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Abstract

In this paper, we address the problem of learning an

adaptive appearance model for object tracking. In partic-

ular, a class of tracking techniques called “tracking by de-

tection” have been shown to give promising results at real-

time speeds. These methods train a discriminative classifier

in an online manner to separate the object from the back-

ground. This classifier bootstraps itself by using the cur-

rent tracker state to extract positive and negative examples

from the current frame. Slight inaccuracies in the tracker

can therefore lead to incorrectly labeled training examples,

which degrades the classifier and can cause further drift.

In this paper we show that using Multiple Instance Learn-

ing (MIL) instead of traditional supervised learning avoids

these problems, and can therefore lead to a more robust

tracker with fewer parameter tweaks. We present a novel

online MIL algorithm for object tracking that achieves su-

perior results with real-time performance.

1. Introduction

Object tracking has many practical applications (e.g.

surveillance, HCI) and has long been studied in computer

vision. Although there has been some success with building

domain specific trackers (e.g. faces [6], humans [16]), track-

ing generic objects has remained very challenging. Gener-

ally there are three components to a tracking system: image

representation (e.g. filter banks [17], subspaces [21], etc.),

appearance model, and motion model; although in some

cases these components are merged. In this work we fo-

cus mainly on the appearance model since this is usually

the most challenging to design.

Although many tracking methods employ static appear-

ance models that are either defined manually or trained us-

ing the first frame [16, 8, 1], these methods tend to have

difficulties tracking objects that exhibit significant appear-

ance changes. It has been shown that in many scenarios

an adaptive appearance model, which evolves during the

tracking process as the appearance of the object changes,

is the key to good performance [17, 21]. Another choice in
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Figure 1. Updating a discriminative appearance model: (A) Using a

single positive image patch to update a traditional discriminative classifier.

The positive image patch chosen does not capture the object perfectly. (B)

Using several positive image patches to update a traditional discriminative

classifier. This can confuse the classifier causing poor performance. (C)

Using one positive bag consisting of several image patches to update a MIL

classifier. See Section 3 for empirical results of these three strategies.

the design of appearance models is whether to model only

the object [5, 21], or both the object and the background

[18, 14, 19, 4, 3, 24, 7]. Many of the latter approaches have

shown that training a model to separate the object from the

background via a discriminative classifier can often achieve

superior results. Because these methods have a lot in com-

mon with object detection they have been termed “tracking

by detection”. In particular, the recent advances in face de-

tection [22] have inspired some successful real-time track-

ing algorithms [14, 19].

A major challenge that is often not discussed in the liter-

ature is how to choose positive and negative examples when

updating the adaptive appearance model. Most commonly

this is done by taking the current tracker location as one

positive example, and sampling the neighborhood around

the tracker location for negatives. If the tracker location is

not precise, however, the appearance model ends up getting

updated with a sub-optimal positive example. Over time

this can degrade the model, and can cause drift. On the

other hand, if multiple positive examples are used (taken
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Figure 2. Tracking by detection with a greedy motion model: an

illustration of how most tracking by detection systems work.

from a small neighborhood around the current tracker lo-

cation), the model can become confused and its discrim-

inative power can suffer (cf . Fig. 1 (A-B)). Alternatively,

Grabner et al. [15] recently proposed a semi-supervised ap-

proach where labeled examples come from the first frame

only, and subsequent training examples are left unlabeled.

This method is particularly well suited for scenarios where

the object leaves the field of view completely, but it throws

away a lot of useful information by not taking advantage of

the problem domain (e.g., when it is safe to assume small

interframe motion).

Some of the above issues are encountered in object de-

tection because it is difficult for a human labeler to be

consistent with respect to how the positive examples are

cropped. In other words, the exact object locations are un-

known. In fact, Viola et al. [23] argue that object detection

has inherent ambiguities that make it more difficult to train

a classifier using traditional methods. For this reason they

suggest the use of a Multiple Instance Learning (MIL) [9]

approach for object detection. We give a more formal defi-

nition of MIL in Section 2.2, but the basic idea of this learn-

ing paradigm is that during training, examples are presented

in sets (often called “bags”), and labels are provided for the

bags rather than individual instances. If a bag is labeled pos-

itive it is assumed to contain at least one positive instance,

otherwise the bag is negative. For example, in the context of

object detection, a positive bag could contain a few possible

bounding boxes around each labeled object (e.g. a human

labeler clicks on the center of the object, and the algorithm

crops several rectangles around that point). Therefore, the

ambiguity is passed on to the learning algorithm, which now

has to figure out which instance in each positive bag is the

most “correct”. Although one could argue that this learning

problem is more difficult in the sense that less information

is provided to the learner, in some ways it is actually easier

because the learner is allowed some flexibility in finding a

decision boundary. Viola et al. present convincing results

showing that a face detector trained with weaker labeling

(just the center of the face) and a MIL algorithm outper-

forms a state of the art supervised algorithm trained with

explicit bounding boxes.

Algorithm 1 MILTrack

Input: New video frame number k

1: Crop out a set of image patches, Xs = {x|s > ||l(x)−
l∗t−1||} and compute feature vectors.

2: Use MIL classifier to estimate p(y = 1|x) for x ∈ Xs.

3: Update tracker location l∗t = l
(

argmaxx∈Xs p(y|x)
)

4: Crop out two sets of image patches Xr = {x|r >

||l(x)− l∗t ||} and Xr,β = {x|β > ||l(x)− l∗t || > r}.
5: Update MIL appearance model with one positive bag

Xr and |Xr,β | negative bags, each containing a single

image patch from the set Xr,β

In this paper we make an analogous argument to that of

Viola et al. [23], and propose to use a MIL based appear-

ance model for object tracking. In fact, in the object track-

ing domain there is even more ambiguity than in object de-

tection because the tracker has no human input and has to

bootstrap itself. Therefore, we expect the benefits of a MIL

approach to be even more significant than in the object de-

tection problem. In order to implement such a tracker, an

online MIL algorithm is required. The algorithm we pro-

pose is based on boosting and is related to the MILBoost

algorithm [23] as well as the Online-AdaBoost algorithm

[20] (to our knowledge no other online MIL algorithm cur-

rently exists in the literature). We present empirical results

on challenging video sequences, which show that using an

online MIL based appearance model can lead to more robust

and stable tracking than existing methods in the literature.

2. Tracking with Online MIL

In this section we introduce our tracking algorithm, MIL-

Track, which uses a MIL based appearance model. We be-

gin with an overview of our tracking system which includes

a description of the motion model we use. Next we review

the MIL problem and briefly describe the MILBoost algo-

rithm [23]. We then review online boosting [20, 14] and

present a novel boosting based algorithm for online MIL,

which is required for real-time MIL based tracking. Finally,

we review various implementation details.

2.1. System Overview and Motion Model

The basic flow of the tracking system we implemented

in this work is illustrated in Fig. 2 and summarized in Algo-

rithm 1. As we mentioned earlier, the system contains three

components: image representation, appearance model and

motion model. Our image representation consists of a set of

Haar-like features that are computed for each image patch

[22, 10]; this is discussed in more detail in Section 2.5. The

appearance model is composed of a discriminative classifier

which is able to return p(y = 1|x) (we will use p(y|x) as

shorthand), where x is an image patch (or the representa-



tion of an image patch in feature space) and y is a binary

variable indicating the presence of the object of interest in

that image patch. At every time step t, our tracker maintains

the object location l∗t . Let l(x) denote the location of image

patch x. For each new frame we crop out a set of image

patches Xs = {x|s > ||l(x)− l∗t−1||} that are within some

search radius s of the current tracker location, and compute

p(y|x) for all x ∈ Xs. We then use a greedy strategy to

update the tracker location:

l∗t = l
(

argmax
x∈Xs

p(y|x)
)

(1)

In other words, we do not maintain a distribution of the tar-

get’s location at every frame; we instead use a motion model

where the location of the tracker at time t is equally likely

to appear within a radius s of the tracker location at time

(t− 1):

p(l∗t |l
∗
t−1) ∝

{

1 if ||l∗t − l∗t−1|| < s

0 otherwise
(2)

This could be extended with something more sophisticated,

such as a particle filter, as is done in [24, 21]; however, we

again emphasize that our focus is on the appearance model.

Furthermore, note that it is straightforward to track other

motion information such as scale and rotation, and we chose

to track only the location for simplicity and computational

efficiency reasons. It is also worth noting that the Haar-like

features we use are fairly invariant to moderate rotation and

scale changes.

Once the tracker location is updated, we proceed to up-

date the appearance model. We crop out a set of patches

Xr = {x|r > ||l(x) − l∗t ||}, where r < s is an inte-

ger radius, and label this bag positive (recall that in MIL

we train the algorithm with labeled bags). In contrast, if

a standard learning algorithm were used, there would be

two options: set r = 1 and use this as a single positive

instance, or set r > 1 and label all these instances posi-

tive. For negatives we crop out patches from an annular

region Xr,β = {x|β > ||l(x) − l∗t || > r}, where r is

same as before, and β is another scalar. Since this gener-

ates a potentially large set, we then take a random subset

of these image patches and label them negative. We place

each negative example into its own negative bag1. Details

on how these parameters were set are in Section 3, although

we use the same parameters throughout all the experiments.

Fig. 1 contains an illustration comparing appearance model

updates using MIL and a standard learning algorithm. We

continue with a more detailed review of MIL.

1Note that we could place all negative examples into a single negative

bag. Our intuition is that there is no ambiguity about negative examples,

so placing them into separate bags makes more sense. Furthermore the

particular loss function we choose is not affected by this choice.

2.2. Multiple Instance Learning

Traditional discriminative learning algorithms for train-

ing a binary classifier that estimates p(y|x) require a train-

ing data set of the form {(x1, y1), . . . , (xn, yn)} where

xi is an instance (in our case a feature vector computed

for an image patch), and yi ∈ {0, 1} is a binary label.

In the Multiple Instance Learning framework the training

data has the form {(X1, y1), . . . , (Xn, yn)} where a bag

Xi = {xi1, . . . , xim} and yi is a bag label. The bag labels

are defined as:

yi = max
j

(yij) (3)

where yij are the instance labels, which are assumed to ex-

ist, but are not known during training. In other words, a

bag is considered positive if it contains at least one posi-

tive instance. Numerous algorithms have been proposed for

solving the MIL problem [9, 2, 23]. The algorithm that is

most closely related to our work is the MILBoost algorithm

proposed by Viola et al. in [23]. MILBoost uses the the gra-

dient boosting framework [13] to train a boosting classifier

that maximizes the log likelihood of bags:

logL =
∑

i

(

log p(yi|Xi)
)

(4)

Notice that the likelihood is defined over bags and not in-

stances, because instance labels are unknown during train-

ing, and yet the goal is to train an instance classifier that

estimates p(y|x). We therefore need to express p(yi|Xi),
the probability of a bag being positive, in terms of its in-

stances. In [23] the Noisy-OR (NOR) model is adopted for

doing this:

p(yi|Xi) = 1−
∏

j

(

1− p(yi|xij)
)

(5)

The equation above has the desired property that if one of

the instances in a bag has a high probability, the bag prob-

ability will be high as well. Note that MILBoost is a batch

algorithm (meaning it needs the entire training data at once)

and cannot be trained in an online manner as we need in our

tracking application (we refer the reader to [23] for further

details on MILBoost). Nevertheless, we adopt the loss func-

tion in Equation 4 and the bag probability model in Equa-

tion 5 when we develop our online MIL algorithm in Sec-

tion 2.4.

2.3. Related Work in Online Boosting

Our algorithm for online MIL is based on the boosting

framework [11] and is related to the work on Online Ad-

aBoost [20] and its adaptation in [14]. The goal of boosting

is to combine many weak classifiers h(x) (usually decision

stumps) into an additive strong classifier:

H(x) =

K
∑

k=1

αkhk(x) (6)



where αk are scalar weights. There have been many boost-

ing algorithms proposed to learn this model in batch mode

[11, 12]; typically this is done in a greedy manner where the

weak classifiers are trained sequentially. After each weak

classifier is trained, the training examples are re-weighted

such that examples that were previously misclassified re-

ceive more weight. If each weak classifier is a decision

stump, then it chooses one feature that has the most dis-

criminative power for the entire weighted training set. In

this case boosting can be viewed as performing feature se-

lection, choosing a total of K features, which is generally

much smaller than the size of the entire feature pool. This

has proven particular useful in computer vision because it

creates classifiers that are efficient at run time [22].

In [20], Oza develops an online variant of the popular

AdaBoost algorithm [11], which minimizes the exponential

loss function. This variant requires that all h can be trained

in an online manner. The basic flow of Oza’s algorithm is

as follows: for an incoming example x, each hk is updated

sequentially and the weight of example x is adjusted after

each update. Since the formulas for the example weights

and classifier weights depend only on the error of the weak

classifiers, Oza proposes to keep a running average of the

error of each hk, which allows the algorithm to estimate

both the example weight and the classifier weights in an

online manner.

In Oza’s framework if every h is restricted to be a de-

cision stump, the algorithm has no way of choosing the

most discriminative feature because the entire training set

is never available at one time. Therefore, the features for

each hk must be picked a priori. This is a potential prob-

lem for computer vision applications, since they often rely

on the feature selection property of boosting. Grabner et al.

[14] proposed an extension of Oza’s algorithm which per-

forms feature selection by maintaining a pool of M > K

candidate weak stump classifiers h. When a new example

is passed in, all of the candidate weak classifiers are up-

dated in parallel. Then, the algorithm sequentially chooses

K weak classifiers h from this pool by keeping running av-

erages of errors for each as in [20], and updates the weights

of h accordingly. We employ a similar feature selection

technique in our Online MIL algorithm, although the cri-

teria for choosing weak classifiers is different.

2.4. Online Multiple Instance Boosting

The algorithms in [20] and [14] rely on the special prop-

erties of the exponential loss function of AdaBoost, and

therefore cannot be readily adapted to the MIL problem.

We now present our novel online boosting algorithm for

MIL. As in [12], we take a statistical view of boosting,

where the algorithm is trying to optimzie a specific loss

function J . In this view, the weak classifiers are chosen

sequentially to optimize the following criteria:

Algorithm 2 Online-MILBoost (OMB)

Input: Dataset {Xi, yi}
N
i=1, where Xi =

{xi1, xi2, . . .}, yi ∈ {0, 1}

1: Update all M weak classifiers in the pool with data

{xij , yi}
2: Initialize Hij = 0 for all i, j

3: for k = 1 to K do

4: for m = 1 to M do

5: pm
ij = σ

(

Hij + hm(xij)
)

6: pm
i = 1−

∏

j

(

1− pm
ij

)

7: Lm =
∑

i

(

yi log(pm
i ) + (1− yi) log(1− pm

i )
)

8: end for

9: m∗ = argmaxm L
m

10: hk(x)← hm∗(x)
11: Hij = Hij + hk(x)
12: end for

Output: Classifier H(x) =
∑

k hk(x), where p(y|x) =
σ
(

H(x)
)

(hk, αk) = argmax
h∈H,α

J(Hk−1 + αh) (7)

where Hk−1 is the strong classifier made up of the first

(k − 1) weak classifiers, and H is the set of all possible

weak classifiers. In batch boosting algorithms, the objec-

tive function J is computed over the entire training data set.

In our case, for the current video frame we are given

a training data set {(X1, y1), (X2, y2) . . .}, where Xi =
{xi1, xi2 . . .}. We would like to update our estimate of

p(y|x) to maximize the log likelihood of this data (Equa-

tion 4). We model the instance probability as

p(y|x) = σ
(

H(x)
)

(8)

where σ(x) = 1

1+e−x is the sigmoid function; the bag

probabilities p(y|X) are modeled using the NOR model in

Equation 5. To simplify the problem, we absorb the scalar

weights αt into the weak classifiers, by allowing them to

return real values rather than binary.

At all times our algorithm maintains a pool of M > K

candidate weak stump classifiers h. To update the classi-

fier, we first update all of these weak classifiers in parallel,

similar to [14]. Note that although examples are passed in

bags, the weak classifiers in a MIL algorithm are instance

classifiers, and therefore require instance labels yij . Since

these are unavailable, we pass in the bag label yi for all in-

stances xij to the weak training procedure. We then choose

K weak classifiers h from the candidate pool sequentially,

using the following criteria:

hk = argmax
h∈{h1,...,hM}

logL(Hk−1 + h) (9)

See Algorithm 2 for the pseudo-code of Online-MILBoost.



2.4.1 Discussion

There are a couple important issues to point out about this

algorithm. First, we acknowledge the fact that training the

weak classifiers with positive labels for all instances in the

positive bags is sub-optimal because some of the instances

in the positive bags may actually not be “correct”. The algo-

rithm makes up for this when it is choosing the weak clas-

sifiers h based on the bag likelihood loss function. Second,

if we compare Equations 7 and 9 we see that the latter has

a much more restricted choice of weak classifiers. How-

ever, this approximation does not seem to degrade the per-

formance of the classifier in practice. Finally, we note that

the likelihood being optimized in Equation 9 is computed

only on the current examples. Thus, it has the potential of

overfitting to current examples, and not retaining informa-

tion about previously seen data. This is averted by using

online weak classifiers that do retain information about pre-

viously seen data, which balances out the overall algorithm

between fitting the current data and retaining history (see

Section 2.5 for more details).

2.5. Implementation Details

2.5.1 Weak Classifiers

Recall that we require weak classifiers h that can be up-

dated online. In our system each weak classifier hk is

composed of a Haar-like feature fk and four parameters

(µ1, σ1, µ0, σ0) that are estimated online. The classifiers

return the log odds ratio:

hk(x) = log

[

pt

(

y = 1|fk(x)
)

pt

(

y = 0|fk(x)
)

]

(10)

where pt

(

ft(x)|y = 1
)

∼ N (µ1, σ1) and similarly for

y = 0. We let p(y = 1) = p(y = 0) and use Bayes

rule to compute the above equation. When the weak clas-

sifier receives new data {(x1, y1), . . . , (xn, yn)} we use the

following update rules:

µ1 ← γµ1 + (1− γ)
1

n

∑

i|yi=1

fk(xi)

σ1 ← γσ1 + (1− γ)

√

√

√

√

1

n

∑

i|yi=1

(

fk(xi)− µ1

)2

where γ is a learning rate parameter. The update rules for

µ0 and σ0 are similarly defined.

2.5.2 Image Features

We represent each image patch as a vector of Haar-like fea-

tures [22], which are randomly generated, similar to [10].

Each feature consists of 2 to 4 rectangles, and each rectan-

gle has a real valued weight. The feature value is then a

weighted sum of the pixels in all the rectangles. These fea-

tures can be computed efficiently using the integral image

trick described in [22].

3. Experiments

We tested our MILTrack system on several challenging

video sequences, some of which are publicly available. For

comparison, we implemented a tracker based on the Online-

AdaBoost (OAB) algorithm described in [14]. We plugged

this learning algorithm into our system, and used the same

features and motion model as for MILTrack (See Section

2.1). We acknowledge the fact that our implementation of

the OAB tracker achieves worse performance than is re-

ported in [14]; this could be because we are using sim-

pler features, or because our parameters were not tuned per

each video sequence. However, our study is still valid for

comparison because only the learning algorithm changes

between our implementation of the OAB tracker and MIL-

Track, and everything else is kept constant. This allows us

to isolate the appearance model to make sure that it is the

cause of the performance difference.

One of the goals of this work is to demonstrate that us-

ing MIL results in a more robust and stable tracker. For

this reason all algorithm parameters were fixed for all the

experiments. This holds for all algorithms we tested. For

MILTrack and OAB the parameters were set as follows. The

search radius s is set to 35 pixels. For MILTrack we sample

positives in each frame using a positive radius r = 5. This

generates a total of 45 image patches comprising one posi-

tive bag. For the OAB tracker we tried two variations. In the

first variation we set r = 1 generating only one positive ex-

ample per frame; in the second variation we set r = 5 as we

do in MILTrack (although in this case each of the 45 image

patches is labeled positive). The reason we experimented

with these two versions was to show that the superior per-

formance of MILTrack is not simply due to the fact that we

extract multiple positive examples per frame. In fact, as we

will see shortly, when multiple positive examples are used

for the OAB tracker, its performance degrades (cf . Table 1

and Fig. 5). The scalar β for sampling negative examples

was set to 50, and we randomly sample 65 negative image

patches from the set Xr,β . The learning rate γ for the weak

classifiers is set to 0.85. Finally, the number of candidate

weak classifiers M was set to 250, and the number of cho-

sen weak classifiers K was set to 50.

We also implemented the SemiBoost tracker, as de-

scribed in [15]. As mentioned earlier, this method uses label

information from the first frame only, and then updates the

appearance model via online semi-supervised learning in

subsequent frames. This makes it particularly robust to sce-

narios where the object leaves the scene completely. How-

ever, the model relies strongly on the prior classifier (trained

using the first frame). We found that on clips exhibiting sig-
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Figure 3. Screenshots of tracking results, highlighting instances of (A) out-of-plane rotation, (B) occluding clutter, (C) scale and illumination change, and

(D) in-plane rotation and object occlusion. For the Tiger 2 clip we also include close up shots of the object to highlight the wide range of appearance changes.

For the sake of clarity we only show MILTrack compared to OAB1 and FragTrack because these two on average got the best results next to MILTrack. Table

1 and Fig. 5 include quantitative results for all trackers we evaluated.

nificant appearance changes this algorithm did not perform

well. In our implementation we use the same features and

weak classifiers as our MILTrack and OAB implementa-

tions. To gather unlabeled examples we sample 200 patches

from a circular region around the previous tracker location

with a radius of 10 pixels.

Finally, to gauge absolute performance we also compare

our results to the recently proposed FragTrack algorithm

[1], the code for which is publicly available. This algo-

rithm uses a static appearance model based on integral his-

tograms, which have been shown to be very efficient. The

appearance model is part based, which makes it robust to

occlusions. We use the same parameters as the authors used

in their paper for all of our experiments. We also experi-

mented with other trackers such as IVT [21], but found that

it was difficult to compare performance since other trackers

require parameter tuning per video sequence. Furthermore,

as noted in [21] the IVT tracker is not expected to work well

when target objects are heavily occluded.

Since the boosting based trackers involve some slight

randomness, we ran them 5 times and averaged the results

for each video clip.

Video Clip OAB1 OAB5 SemiBoost Frag MILTrack

David Indoor 49 72 59 46 23

Sylvester 25 79 22 11 11

Occluded Face 44 105 41 6 27

Occluded Face 2 21 93 43 45 20

Girl 48 68 52 27 32

Tiger 1 35 58 46 40 15

Tiger 2 34 33 53 38 17

Coke Can 25 57 85 63 21

Table 1. Average center location errors (pixels). Algorithms compared are

Online-AdaBoost Tracker [14] with r = 1 (OAB1) and r = 5 (OAB5),

FragTrack [1], SemiBoost Tracker [15], and MILTrack with r = 5. Green

indicates best performance, red indicates second best. See text for details.

3.1. Video Sequences

We perform our experiments on 4 publicly available

video sequences, as well as 4 of our own. For all sequences

we labeled the ground truth center of the object for every

5 frames2 (with the exception of the “Occluded Face” se-

quence, for which the authors of [1] provided ground truth).

All video frames were gray scale, and resized to 320× 240
pixels. The quantitative results are summarized in Table 1

and Fig. 5; Fig. 3 shows screen captures for some of the

2Data and code are available at http://vision.ucsd.edu/

˜bbabenko/project_miltrack.shtml; video results available

on youtube: http://www.youtube.com/miltrack08
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identical classifiers – both choose feature #1 because 

In the second frame there is some occlusion.  In 
particular, the mouth is occluded, and the 

classifier trained in the previous step does not 
perform well.  Thus, the most probable image 
patch is no longer centered on the object.  OAB 

uses just this patch to update;  MIL uses this patch 

When updating, the classifiers try to pick the feature that best 
discriminates the current example as well the ones previously 
seen.  OAB has trouble with this because the current and 

previous positive examples are too different.  It chooses a bad 
feature.  MIL is able to pick the feature that discriminates the 
eyes of the face, because one of the examples in the positive 
bag was  correctly cropped (even though the mouth was 
l d d) MIL i th f bl t f ll l if f t

it responds well with the mouth of the face (feature 
#3 would have performed well also, but suppose #1 

is slightly better).

along with its neighbors.  Note that MIL includes 
the “correct” image patch in the positive bag.

occluded).  MIL is therefore able to successfully classify future 
frames.  Note that if we assign positive labels to the image 

patches in the MIL bag and use these to train OAB, it would have 
trouble picking a good feature.

Figure 4. An illustration of how using MIL for tracking can deal with occlusions.

clips. Below is a more detailed discussion of the video se-

quences.

Sylvester & David Indoor

These two video sequences have been used in several recent

tracking papers [21, 18, 14], and they present challenging

lighting, scale and pose changes. Our algorithm achieves

the best performance (tying FragTrack on the “Sylvester”

sequence). Note that although our implementation is sin-

gle scale and orientation, the Haar-like feature we use are

fairly invariant to scale and orientation changes present in

these clips. The scale changes can be seen in Fig. 3(C) – the

subjects’ head size ranges from 88× 105 pixels to 44× 52
pixels.

Occluded Face, Occluded Face 2, & Girl

In the “Occluded Face” sequence, which comes from the

authors of [1], FragTrack performs the best because it is

specifically designed to handle occlusions via a part-based

model. However, on our similar, but more challenging clip,

“Occluded Face 2”, FragTrack performs poorly because it

cannot handle appearance changes well (e.g. when the sub-

ject puts a hat on, or turns his face). This highlights the

advantages of using an adaptive appearance model, though

it is not straightforward to incorporate such a model into

FragTrack. Finally, the “Girl” sequence comes from the

authors of [6]. FragTrack gets a better average error than

MILTrack; however, FragTrack looses the target completely

between frames 20 and 50 (cf . Fig. 5). Note that subject in

this clip performs a 360◦ out of plane rotation.

Tiger 1, Tiger 2, & Coke Can

These sequences exhibit many challenges. All three video

clips contains frequent occlusions and fast motion (which

causes motion blur). The Tiger 1 & 2 sequences show the

toy tiger in many different poses, and include out of plane

rotations (cf . Fig. 3(B)). The Coke Can sequence contains a

specular object, which adds some difficulty. Our algorithm

outperforms the others, often by a large margin.

3.2. Discussion

In all cases our MILTrack algorithm outperforms both

versions of the Online Adaboost and SemiBoost Trackers,

and in most cases it outperforms or ties the FragTrack al-

gorithm (cf . Table 1 and Fig. 5); overall, it is the most

stable tracker. The reason for the superior performance is

that the Online MILBoost algorithm is able to handle am-

biguously labeled training examples, which are provided

by the tracker itself. Rather than extracting only one pos-

itive image patch and taking the risk that that image patch is

suboptimal (as is done in OAB1), or taking multiple image

patches and explicitly labeling them positive (as is done in

OAB5), our MIL based approach extracts a bag of poten-

tially positive image patches and has the flexibility to pick

out the best one. The SemiBoost algorithm throws away

a lot of useful information by leaving all extracted image

unlabeled, except for the first frame. This leads to poor per-

formance in the presence of significant appearance changes.

We notice that MILTrack is particularly good at dealing

with partial occlusions (e.g. Tiger 2 sequence). Fig. 4 con-

tains an illustration showing how MIL could result in better
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Figure 5. Error plots for eight video clips we tested on.

performance when partial occlusion is present.

4. Conclusions & Future Work

In this paper we have presented a tracking system called

MILTrack that uses a novel Online Multiple Instance Learn-

ing algorithm. The MIL framework allows us to update the

appearance model with a set of image patches, even though

it is not known which image patch precisely captures the

object of interest. This leads to more robust tracking results

with fewer parameter tweaks. Our algorithm is simple to

implement, and can run at real-time speeds3.

There are many interesting ways to extend this work in

the future. First, the motion model we used here is fairly

simple, and could be replaced with something more sophis-

ticated, such as a particle filter as in [21, 24]. Furthermore,

it would be interesting to extend this system to be part-

based like [1], which could further improve the performance

with the presence of severe occlusions. A part-based model

could also potentially reduce the amount of drift by better

aligning the tracker location with the object. Finally we are

interested in other possible applications for our online Mul-

tiple Instance Learning algorithm.
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