground pixels: fn(k) = |F (k)
⋂

Ẑ(k)c|. As in [30], define

“precision” as p = tp
tp+fp

and “recall” as r = tp
tp+fn

. For

our interactive installation, recall is more important than

precision, so we use the F2-score [16], [24], a weighted

harmonic mean that puts more emphasis on recall than

precision:
F2 =

5pr

4p + r
(1)



The problem is then: for each image I(k) in sequence

{I}N−1
k=0 , find a collection of foreground pixels Ẑ(k) such

that F2(k) is maximized. The optimal value at each time is

1, which corresponds to an algorithm returning precisely the

bounding boxes of the true foreground objects: Ẑ(k) = F (k).
We use Equation 1 to evaluate our algorithm in Section IV.

II. PROBABILISTIC FOREGROUND SEGMENTATION

In this section, we focus on the top row of Figure 1, which

takes an image I(k) and generates a set of bounding boxes of

possible foreground objects, denoted M(k). Ẑ(k), the final

estimated collection of foreground pixels, is used with I(k)
to update the probabilistic background model for time k +1.

A. Quantization

We store a histogram Ĥij(k) on RGB color-space for

every pixel. Ĥij(k) must be sparse by Assumption I-C3,

so the number of exhibited colors is limited to Fmax, a

system parameter. Noise in the camera’s electronics, however,

spreads the support of the underlying distribution, threatening

the sparsity assumption. To mitigate this effect, we quantize

the color-space. We perform a linear quantization, given

parameter q < 256, and interpreting Iij(k) ∈ C as a

vector, Îij(k) = ⌊ q
256Iij(k)⌋. The floor operation reflects the

typecast to integer in software in each color channel. Note

that this changes the color-space C by altering q as indicated

in Section I-B.

B. Histogram Initialization

We use the first T frames of video as training data to

initialize each pixel’s estimated probability mass function, or

background model. Interpret the probability mass function

Ĥij(k) as a vector in R
q3

, where each axis represents a

unique color. We define a lifting operation L : C → F ⊂
R

q3

by generating a unit vector on the axis corresponding to

the input color. The set F is the “feature set,” representing

all unit vectors in R
q3

. Let fij(k) = L(Îij(k)) ∈ F be a

feature (pixel color) observed at time k. Of the T observed

features, select the Ftot ≤ Fmax most recently observed

unique features; let I ⊂ {1, 2, . . . T}, where |I| = Ftot, be the

corresponding time index set. (If T > Fmax, it is possible

that Ftot, the number of distinct features observed, exceeds

the limit Fmax. In that case, we throw away the oldest

observations so Ftot ≤ Fmax.) Then, we calculate an average

to generate the initial histogram: Ĥij(T ) = 1
Ftot

∑

r∈I
fij(r).

This puts equal weight, 1/Ftot, in Ftot unique bins of the

histogram.

C. Bayesian Inference

We use Bayes’ Rule to calculate the likelihood of a pixel

being classified as foreground (F) or background (B) given

the observed feature, fij(k). To simplify notation, let p(F |f)
represent the probability that pixel (i, j) is classified as

foreground at time k given feature fij(k). Using Bayes’ rule

and the law of total probability,

p(B|f) =
p(f |B)p(B)

p(f |B)p(B) + p(f |F )p(F )

We calculate p(f |B) = fij(k)T Ĥij(k), as Ĥij(k) rep-

resents the background model. The prior probability that a

pixel is foreground is a constant parameter, p(F ), a design

parameter that affects the sensitivity of the segmentation

algorithm. As there are only two labels, p(B) = 1 − p(F ).
Without a statistical model for the foreground, however,

we cannot calculate Bayes’ rule explicitly. Making use of

Assumption I-C5, we let p(f |F ) = 1−p(f |B), which has the

nice property that if p(f |B) = 1, then the pixel is certainly

identified as background, and if p(f |B) = 0, the pixel is

certainly identified as foreground. After calculating posterior

probabilities for every pixel, the posterior image is P (k) ∈
[0, 1]w×h where Pij(k) = p(F |fij(k)) = 1 − p(B|fij(k)).

D. Filtering and Connected Components

Given the posterior image, P (k), we perform several

filtering operations to prepare a binary image for input to the

connected components algorithm. We perform a morpholog-

ical open followed by a morphological close on the posterior

image with a circular kernel of radius r, a design parameter,

using the notion of morphological operations on greyscale

images discussed in [36], [35]. Such morphological opera-

tions have been used previously in segmentation tasks [26].

Intuitively, the morphological open operation will reduce the

estimated probability of pixels that aren’t surrounded by a

region of high-probability pixels, smoothing out anomalies.

The close operation increases the probability of pixels that

are close to regions of high-probability pixels. The two

filters together form a sort of smoothing operation, yielding

a modified probability image P̆ (k).
We apply a threshold with level γ ∈ (0, 1) to P̆ (k) to gen-

erate a binary image P(k). This threshold acts as a decision

rule: if P̆ij(k) ≥ γ, Pij(k) = 1, and otherwise, Pij(k) = 0,

where 1 corresponds to “foreground” and 0 to “background”.

Then, we perform morphological open and close operations

on Pij(k); operating on a binary image, these morphological

operations have their standard definition. The morphological

open operation will remove any foreground region smaller

than the circular kernel of radius r′, a design parameter. The

morphological close operation fills in any region too small for

the kernel to fit without overlapping an existing foreground

region, connecting adjacent regions.

On the resulting image, the connected components al-

gorithm detects 8-connected regions of pixels labeled as

foreground. For this calculation, we make use of OpenCV’s

findContours() function [6] which returns both contours

of connected components, used in Section III-B, and the

set of bounding boxes around the connected components,

denoted M(k). These bounding boxes are used by the

tracking system in Section III, so we represent them as

vectors: for m ∈ M(k), m ∈ R
4 with axes representing

the x, y coordinates of the center, along with the width and

height of the box.

E. Updating the Histogram

The tracking algorithm takes M(k), the list of detected

foreground objects, as input and returns Ẑ(k), the set of



pixels identified as foreground. To update the histogram, we

make use of feature fij(k), defined in Section II-B.

First, the histogram Hij(k) is not updated if it corresponds

to a foreground pixel: if (i, j) ∈ Ẑ(k), then Hij(k + 1) =
Hij(k).

Otherwise, let S represent the support of the histogram

Hij(k), or the set of non-zero bins: S = {x ∈ F :
xT Hij(k) 6= 0} ⊂ F . By the sparsity constraint, |S| ≤
Fmax. If feature fij(k) has no weight in the histogram

(fij(k)T Hij(k) = 0) and there are too many features

in the histogram (|S| = Fmax), a feature must be re-

moved from the histogram before updating to maintain

the sparsity constraint. The feature with minimum weight

(one arbitrarily selected in event of a tie) is removed and

the histogram is re-normalized. Selecting the minimum:

f ∈ arg minx∈S xT Hij(k). Removing f and renormalizing:

Hij(k) = (Hij(k) − (fT Hij(k))f)/(1 − fT Hij(k)).
Finally, we update the histogram with the new feature:

Hij(k + 1) = (1 − α)Hij(k) + αfij(k). The parameter α
affects the adaptation rate of the histogram. Given that a

particular feature f ∈ F was last observed τ frames in the

past and had weight ω, the feature will have weight ω(1−α)τ .

As α gets larger, the past observations are “forgotten” more

quickly. This is useful for scenes in which the background

may change slowly, as with natural lighting through the

course of a day.

III. MULTIPLE VISITOR TRACKING

Lacking camera calibration, we track foreground visitors

in the image plane rather than the ground plane. Once the

foreground/background segmentation algorithm returns a set

of detected visitors, the challenge is to track the visitors to

gather useful state information: their position, velocity, and

size in the image plane.

Using Assumption I-C7, we approximate the stochastic

dynamical model of a visitor as follows: zi(k + 1) =
Azi(k) + qi(k), mi(k) = Czi(k) + ri(k), qi(k) ∼ N (0, Q),
ri(k) ∼ N (0, R), R = σI ,

A =





A′ 0 0
0 A′ 0
0 0 I2



 , A′ =

[

1 1
0 1

]

C =









1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1









, Q =





Qx 0 0
0 Qy 0
0 0 Qs





where I2 is a 2-dimensional identity matrix. State vector

zi(k) ∈ R
6 encodes the x-position, x-velocity, y-position, y-

velocity, width, and height of the bounding box respectively,

relative to the center of the box. mi(k) ∈ R
4 represents

the observed bounding box of the object. Q, R ≻ 0 are

the covariances, parameters for the algorithm. Let Z(k) =
{zi(k) : i < Z(k)} be the true states of the Z(k) visitors.

Let Ẑ(k) = {ẑi(k) : i < Ẑ(k)} be the set of Ẑ(k) estimated

states. Let Z̆(k) = {z̆i(k) : i < Z̆(k)} be the set of Z̆(k)
predicted states. M(k) is the set of observed bounding boxes

at time k, and M̆(k) = {m̆i : m̆i = Cz̆i(k), i < Z̆(k)} is

the set of predicted observations.

Given this linear model, and given that observations are

correctly matched to the tracks, a Kalman filter bank solves

the multiple target tracking problem. In Section III-A, we

discuss the matching problem. When observations are not

matched with an existing track, a new track must be created

in the Kalman filter bank. Given an observation m ∈ R
4,

representing a bounding box, we initialize a new Kalman

filter with state z = (CT C)−1CT m, the pseudo-inverse of

m = Cz, and initial error covariance P = CT RC + Q. In

Section III-B, we discuss criteria for tracks to be deleted.

After matching and deleting low confidence tracks, the

tracking algorithm has a set of estimated bounding boxes,

M̂(k) = {m̂n = Cẑn(k) : n < Ẑ(k)}. The final result must

be a set of pixels identified as foreground, Ẑ(k) ⊂ I, and

we need to convert mi from vector form to coordinates of

the corners of the bounding box to generate Ẑ(k), which is

used to evaluate performance at time k in Section IV. Using

superscripts to denote elements of a vector, m1
n and m2

n are

the x and y coordinates of the center of the box. m3
n and

m4
n are the width and height. To convert the vector back to

a subset of I, let m−
n = (m1

n − m3

n

2 , m2
n − m4

n

2 ) ∈ I and

m+
n = (m1

n +
m3

n

2 , m2
n +

m4

n

2 ) ∈ I. If any coordinate lies

outside the limits of I, we set that coordinate to the closest

value within I, to clip to the image plane. Let νn = {(i, j) :
m−

n ≤ (i, j) ≤ m+
n }. Finally, Ẑ(k) =

⋃

n<Ẑ(k) νn ⊂ I, the

set of pixels within the estimated bounding boxes.

A. Gale-Shapley Matching

Matching observations to tracks makes multiple-target

tracking a difficult problem: in its full generality, the prob-

lem requires re-computation of the Kalman filter over the

entire time history as previously decided matchings may be

rejected with the additional information, preventing recursive

solutions. To avoid this complexity, sub-optimal solutions

are sought. In this section, we describe a greedy, recursive

approach that, for a single frame, matches observations to

tracks to update the Kalman filter bank.

While some algorithms, e.g. mean-shift [10], use informa-

tion gathered about the appearance of the foreground object

to aid in track matching, our algorithm does not: we assume

that individuals are indistinguishable. Here, observation-to-

track matching is performed entirely within the context of

the probability distribution induced by the Kalman filters.

We make use of the Gale-Shapley matching algorithm [13],

the solution to the “stable-marriage” problem.

In what follows, we describe the matching problem at time

k. Formally, we are given M, the set of detected foreground

object bounding boxes, and Z̆, the set of predicted states. Let

|M| = M and |Z̆| = Z. Introduce placeholder sets M∅ and

Z∅ such that |M∅| = Z and |Z∅| = M . Further, M
⋂

M∅ =
∅ and Z̆

⋂

Z∅ = ∅. These placeholder sets will allow tracks

and observations to be unpaired, implying a continuation of

a track with a missed observation [33], or the creation of a

new track. Define extended sets as M+ = M
⋃

M∅ and



Z
+ = Z̆

⋃

Z∅. Note that |M+| = |Z+|, a prerequisite for

applying the Gale-Shapley algorithm [13]. Let G ≡ |M+|.

We now describe the preference relation necessary for

the Gale-Shapley algorithm. Let mi ∈ M and z̆j ∈ Z̆.

z̆j is the predicted state of track j. The Kalman filter

estimates an error covariance for the predicted state: Pj ≻ 0.

We are interested in comparing observations, not states, so

the estimated error covariance of the predicted observation,

m̆j = Cz̆j , is CPjC
T +R, from the linear system described

at the start of Section III. The Mahalanobis distance between

two observations under this error covariance matrix is

d(mi, m̆j) =
√

(mi − m̆j)T (CPjCT + R)−1(mi − m̆j)

To make a preference relation, we exponentially weight

the distance: ωij = exp(−d(mi, m̆j)), ωij ∈ (0, 1). As the

distance approaches 0, ωij → 1. Making use of Assumption

I-C6, we place constraints on the distance: for some threshold

γmin ∈ (0, 1), if ωij < γmin (equiv. the distance is too great),

then we deem the matching impossible, by Assumption I-C6.

The symmetric preference relation φ : M+ × Z
+ → R is

as follows:

φ(mi, z̆j) =











0 mi ∈ M∅ or z̆j ∈ Z∅

ωij ωij ≥ γmin

−1 ωij < γmin

(2)

Equation 2 indicates that if a track z̆j or observation mi

is to be unpaired, the preference relation between z̆j and mi

is 0. If the Mahalanobis distance is too large, the preference

relation is −1, so not pairing the two is preferred. Otherwise,

the preference is precisely the exponentially weighted Maha-

lanobis distance between the predicted observation m̆j and

mi.

Then, the Gale-Shapley algorithm with Z
+ as the propos-

ing set pairs each z ∈ Z
+ with exactly one m ∈ M+,

resulting in a stable matching. That is, if observation i is

paired with track j, and another observation n is paired with

track k, if ωij < ωik, then ωik < ωnk, so while observation

i would benefit from matching with track k, track k would

lose, so no re-matching is accepted. Gale and Shapley prove

that their algorithm generates a stable matching, and that

it is optimal for Z
+ in the sense that, if wj is the final

score associated with zj ∈ Z
+ after matching, then

∑

j ωj

is maximized over the set of all possible stable matchings

[13]. Thus, tracks are paired with the best possible candidate

observations.

We refer to the final matching as the set M ⊂ Z
+ ×

M+, where |M| = G. M is the input to the Kalman Filter

bank as in Figure 1. Then, each pair (z, m) ∈ M is used

to update the Kalman filter bank: depending on the pairing,

this creates a new track, or updates an existing track with or

without an observation. The Kalman update step generates

Ẑ(k) and Z̆(k+1). Ẑ(k) is used to generate M̂(k) and Ẑ(k)
as described at the beginning of Section III, and Z̆(k + 1)
is used as input for the next iteration of the Gale-Shapley

Matching algorithm.

B. Heuristic Confidence Model

We employ a heuristic confidence model to discern people

from spurious detections such as reflections from skylights.

We maintain a confidence level ci ∈ [0, 1] for each tracked

object zi ∈ Ẑ(k), which is a weighted mix of information

from the error covariance of the Kalman filter, the size of the

object, and the amount of shape deformation of the contour

of the object (provided by OpenCV). Typically, undesirable

objects are small, move slowly, and have a nearly constant

contour.

In the following, we drop the dependence on time k for

simplicity and denote time k + 1, with a superscript +.

Consider an estimated state ẑ ∈ Ẑ, with error covariance

P . Let cdyn = exp(−det(P )/γdet), with parameter γdet.

Intuitively, as the determinant of P increases, the region

around ẑ which is likely to contain the true state expands,

implying lower confidence in the estimate. Let csz = 1 if

the bounding box width and height are both large enough,

csz = 0.5 if one dimension is too small, and csz = 0 if both

are too small, relative to parameters w and h representing

the minimum width and height. The third component, csh, is

derived from the Hu moment (using OpenCV functionality),

measuring the difference between the contour of the object

at time k − 1 and time k. Let νdyn, νsz , νsh be parameters

in [0, 1] such that νdyn + νsz + νsh = 1; these are weighting

parameters for different components of the confidence model.

Then, given a parameter β,

c+ = (1 − β)c + β(νdyncdyn + νszc
sz + νshcsh)

When a track is first created at time k, c(k) = 0. After the

first update, if at time r > k, c(r) < ϕ, another parameter,

the track is discarded.

IV. RESULTS

Performance is measured according to precision, p, recall,

r, and the F2 measure F2, introduced in Section I-D. These

are evaluated with respect to manually labeled ground-truth

sequences, which determine F (k).
We evaluate the performance of our proposed algorithm in

comparison with three methods in OpenCV 2.1. We compare

our algorithm against tracking algorithms in OpenCV using

a nonparametric statistical background model similar to what

we propose, CV_BG_MODEL_FGD [22]. We compare against

three “blob tracking” algorithms, which are tasked with

segmentation and tracking: CCMSPF (connected component

and mean-shift tracking particle-filter collision resolution), CC

(simple connected components with Kalman Filter tracking),

and MS (mean-shift). These comparisons, in Figure 3, indicate

a significant performance improvement over OpenCV across

the board. We also explore the effect of the additional

feedback loop we propose, by comparing our “dynamic”

segmentation and tracking algorithm with a “static” version,

which utilizes only the top row of the block diagram in

Figure 1. In the “static” version, the background model is not

updated selectively, and no dynamical information is used.

Figure 4 illustrates a precision/recall tradeoff. In both com-

parisons, we see an F2 gain similar to the recall gain, so recall



is not shown in the former and F2 in the latter comparisons,

due to space limitations. These and many more comparisons,

along with annotated videos of algorithm output, are available

at automation.berkeley.edu/ACC2012Data/.

In each experiment, the first 120 frames of the given

video sequence are used to initialize the background models.

Results are filtered with a gaussian window, using 8 points

on either side of the datapoint in question. We evaluate

performance on three videos. The first is a video sequence

called StationaryVisitors where three visitors enter

the gallery and then stand still for the remainder of the

video. Situations where visitors remain still are difficult

for all the algorithms. Second is a video sequence called

ThreeVisitors with three visitors moving about the gallery

independently, a typical situation for our installation. Figure

4 illustrates that this task is accomplished well by a statistical

segmentation algorithm without any tracking. Third is a video

with 13 visitors, some moving about and some standing still,

a particularly difficult segmentation task; this is called the

ManyVisitors sequence.

V. CONCLUSIONS

This paper presents a single-camera statistical track-
ing algorithm and results from our implementation at the
Contemporary Jewish Museum installation called “Are We
There Yet?”. This system worked reliably during museum
hours (5-8 hours a day) over the four month duration
of the exhibition under highly variable lighting condi-
tions. We would like to extend our analysis and experi-
ment with other datasets. We welcome others to experi-
ment with our data and use the software under a Creative
Commons License. Source code and benchmark datasets
are freely available and in OpenCV. For details, visit:
automation.berkeley.edu/ACC2012Data/

In future versions, we’d like to explore automatic param-

eter adaptation, for example, to determine the prior proba-

bilities in high-traffic zones such as doorways. We would

also like to explore how the system can be extended with

higher-level logic. For example, we added a module to check

the size of the estimated foreground region; when the lights

were turned on or off, and too many pixels were identified

as foreground, we would refresh the histograms of the back-

ground image probability model, allowing the system to re-

cover quickly. A 2-minute video describing the installation is

available at j.mp/awty-video-hd, and project reviews and

documentation are available at are-we-there-yet.org.
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