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Abstract In this paper, a structural local DCT sparse appearance model with occlusion de-
tection is proposed for visual tracking in a particle filter framework. The energy compaction
property of the 2D-DCT is exploited to reduce the size of the dictionary as well as that of the
candidate samples so that the computational cost of l1-minimization can be lowered. Further,
a holistic image reconstruction procedure is proposed for robust occlusion detection and used
for appearance model update, thus avoiding the degradation of the appearance model in the
presence of occlusion/outliers. Also, a patch occlusion ratio is introduced in the confidence
score computation to enhance the tracking performance. Quantitative and qualitative perfor-
mance evaluations on two popular benchmark datasets demonstrate that the proposed tracking
algorithm generally outperforms several state-of-the-art methods.

Keywords Visual Tracking · Local DCT Sparse Appearance Model · Holistic Image
Reconstruction · Reconstruction Error · Occlusion Map · Observation Model Update.

1 Introduction

In the last two decades, visual object tracking has seen a flurry of research due to its wide
range of real-life applications including vehicle navigation, robotics, human behavior analysis,
action recognition, human computer interaction, video indexing and retrieval, medical imaging,
security and surveillance [45]. In spite of this, it still remains a challenging problem due to the
following reasons: (1) complexity in target searching, (2) intrinsic (e.g., pose changes, shape
deformation) and extrinsic (e.g., varying viewpoints, rotation and scaling due to camera mo-
tion, illumination changes, occlusions, cluttered and moving backgrounds) object appearance
variations [39,44]. In order to carefully handle these appearance variations, a good appearance
model that adapts to intrinsic appearance variations and be robust to extrinsic appearance
variations is needed.
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In general, there are three main components in visual tracking, namely, (1) an observation
model, used to represent the tracked object and finds whether an observed image patch be-
longs to the object class or not, (2) a dynamic model, which describes the states of an object
over time and predicts its likely state (e.g., Kalman filter [6], and particle filter [21]), and (3)
an observation model update to adapt the appearance variations of the object. The proposed
method contributes to all these three components and are as follows: (1) a new observation
model based on 2D discrete cosine transform (DCT) features, (2) a modification of the observa-
tion likelihood of each particle to improve the tracking performance, and (3) reconstruction of
the holistic image and its application to occlusion detection for the observation model update.

In the literature, the tracking algorithms are categorized as belonging to either generative
or discriminative approaches based on the representation scheme used to model the appear-
ance of the object. Discriminative methods extract information from both the target and the
background to differentiate the target from the background (e.g., using boosting algorithms [2],
semi-supervised learning [12] and support vector machines [41]). On the other hand, generative
methods extract information only from the target region to model the object appearance and
search for a region that is most similar to the target model. These methods are based on tem-
plates [3, 6, 24, 26], or local patches/fragments [1, 17, 31], or subspace models [29, 32, 33, 35] or
local subspace models [28]. Since the generative methods consider information from the target
region alone for object appearance, they are not efficient in cluttered environments, but they
achieve higher generalization with limited data. In contrast, the discriminative methods per-
form better if the training set is large due to its capability of differentiating the target from the
background. The advantages of these individual methods are exploited by collaborating both
generative and discriminative methods for object appearance model in [48, 55].

Recently, Henriques et al. [15] have proposed a high speed tracking algorithm based on ker-
nelized correlation filter (KCF), which exploits the properties of circulant data in the Fourier
domain to diagonalize the elements of the circulant data. Further, Danelljan et al. [8] proposed
a spatially regularized discriminative correlation filter (SRDCF) for tracking by introducing a
spatial regularization in the learning process to penalize the correlation filter coefficients de-
pending on their spatial location. Wang et al. [42] have proposed a deep learning tracker (DLT)
by training a stacked denoising autoencoder network to learn generic image features from a
large image dataset in an unsupervised fashion and then using those features for online track-
ing. Li et al. [19] proposed a tracking algorithm using four-layer convolutional neural network
(CNN) to distinguish the target from its surroundings. In addition to that, they proposed a
truncated structural loss function to maintain as many training samples as possible and reduce
the risk of tracking error accumulation. Note that both the methods of [42] and [19] update the
appearance models by fine-tunning the CNNs online. In [50], the interdependencies between the
particles are exploited to jointly learn the particle representations for visual tracking. In [49],
a circulant sparse tracker, which exploits the circulant structure of the target templates for
visual tracking by efficiently solving the optimization problem in the Fourier domain, has been
proposed. Zhang et al. [51] have proposed a correlation particle filter for visual tracking by
exploiting the advantages of individual filters to handle the problems of occlusions, large-scale
variations and high computational complexity. In [52, 53], by exploiting the interdependencies
between different features, the authors have proposed a tracker in which the correlation filters
are learned jointly. Further, Ou et al. [26] have proposed a visual tracking algorithm based
on online representative sample selection scheme via non-negative least square to construct
the templates, and then predict the optimal candidate using a score function. In deep relative
tracking [10], robust visual features and an effective nonlinear ranking function are learned
to exploit the relative relationship among image patches for object appearance modelling. A

Springer



Visual Tracking using Structural LDCTSAM with Occlusion Detection 3

part-to-target regression model has been proposed in [11] to exploit the context information
and spatial structure of the parts to find the target location.

In this paper, a structural local 2D-DCT sparse appearance model is proposed to exploit the
energy compaction property of 2D-DCT in the object appearance model by using only a few 2D-
DCT coefficients. In addition, it is proposed to reconstruct a holistic image from the overlapped
local patches that are obtained using the local patch dictionary and the sparse codes. Further,
a robust occlusion map generation is proposed using the reconstructed holistic image, and
the pooled feature vector. Also, it is proposed to compute the threshold for occlusion detection
automatically for each sequence. In addition, the highest confident occlusion-free sample among
the cumulated samples is used to reconstruct the image for the template update. Further, it is
proposed to replace the template that contributes least in representing the previous tracking
results with the reconstructed image obtained after incremental subspace learning. Also, it
is proposed to use the patch occlusion ratio while computing the confidence of a candidate.
Experiments conducted on two popular benchmark datasets with comparison to the state-of-
the-art tracking methods bear out the competency and effectiveness of the proposed method
for visual tracking.

The rest of this paper is organized as follows. Section 2 gives the background information
and reviews the related work available in the literature on visual tracking. Section 3 describes
the object representation using structural local 2D-DCT sparse appearance model. The holistic
image reconstruction from an overlapped local patches is explained in Section 4 followed by the
proposed tracking algorithm in Section 5. Experimental results for the two popular benchmark
datasets are demonstrated and discussed in Section 6 followed by a conclusion in Section 7.

2 Background and Related Work

The success of sparse representation in vision applications, such as image denoising [9], image
classification [46] and face recognition [43] has motivated Mei et al. to propose a l1 tracker [24].
In l1 tracker, a set of target templates and trivial templates are used to model the object
appearance. The target location is determined by solving one l1-minimization for each particle
sample. Further, the minimum error bounded efficient l1 tracker with occlusion detection [25]
and the accelerated proximal gradient algorithm (L1APG) [3] were proposed to improve the
l1 tracker in terms of both the speed and accuracy. As most of these methods use holistic
representation, they fail/drift during occlusions. Adam et al. [1] proposed a tracking method
based on fragments, where each fragment is tracked by measuring the local regional similarity.
Finally, the target location is found by using the vote maps of the tracked fragments. Jia
et al. [17] proposed a visual tracking algorithm based on an adaptive structural local sparse
appearance (ASLA) model by exploiting both the partial and the spatial information of the
target. Similar to ASLA, Dai et al. [7] proposed a part-based sparsity model for visual tracking
but with non-overlapped patches to model the object appearance. Then the target template
set for each patch is updated dynamically. Further, a tracking algorithm based on support
vector machine (SVM) is proposed by exploiting the aligned structural local sparse features [41].
Concurrently, a robust local sparse tracker with global consistency constraint is proposed in [47]
to alleviate the problem of drifting when the target patch is similar to that of the background.
Wang et al. [37] proposed a weighted local cosine similarity (WLCS) to measure the similarity
between the target and the candidates, and then developed a tracking algorithm based on the
local model. In [38], an inverse sparse tracking algorithm is proposed by employing a locally
weighted distance metric to measure the similarity between the target and the candidates. As
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4 B. K. Shreyamsha Kumar et al.

the algorithm employs a local template update scheme, the unoccluded local parts are updated
while the occluded ones are discarded during heavy occlusion.

In the literature, only a few attempts have been made to exploit the properties of DCT for
visual tracking [5, 20, 22] in spite of its success in a wide range of vision applications such as
image retrieval [14], image fusion [30], face recognition [13, 34], video object segmentation [4]
and video caption localization [54]. In both [22] and [5], the features extracted from the DCT
coefficients are used to find the target location by measuring the similarity between the target
and candidates, but there is no update of appearance model in [22]. At the same time, Li et
al. [20] proposed a compact 3D-DCT based object representation and its incremental learning
for robust visual tracking (IL3DDCT). The likelihood is evaluated using a signal reconstruction-
based similarity measure. In contrast to these methods, which use only DCT for the appearance
model, the proposed method exploits both the sparse representation and 2D-DCT to model the
appearance of the object. Further, the proposed method uses the local appearance model in
contrast to the holistic templates used in the above methods. Also, a robust occlusion detection
and an observation model update is proposed to reduce the effects of occlusion/outliers on the
tracking algorithm.

3 Structural Local 2D-DCT Sparse Appearance Model

The robustness and effectiveness of local representations, when the objects undergo pose change,
deformation and partial occlusion [1,7,17], has motivated us to propose a structural local 2D-
DCT sparse appearance model for visual tracking. The proposed algorithm has some similarity
to ASLA [17] in the use of local sparse representation, but differs in the domain in which
sparse representation is applied. ASLA directly uses the pixel intensities in the local patches
for object appearance model, whereas the proposed method uses the DCT coefficients of those
pixel intensities in the local patches. Further, the proposed method reconstructs an image from
the overlapped patches and sparse codes to detect the occlusions. Even though ASLA can
handle partial occlusions due to local representations, ASLA does not have any mechanism
for occlusion detection. Also, the proposed method differs from ASLA in terms of the appear-
ance model update. Most of the methods in the literature use pixel intensities in the holistic
templates [3, 24] or in the local patches [7, 17, 47] for object appearance modeling using sparse
representation. But the proposed method explores it in the transform domain (2D-DCT). It
is well known that a fraction of the 2D-DCT coefficients are sufficient to represent an image
with less visual distortion due to the energy compaction property of the 2D-DCT [27]. In this
paper, the energy compaction property of the 2D-DCT is exploited by reducing the number of
elements/coefficients in the candidate samples and the dictionary to lower the computational
cost of l1-minimization. Most of the local appearance models use the patch reconstruction error
to detect the occlusion [7, 47]. In contrast, the proposed method uses the holistic reconstruc-
tion error to detect the occlusion. The holistic reconstruction error is obtained from the holistic
image reconstructed from the overlapped local patches and the sparse codes.

For a given target candidate, the overlapped local patches Pi inside the target region are
extracted with a spatial layout as shown in Fig. 1. Then, 2D-DCT of these patches are computed
followed by zigzag scanning, whose order is akin to the one defined in [27]. This gives a matrix
Y = [y1,y2, ...,yN ] ∈ R

d×N for a given candidate, where N denotes the number of local patches
extracted within the target region and d is the number of pixels in a patch. As each fixed
part of the target object is represented by one local patch, the complete holistic structure
of a target candidate can be represented by all these N local patches with a fixed spatial
relationship. Similar procedure is followed for every template in a given set of target templates
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Visual Tracking using Structural LDCTSAM with Occlusion Detection 5

Fig. 1 Structural local 2D-DCT sparse appearance model: illustration of a local patch Pi extraction followed
by 2D-DCT, zigzag scanning, averaging of sparse coefficients obtained via l1-normalization and alignment
pooling of features. 2D-DCT of each local patch (where the first patch is denoted in red, second one in blue,
and the last one in brown rectangle) is sparsely represented by the patch dictionary D (in 2D-DCT domain)
with a sparse vector. These sparse coefficients are averaged and pooled to represent a target object.

T = [T1,T2, ...,Tn] to create a dictionary D = [d1,d2, ...,d(n×N )] ∈ R
d×(n×N ), where n is the number

of target templates. Here, the local patches of the target templates are used as the dictionary
atoms to encode the local patches inside the candidate regions, where all these local patches are
in 2D-DCT domain. As these local patches are obtained across many templates, the resultant
dictionary captures the generality of the different templates and hence, it is able to represent
various forms of target parts [17,31].

In sparse representation, only a few basis elements of the dictionary with different coeffi-
cients are sufficient to represent a local patch inside the target region and this is achieved by
solving the following minimization problem:

min
bi

‖yi −Dbi ‖
2

2
+ λ‖bi ‖1, s.t. bi � 0, (1)

where yi ∈ R
d×1 represents the 2D-DCT of the i-th local patch, bi ∈ R

(n×N )×1 is the sparse code of
that local patch, and the constraint bi � 0 indicates that all the elements of bi are non-negative.
Now, the sparse codes of the given target candidate is given by B = [b1,b2, ...,bN ]. Further,
the sparse coefficients of each local patch bi are divided into several segments depending on
the template that each element of the vector belongs to, i.e., b⊤

i
= [b

(1)⊤

i
,b

(2)⊤

i
, ,b

(n)⊤

i
], where

b
(k)

i
∈ RN×1 indicates the k-th segment of the sparse coefficient vector bi corresponding to the

template Tk in the given target template set T. From these segmented sparse coefficients b
(k)

i
,

a normalized feature vector vi ∈ R
N×1 for the i-th local patch is obtained as

vi =
1

G

n
∑

k=1

b
(k)

i
, i = 1,2, ...,N, (2)

where G is a normalization term, which makes all the contributions from the templates sum to
unity. Thus, for a given candidate, all the normalized feature vectors of the local patches within
a candidate region form a square matrix V = [v1,v2, ...,vN ] ∈ R

N×N . Since a single local patch
captures only some local appearance of the object, the whole object modeling requires pooling
of information from these normalized feature vectors. Here, alignment pooling is chosen due
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6 B. K. Shreyamsha Kumar et al.

to its capability of using full structural information contained in the dictionary and precisely
locating the target object [17]. Even though each local patch at a given position of the candidate
is represented by patches at different positions of the templates, the local appearance of a patch
with some appearance variation in a candidate is correctly represented by the patches at the
same positions of the templates. That is, the top left corner patch of the object in Fig. 1 can
be represented precisely by the top left corner patches of the templates. This is achieved by
considering only the diagonal elements of the square matrix V as the pooled feature vector
f ∈ RN×1, given by

f = diag(V) (3)

This feature vector f not only captures the target structure with a fixed spatial relationship
but also reflects the similarity between the candidate and the target template.

4 Holistic Image Reconstruction from an Overlapped Local Patches

In the proposed method, the overlapped local patches are used for the object representation
rather than holistic templates due to their robustness to pose change, deformation and occlu-
sion. The overlapped local patches of size 16×16 with an overlap of 8 pixels are extracted from
an image of size 32 × 32 as per the layout shown in Fig. 1. Now, the extracted local patches
are concatenated as per their spatial relationship to obtain a overall block of size 48 × 48 (as
shown in left part of Fig. 2). For clarity, the original image of size 32 × 32 is assumed to be
divided into a sub-blocks of size 8 × 8 as shown in right part of Fig. 2. Now, the first 16 × 16
patch extracted from the top-left corner of the image, denoted as block 1 in left part of Fig. 2,
is comprised of four 8× 8 sub-blocks denoted as sub-block A, B, E and F in right part of Fig.
2. Similarly, the second block, denoted as block 2, is comprised of four 8 × 8 sub-blocks B, C,
F and G, and so on. Please note that some of the nomenclature/symbols used in this section
may have different meaning outside this section.

To understand the reconstruction procedure, the 8 × 8 sub-blocks in Fig. 2 are divided into
three groups depending on the number of overlaps they have with the neighboring 16 × 16
blocks. The first group consisting of four sub-blocks (A, D, M and P) has no overlaps with
16× 16 blocks, and are denoted as no overlapping blocks (NOB) (blue color blocks in the right
part of Fig. 2). The second group consisting of 8 sub-blocks (B, C, E, H, I, L, N and O) has
an overlap with two 16× 16 adjacent blocks, and are denoted as two overlapping blocks (TOB)
(green color blocks in the reconstructed image of Fig. 2). Similarly, the last group consisting
of four sub-blocks (F, G, J and K) has an overlap with four 16 × 16 adjacent blocks, and are
denoted as four overlapping blocks (FOB) (orange color blocks in the reconstructed image of
Fig. 2). Since the NOB group has no overlaps, the pixels in the sub-blocks A, D, M and P of
the reconstructed image are copied directly from the II -quadrant of block 1, III -quadrant of
block 3, I -quadrant of block 7 and IV -quadrant of block 9, respectively. However, the TOB
group has two overlapping blocks and hence the pixels in the sub-blocks B, C, E, H, I,
L, N and O of the reconstructed image are computed from the corresponding two 16 × 16
overlapping blocks. For example, the sub-block N is reconstructed from IV -quadrant of block
7, I -quadrant of block 8. Therefore, all the pixels in the IV -quadrant of block 7 (denoted as
P7

N ) and I -quadrant of block 8 (denoted as P8

N ) are used to find the pixel values in sub-block
N (denoted as PN ) by

PN =
aP7

N + bP8

N

a + b
, (4)
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Visual Tracking using Structural LDCTSAM with Occlusion Detection 7

Fig. 2 Holistic image reconstruction from overlapped local patches.

where a and b are the distances as shown in Fig. 2. Similarly, all the pixels in the sub-blocks
F, G, J and K belonging to FOB group are computed from the pixels of the corresponding
four 16 × 16 overlapping blocks using

PJ =
c

c + d

(

aP4

J + bP5

J

a + b

)

+

d

c + d

(

aP7

J + bP8

J

a + b

)

, (5)

where a, b, c and d are the distances as shown in Fig. 2, P4

J , P
5

J , P
7

J and P8

J are the pixel values
from the blocks 4, 5, 7 and 8, respectively, and PJ is the reconstructed pixel belonging to block
J. The reconstructed holistic image Ir of the Jogging-2 and Woman sequences is shown in Fig.
3 to illustrate the effectiveness of the proposed image reconstruction without introducing any
errors/artifacts during transition from one patch to another.

5 Proposed Tracking Algorithm

In the proposed framework, motion of the target is estimated using a Markov model with hidden
state variables [16]. Let xt represent a state variable describing the affine motion parameters
of a target at time t. Given a set of observed images It = {I1, ..., It } at time t, the posterior
probability p(xt |It ) can be estimated recursively by the Bayesian theorem,

p(xt |It ) ∝ p(It |xt )

∫

p(xt |xt−1) p(xt−1 |It−1) dxt−1 (6)

where p(It |xt ) represents the observation model, and p(xt |xt−1) represents the dynamic model.
In this work, an affine transformation with six parameters is adopted to model the target
state xt = (xt,yt, θt, st, αt, φt ), where xt,yt, θt, st, αt, φt denote horizontal and vertical translations,
rotation angle, scale, aspect ratio and skew direction at time t, respectively. The dynamic model
p(xt |xt−1) describes the temporal correlation of states between two consecutive frames and is
modeled by Gaussian distribution assuming the affine parameters to be independent. That is,
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8 B. K. Shreyamsha Kumar et al.

p(xt |xt−1) = N(xt ; xt−1,Σ), where Σ denotes a diagonal covariance matrix, whose elements are
the variances of the affine parameters. These affine parameters are used to crop a sub-image
from the current frame and then normalized to the size w × h. The dynamic model randomly
selects M samples of the state variable xt given the state xt−1 at t − 1, which are used to generate
candidate samples Imt , where m = 1,2, ...,M. Among these M states, the optimal state of the
tracked target xt at time t is determined by solving the following MAP estimation:

x̂t = argmax
xm
t

p(Imt |x
m
t )p(xmt |xt−1), m = 1,2, ...,M (7)

where xmt denotes the m-th sample of the state xt and Imt indicates an image sample observed
by xmt .

In the proposed method, the 2D-DCT of the overlapped local patches inside the target region
are used to model the object appearance. These overlapped local patches can be represented
by a very few low-frequency 2D-DCT coefficients, which can preserve the image information
in a patch very well due to the energy compaction property of the 2D-DCT. Hence, only r

lower frequency 2D-DCT coefficients are considered out of d coefficients in all the patches of
the candidates and the dictionary while solving the l1-minimization problem in Eq. (1). The
confidence scores Cm for all the candidates are computed from the sparse codes using Eqs. (2),
(3) as [17]

Cm
=

N
∑

i=1

fmi (8)

In visual tracking based on particle filter framework, the confidence of the each particle is given
by its observation likelihood, defined as

p(Imt |x
m
t ) ∝ Cm (9)

Finally, the optimal state of the target is estimated using Eq. (7). Further, the observation
models are adapted to handle the appearance change of the target by incrementally updating
the template set and dictionary, as discussed in the next subsection.

Algorithm 1 Proposed Tracking Algorithm
Input: Target object is labeled in the first frame and its initial state is x0, number of templates n, number

of local patches N

1: Collect a set of n templates, T = [T1,T2, ...,Tn], using kd-tree to model the object appearance.
2: From every template in T, extract the N overlapped local patches Pi , compute the 2D-DCT followed by

zigzag scanning to create a dictionary D.
3: for t > n do
4: Sample M candidate states {x1

t
, x2

t
, ..., xM

t
} from xt−1.

5: For every candidate state xm
t
, extract the corresponding image sample Im

t
and its local patch matrix

in 2D-DCT domain Ym

t
as explained in section 3.

6: For all the candidate samples Im
t
, compute sparse codes bi for each local patch vector yi in the

candidate sample matrix Ym

t
using Eq. (1) by considering only r number of DCT coefficients in both

candidates and the dictionary.
7: Compute the pooled feature vector fm and the confidence score Cm for all the candidates using Eqs.

(2), (3) and (15), respectively.

8: Find the optimal state of the tracked target x̂t using the Eqs. (9) and (7).
9: Update the template set T and dictionary D as described in section 5.1 for every 5 frames.
10: end for
Output: Target state x̂t at time t and the updated template set T and dictionary D

Springer



Visual Tracking using Structural LDCTSAM with Occlusion Detection 9

5.1 Observation Model Update

The update of observation model is very much essential to handle the appearance variations
of the object, but the update with imprecise samples will cause tracking drift due to model
degradation. Therefore, the imprecise samples should be avoided during the model update. Even
though ASLA is efficient during partial occlusion due to its local appearance model, its template
update mechanism has a drawback during occlusion. That is, the tracking results, which are
occluded, are employed directly for an incremental subspace learning thereby degenerating the
PCA subspace. As the image reconstructed from the degenerated PCA subspace is used for the
template update, there are chances of appearance model degradation (see Fig. 4a) resulting in
a tracking drift. To address this issue, it is proposed to detect and generate a robust occlusion
map, which is used to modify the occluded samples before the appearance model update.

For the occlusion map generation, all the 2D-DCT coefficients are used in both the dic-
tionary D and the tracked candidate matrix Ŷ to compute the sparse codes B̂ using Eq. (1).
The local appearance of a patch in a target candidate is correctly represented by the patches
at the same positions of the templates. Hence, the sparse codes corresponding to the respec-
tive patches are only used to compute the overlapped local patches. These overlapped patches
are used to reconstruct the holistic image Ir as described in section 4 and then the holistic
reconstruction error E = Î − Ir is computed, where Î is the target image of the tracking result.
Further, the holistic reconstruction error E is used to generate a binary occlusion map O1 using
Eq. (10) indicating one for occluded pixels and zero for non-occluded pixels.

O1 =

{

1, if |E| ≥ OThr

0, otherwise,
(10)

where OThr is a precomputed threshold that decides whether the pixel is occluded or not. In
order to compute OThr , it is assumed that all the elements of the reconstruction error E will
be in the ”normal range” and follow the Gaussian distribution in the absence of occlusion. But
during occlusions, the occluded elements of the reconstruction error E will probably exceed the
”normal range”. Therefore, by knowing the ”normal range” of the reconstruction error in the
initial frames (from 1 to n) of the respective sequence, the value of the OThr is computed as

OThr =
c1

n

n
∑

f=1

std (E f ) (11)

Here, each target template in a template set T is used as the candidate sample and the remaining
n−1 templates are used as the dictionary in a round-robin fashion to compute OThr . In general,
the occlusion is a large connected region as opposed to the random noises or object appearance
variations, whose region is very small. Hence, the occlusion map is updated to retain only the
large connected region by applying a morphological operations and a connected component
analysis.

In order to increase the robustness of the occlusion detection method, it is proposed to
identify the patch of the tracked candidate with no contribution from the respective patches
of the dictionary D using the pooled feature vector f̂ . If there is no contribution from the
respective patches of the dictionary D, the respective element of the pooled feature vector f̂

will be zero. That is, f̂i = 0 indicates that there is no contribution from the i-th patch of all the
templates in representing the i-th patch of the tracked candidate, and this happens when the
i-th patch is occluded fully. Then, a binary occlusion map O2 is generated by indicating one in
the respective pixel locations of the corresponding patch.
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10 B. K. Shreyamsha Kumar et al.

Fig. 3 Some representative cases of Jogging-2 and Woman sequences to illustrate the effectiveness of the
proposed holistic image reconstruction, the robust occlusion map generation (O1, O2, O), and the updated
sample.

Now, the two occlusion maps O1 and O2 are combined to generate a final occlusion map
O by performing a logical-OR operation. This makes the occlusion map more robust, so that
the chances of appearance model deterioration due to occlusion could be reduced. Fig. 3 shows
the occlusion maps O1, O2 and O for Jogging-2 (#45) and Woman (#122) sequences. Further,
a occlusion ratio τ is computed as the ratio of the number of ones in O to the total number
of elements in O. This occlusion ratio τ indicates the amount of occlusion in the tracked
candidate. The occlusion ratio τ decides whether the update of the observation model with
the tracked sample is full or partial or not, with the help of two thresholds τ1 and τ2. In the
absence of occlusion (when τ < τ1), the tracked sample is used directly for the model update
(full update). During partial occlusion (when τ1 < τ < τ2), the occluded pixels in the tracked
sample are replaced with the corresponding pixels from the previously updated mean µ to get
a updated sample. This updated sample is free from occlusion and is used in a model update.
During severe occlusion (when τ > τ2), the tracked sample is not used for model update.
Fig. 3 shows the updated tracked sample, which is free from occlusion, for Jogging-2 (#45)
and Woman (#122) sequences. It is observed from Fig. 3 that the combined occlusion map
O is more robust than the individual ones O1 and O2, and make the updated sample free
from occlusion with the proposed appearance model update. The updated tracked samples,
which are free from occlusion, are cumulated for an incremental subspace learning [29]. This
incremental learning not only adapts to the target appearance variation but also preserves the
common visual information in the collected observations. The proposed method uses trivial
templates along with PCA basis vectors U to estimate the target p, as given by

p = Uq + e = [ U I ]

[

q

e

]

(12)

where I is the identity matrix representing trivial templates, q denotes the coefficients of the
PCA basis vectors U, and e represents the pixels in p that are outliers or corrupted. Unlike
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(a) ASLA

(b) LDSAMOD

Fig. 4 Some representative cases of Faceocc1 (#700) and Woman (#180) to illustrate the effectiveness of
the proposed observation model update compared to that of ASLA.

ASLA, which uses the latest tracked sample as p, the proposed method choses the updated
tracked sample with highest confidence score among the cumulated samples as p, which is
free from occlusion. Note that when τ > τ2, the tracked sample with severe occlusion is not
cumulated and hence its chances of considering as p is zero. Since the error is arbitrary and
sparse, Eq. (12) is solved by l1-minimization, and an image p̂ is reconstructed from the PCA
basis vectors U along with its coefficients q. This ensures the reconstructed image is free from
corruption and outliers, as the coefficients of trivial templates (due to noise or outlier) are
excluded for image reconstruction. The reconstructed image p̂ is then used for updating both
the template and the corresponding dictionary atoms in D as discussed in the next paragraph.

It is known that the sparse codes B̂ of the tracked candidate represent the contributions
from all the patches of all the templates. Also, the local appearance of a patch with some
appearance variation in the tracked candidate is correctly represented by the patches at the
same positions of the templates. Hence, the contribution ĥk of each template in representing
the tracking result Î is computed by considering only the contributions from the respective
patches of the template using Eq. (13).

ĥk =

N
∑

i=1

B̂ (N[k − 1] + i, i) , k = 1,2, ...,n, (13)

While cumulating the tracked samples, the respective confidence Ĉ and the template contribu-
tion scores ĥk are also cumulated. From the cumulated confidence scores, the highest confidence
score is found and its corresponding updated tracked sample is used as p in Eq. (12). Further,
from the cumulated template contribution scores, the location k̂ of the template to be replaced
is found using the Eq. (14).

k̂ = argmin
k

∑

t∈[t−4:t]

hk (t) (14)

With this replacement strategy, the template, which is contributing least to the representation
of the previous 5 tracking results, is replaced with the reconstructed image p̂. This is done
with an assumption that the template with the least contribution score may have an old
appearance of the object, which may be outdated, and hence cannot contribute significantly in
representing the target candidate. After updating the template set with p̂, the corresponding
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12 B. K. Shreyamsha Kumar et al.

dictionary atoms are also updated. To illustrate the effectiveness of the proposed observation
model update, the template dictionary for the proposed method and ASLA is shown in Fig.
4. From Fig. 4, it is observed that the template set of ASLA gets corrupted over the time,
but this is not so with the proposed method. Unlike [24], which considers only the current
tracking result (may be severely occluded) to find the template contribution score, the proposed
method considers previous 5 tracking results (which are not severely occluded with τ < τ2) to
find the average template contribution score. As [24] directly uses the occluded/corrupted
tracking result for the model update, there are chances of observation model degradation.
However, in the proposed method, p̂ used for the model update is free from the occlusion and
outliers/corruptions, as they are removed before and after an incremental subspace learning.

In the proposed method, instead of using the sum of pooled features to find the confidence
score Cm by giving equal weights to each patch (as in ASLA), it is proposed to compute the
confidence score Cm using weighted sum of the pooled features. This is done by assigning
different weights to each patch depending on its patch occlusion ratio τpi . Now the confidence
score Cm is rewritten as

Cm
=

N
∑

i=1

τpi f
m
i (15)

where τpi is the ratio of occluded pixels to that of total pixels in a patch.

6 Experimental Results

The proposed algorithm is implemented in MATLAB and its performance is evaluated using
50 and 60 challenging sequences available in the OTB-50 [44] and VOT2016 [18] datasets,
respectively. These sequences cover most of the real-life challenging situations in object tracking,
such as motion blur due to fast movement, pose variation, complex background, varying lighting
conditions, low contrast, scale change, heavy occlusion, in-plane and out-of-plane rotation. In
the proposed method, each image observation is resized to 32×32 pixels and then local patches
of size 16 × 16 are extracted with an overlap of 8 pixels. Therefore, each target region is cut
into N = 9 overlapping patches. In the proposed method, SPAMS package [23] is used for
l1-minimization and the regularization constant λ is set to 0.01. 10 eigenvectors are used in
an incremental subspace learning and the observation model is updated for every 5 frames.
Considering the trade-off between effectiveness in tracking and computational efficiency, 600
particles are sampled using a particle filter. The constant c1 used to compute threshold OThr

in (11) is set to 4. The occlusion ratio thresholds τ1 and τ2 are set to 0.1 and 0.65, respectively.
In the initial 10 frames, kd-tree is used to obtain the tracking results, and from these tracking
results n = 10 target templates are extracted for the generation of the dictionary D. The number
of DCT coefficients considered in each patch, r, is set to 64 while computing the confidence score
Cm for all the candidates, except during occlusions when τ > τ2, it is set to 256. By reducing
the size of the dictionary as well as that of the candidate samples, the proposed method has
achieved a speed of 2.18 fps (including the time required for the computation of the 2D-DCT
and the proposed occlusion detection) as compared with 1.86 fps required by ASLA. This is
a 17.2% increase in the speed compared to that of ASLA in spite of having to compute the
2D-DCT coefficients and the occlusion detection.

The performance of the proposed method is evaluated against several recent state-of-the-
art algorithms based on the particle filter framework for a fair comparison. The considered
algorithms are IVT [29], L1 accelerated proximal gradient (L1APG) [3], ASLA [17], sparse pro-
totype tracker (SPT) [39], weighted residual minimization in PCA subspace for visual tracking
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(WRMPCA) [33], visual tracking via bilateral 2DPCA and robust coding (B2DPCA) [32], vi-
sual tracking via least soft-threshold squares (LSST) [40], locally weighted inverse sparse tracker
(LWIST) [38], visual tracking via weighted local cosine similarity (WLCS) [37], robust object
tracking via probability continuous outlier model (PCOM) [36], IL3DDCT [20] and DLT [42].
Note that the codes of the trackers are downloaded from the respective authors’ website and
evaluated on both the OTB-50 and VOT2016 benchmark sequences for a fair comparison with
the proposed method. For these evaluations, the parameter Σ (diagonal covariance matrix) of
the particle filter is set to be like that used in OTB-50 [44], i.e. Σ = (4,4,0.01,0.0,0.005,0)2.

6.1 Performance Evaluation Methodology

In general, two frame-based metrics, namely, overlap rate (OR) and center location error (CLE),
are employed to evaluate the tracker in a given frame. Based on these basic metrics, the OTB-
50 and VOT2016 methodologies derive other performance measures to analyze the tracking
performance.

In OTB-50, the performance of a tracker for a given sequence is evaluated using the success
rate and the precision score. The former is the ratio of successful frames whose OR is larger
than a given threshold to the total frames in a sequence, whereas the later is the percentage of
frames whose CLE is less than a given threshold distance of the ground truth. By using multiple
thresholds, two curves are obtained showing how the threshold value affects the success rate
and the precision score, and are called as success plot and precision plot, respectively, for a
given sequence. Further, these success and precision curves are averaged over all the sequences
to obtain the overall success and precision plots, respectively. In order to quantify the overall
performance of a tracker, the area under curve (AUC) of the success plot or the precision score
for the threshold of 20 pixels, is employed [44].

In VOT2016, the performance of a tracker is analyzed using the accuracy (A) and robust-
ness (R). The accuracy is the average overlap between the predicted and ground truth bounding
boxes during successful tracking periods. On the other hand, the robustness measures the num-
ber of times the tracker fails to track. In VOT2016, whenever a tracker predicts a bounding box
with zero overlap with the ground truth, a failure is detected and the tracker is re-initialized. All
the trackers are evaluated 15 times on each sequence and then per-frame accuracy is obtained
as an average over these runs. Averaging per-frame accuracies gives per-sequence accuracy,
while per-sequence robustness is computed by averaging failure rates over different runs [18].

6.2 Performance Evaluation on OTB-50

The performance of the proposed method is evaluated on the OTB-50 benchmark [44] consisting
of 50 sequences with fully annotated attributes and compared with the state-of-the-art tracking
algorithms using one-pass evaluation (OPE). The one-pass evaluation (OPE) uses the ground
truth object location in the first frame and evaluates the tracker based on the average precision
score or success rate. The precision and success plots of OPE for the various trackers averaging
over the OTB-50 benchmark sequences are shown in Fig. 5. In precision plot, the precision
score for the threshold of 20 pixels is used to rank the tracker. Whereas in success plot, AUC is
used to rank the overall performance of the tracker. Both the precision score and AUC values
have been shown along with the tracker name in the respective plots of Fig. 5. From Fig. 5,
it is observed that the proposed method (LDSAMOD) outperforms the state-of-the-trackers
ASLA, DLT, IL3DDCT, WRMPCA, IVT, LSST, L1APG and PCOM by 3.6%, 8%, 23.6%,
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14 B. K. Shreyamsha Kumar et al.

Fig. 5 Overall performance evaluation of the proposed method using success and precision plots of OPE.

Fig. 6 Performance evaluation of the proposed method using success and precision plots of OPE for se-
quences having occlusion. The values appearing in the title denotes the number of sequences associated with
the respective attribute.

23.6%, 26%, 28.3%, 30.7% and 33.2%, respectively, in terms of precision score. A similar trend
in performance is also observed in success scores. Overall, LDSAMOD and its previous version
(LDSAM) [31] provide the best performance to that of the other methods in terms of precision
and success score. The proposed method, LDSAMOD, is an improvement of LDSAM [31] with
a robust occlusion detection, which is used to update the appearance model as well as to find
the confidence score. Further, the OPE performance comparison of the proposed method for
sequences having occlusion against the other trackers is shown in Fig. 6. From the Fig. 6, it is
observed that the proposed method outperforms the state-of-the-trackers DLT, ASLA, L1APG,
IVT, WRMPCA, IL3DDCT, PCOM and LSST by 5.2%, 12.9%, 23.6%, 31%, 31.6%, 32.4%,
36% and 46.2%, respectively, in terms of precision score. This trend in performance holds true
for success score also. For sequences having occlusion, it is observed that the proposed method
and its previous version have shown better performance than that of the other trackers, both
in terms of precision and success scores.
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6.3 Performance Evaluation using VOT2016

The average accuracy and robustness are used to evaluate the performance of the proposed
method using VOT2016 benchmark [18] consisting of 60 sequences, which are per-frame an-
notated with several visual attributes. Further, the tracking results are ranked according to
accuracy and robustness performance metrics, and are named as accuracy rank (A-Rank) and
robustness rank (R-Rank), respectively. Table 1 shows the A-Rank and overlap comparison of
the proposed method with that of the recent state-of-the-art tracking algorithms averaging over
the VOT2016 sequences. These sequences contain challenging situations such as camera motion,
illumination change, motion change, occlusion and size change. Similarly, Table 2 shows the
performance comparison of the proposed method using R-Rank and failures averaging over the
same challenging sequences. The last six columns of these two tables show the respective mea-
sures using different averaging methodologies. The mean and weighted mean are the averages of
attributes in an equal or weighted manner, whereas pooled corresponds to the per-frame aver-
aging of the super-sequence obtained by concatenating all of the sequences [18]. The best three
results are shown in (red, bold), (violet, underline) and (blue, italic) fonts for better compar-

ison of the proposed tracker with the other state-of-the-art trackers. Note that as the trackers
with statistically equivalent results are merged while ranking, the different trackers may have
same A-Rank and R-Rank [18]. From Table 1, it is observed that the proposed method stands
first in all the challenging sequences in terms of overlap, except for occlusion where it stood
second, and illumination change, where it stood third. Also, it is observed in Table 2 that the
proposed method ranks first in all the challenging sequences in terms of failures, except for
motion change, where it stood second, and illumination change, where it stood fourth. Further,
the overall performance of the proposed method is superior to that of other methods in terms
of mean, weighted mean and pooled averaging of overlap and failures.

6.4 Qualitative Evaluation

For qualitative evaluation of the trackers, some tracking results on a subset of the OTB-50
benchmark sequences are shown in Fig. 7. In Fig. 7, the tracking results of all the trackers on
the six exemplar image frames are shown for each selected sequence and these six frames are
selected at regular intervals without any bias. The proposed LDSAMOD tracker successfully
tracks the target in the all the frames of the Doll, Faceocc2, Dudek, Fish, Girl, Freeman3,
Jogging-2, Singer1, Walking2 and Woman sequences, which contain most of the real-time
challenges such as pose change, partial occlusion, illumination change, scale change and out-
of-plane rotation. This indicates the strong capabilities of the proposed method in handling
these challenges. The proposed tracker has slightly drifted away in middle few frames (#163
to #412) of the Girl sequence and then starts tracking afterwards. It is also observed that
the previous version of the proposed method, LDSAM, performs better in all the sequences
except Walking2 and Woman sequences, where the sequence undergoes severe occlusion along
with scale and appearance change, in spite of using local appearance model. Similarly, even
with local appearance model, ASLA fails to track the object in Faceocc2, Jogging-2, Walking2
and Woman, where the sequence undergoes partial/severe occlusion. These failures in both
ASLA/LDSAM is because of the appearance model update with the imprecise tracked samples
without removing the occlusion. IVT tracks the object in most of the sequences except Doll,
Girl, Freeman3, Jogging-2 and Woman sequences, where as L1APG tracks the object com-
pletely in Girl and Walking2 sequences and drifts away in Faceocc2, Dudek and Fish sequences
in the last few frames. Further, WRMPCA fails to track the object completely in Doll, Girl,
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Freeman3, Jogging-2 and Woman sequences, where as B2DPCA fails to estimate the scale and
location of the object in most of the sequences except Doll and Jogging-2. Also, LWIST tracks
the object completely in Fish, Jogging-2, Singer1 and Walking2 sequences, whereas WLCS
tracks the object in Faceocc2, Singer1 and Walking2 sequences. Further, LSST fails to esti-
mate the scale and location of the object in most of the sequences except Singer1 and Freeman3
sequences. SPT fails to track the object in all the sequences, whereas DLT tracks the object
successfully in most of the sequences except Doll, Girl and Jogging-2. Further, PCOM fails
to estimate the scale and location of the object in most of the sequences except Singer1 and
Walking2 sequences.

7 Conclusion

In this paper, a generative tracking algorithm using a structural local DCT sparse appearance
model with occlusion detection has been proposed. The energy compaction property of the 2D-
DCT has been exploited to reduce the size of the dictionary and the candidate samples, which in
turn, lowers the computational cost of l1-minimization. Also, it has been proposed to reconstruct
the holistic image from the overlapped local patches obtained from the patch dictionary and
the sparse codes. Further, a robust occlusion map generation has been proposed using the
reconstructed image and the tracked candidate. Also, it has been proposed to find the threshold
for occlusion detection automatically for each sequence. In addition, the highest confident
occlusion-free sample among the cumulated samples has been used to reconstruct the image for
the template update. Further, it has been proposed to compute the patch occlusion ratio, and
has been used in the confidence score computation by weighting the pooled features. Finally,
the tracking result has been obtained by the MAP estimation. Extensive experiments have been
conducted on the two popular tracking benchmark datasets, OTB-50 and VOT2016, to analyze
the performance of the proposed method. The quantitative and qualitative performance of the
proposed method has been compared with that of several recent state-of-the-art algorithms
using these benchmark datasets, and it has been shown that the proposed method is competitive
for most of the challenging sequences.
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