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Abstract

Automatic kinship verification from facial information is
a relatively new and open research problem in computer vi-
sion. This paper explores the possibility of learning an effi-
cient facial representation for video-based kinship verifica-
tion by exploiting the visual transformation between facial
appearance of kin pairs. To this end, a Siamese-like cou-
pled convolutional encoder-decoder network is proposed.
To reveal resemblance patterns of kinship while discarding
the similarity patterns that can also be observed between
people who do not have a kin relationship, a novel con-
trastive loss function is defined in the visual appearance
space. For further optimization, the learned representation
is fine-tuned using a feature-based contrastive loss. An ex-
pression matching procedure is employed in the model to
minimize the negative influence of expression differences
between kin pairs. Each kin video is analyzed by a slid-
ing temporal window to leverage short-term facial dynam-
ics. The effectiveness of the proposed method is assessed
on seven different kin relationships using smile videos of
kin pairs. On the average, 93.65% verification accuracy is
achieved, improving the state of the art.

1. Introduction

Identifying relatives of a person from visual attributes is

a common practice for humans. For instance, when we see

a woman and a young kid standing next to each other in a

social gathering, we can decide whether the woman is the

mother of that kid based on their visual similarity. To this

end, humans use an aggregate of different features such as

facial appearance and color of hair and eyes [6]. In contrast

to strong capability of humans for kinship recognition, auto-

matic identification of kin relationships from facial images

is a very challenging task. This is a relatively new research

problem, and it has gained a large interest in recent years

due to the fact that unobtrusive and rapid computer vision

solutions for detecting kinship would have several potential

applications such as searching missing child/parent, social

media analysis, and family album organization [20].

Most studies in the literature approach kinship analy-

sis as a verification problem [27, 34] while a few works

define it as a recognition task [33, 13]. In kinship veri-

fication, given a pair of face images, the aim is to iden-

tify whether the subjects shown in these images have a

kin relationship or not. Kinship recognition, on the other

hand, aims at classifying the type of kin relationship such

as Mother-Daughter, Mother-Son, Father-Daughter, Father-

Son, etc. [13]. This paper focuses on kinship verification.

Recent findings of [24, 8] indicate that temporal appear-

ance and dynamics of facial expressions can also be heredi-

tary. For instance, it has been shown that blind-born peo-

ple display similar facial expressions with those of their

sighted relatives [24]. Yet, all previous studies except two

works [8, 3], solely focus on static face images for kinship

verification instead of exploring temporal patterns of kin re-

lationships. This paper aims to reveal kinship patterns hid-

den in facial appearance and short-term expression dynam-

ics in a combined manner. To this end, smile videos of kin

pairs are employed, rather than static face images.

In contrast to earlier studies, this paper proposes to learn

an efficient representation by modeling a visual mapping

that can transform facial appearance of a subject to a very

similar form of his/her kin’s face while reducing the simi-

larity patterns that can also be observed between non-kins.

The model is then fine-tuned in a supervised way to verify

kinship between a given pair of subjects. Optimizing fa-

cial representation in the visual space can be thought as an

extension of unsupervised pre-training (e.g. deep autoen-

coders). Earlier studies have explored the action of unsu-

pervised pre-training as a regularizer. Such studies state that

direct supervised optimization in the feature space dispro-

portionately affects the models due to their extreme flex-

ibility. According to [10], this is the reason of effective-

ness of initializing representation by pre-training since su-

pervised training cannot escape from the basin of attraction
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defined by the initialization. As a result, compared to tra-

ditional regularizers, effectiveness of pre-training does not

fade away. In other words, unsupervised pre-training ef-

fectively restricts/simplifies the form of the prediction func-

tion by learning a sparse representation. Regularization also

achieves the same objective, expressed as a function of the

weights. While traditional pre-training initializes the rep-

resentation so as to achieve the reconstruction of corrupted

data samples, the proposed approach further restricts the la-

tent representation in a way that it can capture visual resem-

blance of kin pairs while discarding the similarity patterns

between non-kins. Thus, it can theoretically be claimed that

the proposed approach would provide a stronger regulariza-

tion by simplifying the kinship verification model (during

pre-training) in a different but related space.

This study is the first exploration of visual transforma-

tion aided deep representation learning for kinship verifica-

tion. The proposed method is evaluated in a detailed man-

ner, compared with several baselines including the recent

image- and video-based kinship verification approaches

from the literature, and state-of-the-art results are reported.

2. Related Work
The journey of automatic kinship recognition has started

with the work of Fang et al. [11], where facial features such

as skin color, position and shape of face parts, and his-

togram of gradients are employed for verification. Then,

several studies have aimed to engineer powerful facial ap-

pearance representations such as Spatial Pyramid LEarning-

based descriptors [38], DAISY descriptors [12], Gabor-

based Gradient Orientation Pyramid [39], Self Similarity

Representation [16], semantic-related attributes [32], SIFT

flow based genetic Fisher vector feature [26], etc.

With the increase in number and content size of kinship

image databases [31, 20, 13, 28], the research focus has

shifted to representation and similarity learning [36, 40].

Following the dramatic improvements in deep learning, re-

cent studies have started to utilize deep architectures such

as gated autoencoders [7], stacked autoencoders [30], con-

volutional neural networks (CNN) [37, 21], and convolu-

tional Siamese networks [17] for modeling kinship pat-

terns. Metric learning has also been adopted for both en-

gineered [20, 15, 35, 34] and deep learned features [30, 17].

Differently from the aforementioned methods, [8] has

explored the temporal facial expression patterns of kinship

using spatio-temporal features and landmark displacement

dynamics extracted from smile videos, showing that the use

of expression dynamics beside the appearance information

improves the verification accuracy. A more recent study [3]

has complemented the spatio-temporal features with deep

learned appearance features, providing a further accuracy

improvement. Yet, no other study in the area has focused

on temporal analysis for kinship verification.

In contrast to prior studies, the current study proposes

to optimize facial feature representation by learning the vi-

sual transformation between kin pairs. By defining a con-

trastive loss in the visual appearance space, the influence

of facial similarity patterns that can be observed between

subjects who do not share a kin relationship, are reduced.

To minimize the effect of expression differences between

kin pairs, an expression matching procedure is employed.

The representation is then fine-tuned, and the verification

model is learned in a supervised manner by using a con-

trastive loss [17] defined in the feature space. To leverage

short-term dynamics of facial expressions, each kin video is

analyzed by a sliding temporal window and compared with

the matching expression sub-sequences in its pair video.

3. Method
The aim of the proposed method is to learn an efficient

facial representation to enhance kinship verification by re-

vealing the facial resemblance patterns between kin pairs

which are not observed between non-kins. In contrast to

most approaches in the literature, the proposed method an-

alyzes facial expression videos, rather than images, in order

to exploit the resemblance between facial expressions of kin

pairs. To this end, videos of enjoyment smiles are used since

it is one of the most frequently shown facial expression.

The method assumes that the given pair of input videos

show the entire duration of a smile expression. The flow

of the system is summarized as follows. Initially, 68 facial

landmarks are tracked in the videos (see Fig. 1). Once face

images and the corresponding landmarks are normalized in

terms of pose and scale, shape-based features are extracted

using the tracked points to represent the surface deforma-

tions on eyes & eyebrows and mouth regions. Using the

extracted features, each “2m+1”-frame sub-sequence (ob-

tained by a sliding window) of the input videos is matched

to a “2m + 1”-frame sub-sequence of its pair-video so as

to have a very similar facial expression. Matched sub-

sequences are then fed to a coupled convolutional encoder-

decoder network that learns the transformation between fa-

cial appearance of the given pair of subjects that have a kin

relationship (see Fig. 2). Designed architecture has two par-

allel identical encoder-decoder networks with weight shar-

ing. To reveal the facial resemblance patterns between kin

pairs, these encoder-decoder networks are trained in a way

that each network outputs a face image that is similar to its

input’s kin-pair while minimizing its resemblance to non-

kins. To this end, an appearance-based contrastive loss is

defined. After training the network based on visual similar-

ity, decoding blocks are removed and a classification layer

with contrastive loss is connected to the full connection

blocks. Modified network is then fine-tuned in a supervised

manner by using a feature-based contrastive loss [17]. In the

test phase, “2m+ 1”-frame sub-sequences of a given smile
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Figure 1. (a) Landmarks on facial boundary, eyes & eyebrows,

nose, and mouth regions, and (b) a normalized/cropped face.

pair are matched based on expression similarity. Each of the

matched sub-sequence pairs are processed by the fine-tuned

network. The verification result is obtained by fusing the

posterior probabilities for all matched sub-sequence pairs.

3.1. Facial Landmark Tracking and Alignment

To normalize face images in terms of rotation and scale

as well as measuring regional deformations for expression

matching, 68 landmarks on facial boundary (17 points),

eyes & eyebrows (22 points), nose (9 points), and mouth

(20 points) regions are tracked as shown in Fig. 1(a). To

this end, a state-of-the-art tracker [2] is used. The tracker

uses an extended version of Conditional Local Neural Fields

(CLNF) [1], where individual point distribution and patch

expert models are learned for eyes, lips and eyebrows. De-

tected points by individual models are then fit to a joint

point distribution model. To handle pose variations, CLNF

employs a 3D representation of facial landmarks.

The tracked 3D coordinates of the landmarks l′ =
{l′X , l′Y , l′Z} are normalized by removing the global rigid

transformations such as translation, rotation and scale. The

movement of the normalized landmarks are smoothed by

the 4253H-twice method [29] to reduce the tracking noise.

Since the normalized face is frontal with respect to the cam-

era, the depth dimension (Z) is ignored, and each landmark

is represented as l = {lX , lY }. To shape-normalize facial

texture, each face image is warped using piecewise linear

warping so as to transform the X and Y coordinates of the

detected landmarks l′ onto those of normalized landmarks l.
Obtained images are then scaled by setting the inter-ocular

distance (dio) to 48 pixels, and cropped around the facial

boundary and eyebrows as shown in Fig. 1(b). As a result,

each normalized face image has a resolution of 96×96 pix-

els. Images are then converted to gray scale.

3.2. Expression Matching

This paper presents a method that learns an efficient fa-

cial representation for kinship verification by exploiting the

transformation between facial appearances of kin pairs. To

minimize the influence of expression differences in such a

transformation, the most similar facial expressions of kin

pairs (and those of pairs with no kin relation) are proposed

to be matched. To this end, the change in facial surface

deformations should be described effectively first. Since

previous research [5, 9] shows that facial landmark dis-

placements can successfully describe expression dynamics,

a shape-based representation is used in this study.

To leverage regional properties, a separate descriptor is

computed for each of eyes & eyebrows, and mouth regions

using the corresponding landmarks (Fig. 1(a)). Let lf,i,t de-

notes the ith landmark (of Nf landmarks) in facial region

f = {ey,mt} at frame t of a given smile video, where

“ey” and “mt” indicate regions of eyes & eyebrows and

mouth, respectively. Then, a regional shape descriptor Sf,t
for frame t can be computed as a set of Euclidean distances

between all possible landmark pairs in region f :

Sf,t =
{
s ∈ R | s = ‖lf,j,t − lf,k,t‖2, j > k,

j, k ∈ {1, 2, 3, . . . Nf}
}
,

(1)

where the length of Sf,t is equal to
(
Nf

2

)
=

Nf !
Nf ! (Nf−1)! .

Regional representations of eyes & eyebrows (Sey,t) and

mouth (Smt,t) are concatenated to describe the combined

expression Scomb,t. Dimensionality of the obtained vectors

is reduced to 15-d using the Principal Component Analy-

sis (PCA) so as to retain 99.5% of the variance. Resulting

frame-based expression descriptor with reduced dimension-

ality is hereafter denoted as S̄comb,t. To include short-term

temporal information in the analysis, expression displayed

from frame t−m to t+m can be defined as:

Dt =
[ S̄comb,t−m S̄comb,t−m+1 ... S̄comb,t+m

]
(2)

Note that, a “2m+1”-frame sub-sequence of the expression

from t−m to t+m is indicated by frame t for simplicity.

Using the extracted descriptorsDt, each “2m+1”-frame

sub-sequence of the input videos can be matched to a sub-

sequence of its pair-video so as to have a very similar facial

expression. Let DV
t denotes the expression descriptor for

the sub-sequence from frame t−m to t+m of a video V .

If V1 and V2 show the pair of input videos, and T1 and T2

denote the length (number of frames) of V1 and V2, respec-

tively, a matching sub-sequence at time step t∗2 in V2 for t1
in V1 can be determined as follows:

t∗2 = argmin
t∈{m+1,...,T2−m}

‖DV1
t1 −DV2

t ‖2 (3)

Notice that this is not a one-to-one mapping. So, a sin-

gle time step in V1 can be matched with several time steps

in V2. Therefore, the procedure is repeated by changing

the direction of comparison to find a matching time step t∗1
in V1 for each time step t2 of V2. Two sets of matching

sub-sequences are obtained as {t1, t∗2} and {t∗1, t2}, where

t1, t
∗
1 ∈ {1+m, . . . , T1−m} and t2, t

∗
2 ∈ {1+m, . . . , T2−
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Figure 2. Overview of the proposed method for learning contrastive mapping of facial appearance between kin pairs.

m}. Resulting pairs of “2m+1”-frame image sequences are

used as inputs in the proposed method.

3.3. Appearance-based Pre-training

For a more reliable kinship verification, the proposed

method aims to learn a facial appearance representation

that can capture the patterns of visual kinship resemblance

while discarding the similarity patterns that can be ob-

served between people who do not have a kin relation-

ship, by employing a contrastive loss function. To this end,

a Siamese-like architecture is designed by combining two

identical convolutional encoder-decoder networks in par-

allel as shown in Fig. 2. In contrast to the conventional

Siamese architectures, the proposed pre-training network

optimizes the parameters by employing a loss function de-

fined in the image space, rather than the feature space. In-

stead of solely relying on label information (kin or non-kin),

the proposed approach exploits the visual similarity pat-

terns between kins and between non-kins. Such an approach

can provide a strong regularization in the model, yielding a

more accurate kinship verification.

Inputs of the designed network are a pair of matching

facial image sequences of two subjects with a kin relation-

ship. While the first encoder-decoder learns the transforma-

tion from kin 1 to kin 2, other one learns the transformation

from kin 2 to kin 1. These sub-networks cross-share the

weights such that the decoding weights of the second sub-

network are defined as the transposed encoding weights of

the first sub-network. As shown in Table 1, the encoder

blocks contain four convolutional layers followed by a fully

connected layer. A set of 5 × 5-pixel filters are used in all

convolutional layers. To add non-linearity to the model, rec-

tified linear unit (ReLU) is applied to the output of each con-

volutional layers. The encoder blocks contains three max-

pooling layers which are applied after the second, third, and

fourth convolutional layers. Max-pooling is applied with

a 2 × 2 window such that the output of max-pooling layer

is downsampled with a factor of 2. The final layer of the

encoding blocks is the fully connected layer that aims to

Table 1. Configuration of the proposed network. “conv”, “trconv”,

and “fc” denote convolution, transposed convolution, and full con-

nection layers in the network, respectively. Numbers next to the

name of each layer indicate the order of the corresponding layer.

For brevity, ReLU layers are discarded in the table.

Layer Kernel Size Stride Output Size

conv1-1 5× 5 1 92× 92× 16

conv1-2 5× 5 1 88× 88× 32

pool1 2× 2 2 44× 44× 32

conv2 5× 5 1 40× 40× 64

pool2 2× 2 2 20× 20× 64

conv3 5× 5 1 16× 16× 128

pool3 2× 2 2 8× 8× 128

fc4 8× 8 1 1× 1× 512

trconv-fc4 8× 8 1 8× 8× 128

unpool3 2× 2 2 16× 16× 128

trconv3 5× 5 1 20× 20× 64

unpool2 2× 2 2 40× 40× 64

trconv2 5× 5 1 44× 44× 32

unpool1 2× 2 2 88× 88× 32

trconv1-2 5× 5 1 92× 92× 16

trconv1-1 5× 5 1 96× 96× (2m+ 1)

aggregate information obtained from all neurons from the

third max-pooling layer. The decoder blocks are the sym-

metric of encoder blocks such that max-pooling layers are

replaced with max-unpooling and convolutions are replaced

with transposed convolutions. Note that, similar to the en-

coding, the transposed convolutional layers are followed by

ReLU in the decoder blocks except the last layer.

To optimize the parameters of the proposed network, an

appearance-based contrastive loss function is proposed. Let

K1 = {I1,1, . . . , I1,2m+1} and K2 = {I2,1, . . . , I2,2m+1}
denote the given input pair of “2m + 1”-frame image

sequences, and K̂1 = {Î1,1, . . . , Î1,2m+1} and K̂2 =

{Î2,1, . . . , Î2,2m+1} denote the corresponding output pair of

image sequences, respectively. If C is the cosine distance

between two images, then, a kinship loss can be defined to

learn the transformation of facial appearance between kin

pairs by maximizing the similarity betweenK1 and K̂2, and
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between K2 and K̂1 as follows:

�kin = Θ(K̂1,K2) + Θ(K̂2,K1) , where

Θ(K̂i,Kj) =
1

2m+ 1

2m+1∑
n=1

C(Îi,n, Ij,n) .
(4)

In a similar manner, a non-kinship loss is defined to

minimize the resemblance of the output image sequences

to the matching “2m + 1”-frame sequences of other sub-

jects (with no kinship). To this end, one matching sequence

with K1 and one with K2 are obtained for each of the sub-

jects (with the same gender) in the database who do not

have a kin relation with the input subjects as described

in Section 3.2. A fraction of the most similar sequences

are determined as {P1,1,P1,2, . . . ,P1,Ns1
} for K1 and as

{P2,1,P2,2, . . . ,P2,Ns2
} for K2, where Ns1 and Ns2 de-

note the number of obtained most similar subjects to the

input subject 1 and 2, respectively. Then, the non-kinship

loss is computed as:

�non-kin = − 1

Ns2

Ns2∑
n=1

Θ(K̂1,P2,n)− 1

Ns1

Ns1∑
n=1

Θ(K̂2,P1,n).

(5)

Thus, the model can be trained by minimizing the con-

trastive loss that is defined as:

�contrastive = λ �kin + (1− λ) �non-kin , (6)

where λ is the tradeoff parameter between the kinship loss

and the non-kinship loss.

3.4. Fine-tuning and Classification

Once the model is pre-trained, decoding blocks of the

network are removed. Instead, a binary classification layer

is connected to the full connection blocks to fine-tune the

network parameters and distinguish between kin and non-

kin pairs. Note that the obtained architecture is a Siamese

network with two encoding blocks without weight sharing.

For the classification layer, the contrastive learning

method that is proposed by Li et al. [17], is employed. Let

x1 and x2 be the “2m + 1”-frame input sequences, and

Gw1
(x1) and Gw2

(x2) be the representation obtained from

the corresponding encoding block (responses of the fully

connected layer) for subject 1 and subject 2, respectively,

where w1 and w2 denote the weights of the encoding blocks.

Then, the distance between Gw1(x1) and Gw2(x2) is:

γ(x1, x2) = ‖Gw1(x1)−Gw2(x2)‖1. (7)

To classify kin and non-kin pairs, a distance threshold τ
is defined such that τ > 1 and y

(
τ − γ(x1, x2)

)
> 1 ,

where y ∈ {−1 (non-kin), 1 (kin)} is the kinship label for

the given subject pair. Thus, a contrastive loss that enforces

the model to pull kin pairs to each other while pushing apart

non-kin pairs in the feature space, can be defined as follows:

�̂contrastive = δ
(
1− y

(
τ − γ(x1, x2)

))
, (8)

where δ(Φ) = 1
β log(1 + eβΦ) is the generalized logistic

loss function, and β denotes the sharpness parameter. By

minimizing �̂contrastive, the weights of the modified network

are fine-tuned for the kinship verification task. The poste-

rior probability of being kin p(y = 1 |x1, x2) is estimated

using the sigmoid of γ(x1, x2) distance.

In the test phase, when videos {V1, V2} of a subject pair

are given, every “2m+1”-frame sequence of V1 is matched

with the most similar sequence in V2 using a temporal slid-

ing window (see Section 3.2). For each of the matched sub-

sequence pairs {x1(t), x2(t
∗)}, the posterior probability of

being kin p(y = 1 |x1(t), x2(t
∗)) is estimated. Then, a kin-

ship probability for V1 is computed as:

Q(V1 → V2) =
1

T1 − 2m

T1−m∑
n=m+1

p(y = 1 |x1(tn), x2(t
∗
n)) ,

(9)

where T1 denotes the number of frames in V1. Next, the

process described above, from sequence matching to com-

putation of the kinship probability, is repeated for V2 by

changing the direction of comparison. Once Q(V2 → V1)
is computed, the kin relation between subject 1 and subject

2 is verified if
(Q(V1 → V2) +Q(V2 → V1)

)
> 1.

4. Database
To train and evaluate the proposed architecture for video-

based kinship verification, the kinship partition [8] of the

UvA-NEMO Smile Database [9] is used. It has sponta-

neous/posed enjoyment smiles of 95 subject pairs who have

a kin relationship. Ages of subjects vary from 8 to 74 years.

Videos have a resolution of 1920×1080 pixels at a rate of 50

frames per second. There are 152 subjects in the database.

There is no spontaneous smile videos for 15 of the subjects

while six subjects do not have a posed one. Each of the re-

maining subjects has one or two posed/spontaneous enjoy-

ment smiles. 1031 pairs of smile videos are obtained by us-

ing different video combinations of each kin relation. These

pairs consist of Sister-Sister (S-S), Brother-Brother (B-B),

Sister-Brother (S-B), Mother-Daughter (M-D), Mother-Son

(M-S), Father-Daughter (F-D), and Father-Son (F-S) rela-

tionships. Table 2 shows the number of pairs of subjects,

videos, and matched sequences for each kin relationship.

To assess the proposed model for image-based kinship

verification, the Kinship Face in the Wild datasets (KFW-I

and KFW-II) [19, 20] are employed. In KFW-I, there are

156 F-S, 134 F-D, 116 M-S, and 127 M-D image pairs.

KFW-II has 250 image pairs for each of these relations. To
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Table 2. Distribution of subject, video, and matched sub-sequence

(for m = 2) pairs in the UvA-NEMO Smile Database.

Relation
Number of Pairs

Subject Video Matched Sequence

Mother-Daughter 22 262 86,390

Mother-Son 14 162 55,585

Father-Daughter 10 120 44,175

Father-Son 20 188 66,652

Sister-Sister 9 109 43,579

Brother-Brother 8 54 22,361

Sister-Brother 12 136 46,480

All 95 1031 365,222

increase the number of training pairs for the experiments,

combinations of original and mirror images are matched.

5. Experiments

To evaluate the proposed method, and to assess the ef-

fectiveness of using appearance-based pre-training, con-

trastive loss, expression matching, and short-term temporal

information in video-based kinship verification, the UvA-

NEMO Smile Database is employed. Furthermore, in Sec-

tion 5.5, to evaluate the reliability of the method for image-

based kinship verification, KFW-I and KFW-II datasets are

used (see Section 4). While kinship pairs are used as posi-

tive samples, random pairs that do not have a kin relation are

used as negative samples. These random pairs are specifi-

cally constructed for each subset. For instance, a negative

F-S pair is prepared by replacing the son with another male

child while the father is retained. Numbers of positive and

negative (random) pairs are kept same to have a balanced

dataset. A separate verification model is trained for each of

the M-D, M-S, F-D, F-S, S-S, B-B, and S-B relationships.

S-S and B-B relations are not used for image-based assess-

ment since they are not available in KFW-I/II. Each exper-

iment is repeated three times using a different random set

of negative samples at each time. Average (over repeated

experiments) of the obtained mean (over different relations)

correct verification rates are reported. In a similar manner,

performance of the system is also measured using the area

under ROC curve (AUC). The same set of random negative

samples are used in each experiment for a fair comparison.

All experiments are conducted using a two level leave-

one-subject-pair-out cross-validation scheme. Each time

videos of a test pair are separated, the system is trained

and parameters are optimized using leave-one-subject-pair-

out cross-validation on the remaining pairs. The pro-

posed networks are implemented using Lua/Torch for GPU,

and trained using the standard stochastic gradient descent

(SGD). Fixed learning rate is optimized during cross-

validation (considered values: {0.01, 0.005, 0.001}).

Table 3. Effect of using different levels of frame-neighborhood

(m) in kinship verification, and the correlation of smile amplitude

between matched pairs.

Temporal Matching
AUC Accuracy (%)

Width Correlation

1 (m = 0) 0.87 0.90 89.51

3 (m = 1) 0.85 0.95 92.93

5 (m = 2) 0.83 0.96 93.65

7 (m = 3) 0.81 0.92 91.21

5.1. Temporal Dynamics & Expression Matching

The proposed method exploits short-term temporal dy-

namics of expressions for a better kinship verification. To

this end, ”2m+1”-frame sequences (neighborhood of m

frames) of given videos are matched based on expression

similarity. Obtained sequence matches are used for verifi-

cation. To assess the effectiveness of temporal information

as well as the influence of temporal width of matched seg-

ments, different frame-neighborhood levels (m) are evalu-

ated. As shown in Table 3, the matched sequences (m > 0)

perform consistently better than the matched frames. While

the AUC of using sequence-pairs reaches to 0.96, that of us-

ing frame-pairs is only 0.90. This shows the effectiveness

of employing short-term expression dynamics in the analy-

sis, and confirms the findings in the literature that suggest

the expression dynamics display hereditary patterns [24, 8].

The optimal level of frame-neighborhood is found as

m = 2 (five-frame sequences), achieving an accuracy

of 93.65%. Since the minimum validation error is also

achieved by five-frame sequence pairs, m is set to 2 in

the remainder of the experiments. Increasing the sequence

length up to five frames improves the accuracy, showing the

benefit of temporal information. Yet, further length increase

causes loss in accuracy. The reasons may be that: (1) Com-

plexity of the model is not increased for longer sequences;

(2) Matching is getting much more challenging with longer

sequences, yielding inaccurate matching, thus expression

effects cannot be well minimized; (3) Expression similar-

ity of face pairs may appear only in instant/short responses.

The use of random (not matched) five-frame sequence pairs

is also evaluated, and it can only reach 82.74% accuracy

where that of using matched pairs is 93.65%.

Next, the reliability of expression matching is evaluated.

Since the UvA-NEMO Smile Database does not include

per-frame annotations of expression intensity, following [9],

the smile amplitude of each frame is estimated as the aver-

age distance of the right and left lip corners to the lip cen-

ter, normalized by the length of the lip. The average cor-

relation of smile amplitude between matched segments of

each video pair is computed. Table 3 reports the obtained

correlation coefficients. Although increasing the frame-

neighborhood decreases the matching quality, the matched
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Table 4. Effect of the non-kinship loss using different percentages

of the most similar non-kins, in kinship verification.

Non-kinship % of
AUC Accuracy (%)

Loss Non-kins

� 0 0.91 90.28

� 10 0.96 93.65

� 50 0.94 92.15

� 100 0.92 91.31

pairs are highly correlated in terms of smile amplitude. Also

notice that the decrease in matching correlation does not di-

rectly affect the verification performance.

5.2. Assessment of Non-kinship Loss

During pre-training, a non-kinship loss is employed for

contrastive learning so as to optimize the latent representa-

tion by minimizing the importance of the similarity patterns

that can also be observed between non-kins. To this end,

a fraction of the most similar non-kin samples to the input

samples are used. To evaluate the effectiveness of this ap-

proach and observe the influence of the non-kin fraction, the

method is compared with modified models that use different

amount (%) of the most similar non-kin samples and with a

model that does not use a non-kinship loss.

As shown in Table 4, the use of non-kinship loss employ-

ing 10% of the most similar non-kins provides the high-

est accuracy that is, in terms of AUC, 4% and 2% (abso-

lute) better than using all and 50% of non-kins, respectively.

These findings may suggest that using a large amount of

non-kins samples in image-based loss, would enforce the

model to focus on general/prominent differences since the

loss is averaged over all non-kins. Thus, the learned latent

representation may not manage to capture subtle but impor-

tant characteristics. Results also show that not using non-

kinship loss performs worst, confirming the effectiveness of

the proposed non-kinship loss. 10% of the most similar kin

samples are used in the remainder of the experiments since

this setting achieves the minimum test/validation error.

5.3. Assessment of Contrastive Learning

One of the main contributions of this study is to learn

an efficient representation for kinship verification using a

limited number of subject pairs. To this end, an appearance-

based contrastive loss is proposed so as to provide a stronger

regularization in the model based on the fact that the su-

pervised verification task is defined in a different space.

Furthermore, the proposed model is fine-tuned using a con-

trastive loss defined in the feature space to enhance the re-

liability of kinship verification. To assess the influence of

contrastive loss on representation learning, and to compare

the effectiveness of contrastive losses defined in the visual

appearance and in the feature spaces, four different mod-

els are trained and compared. Table 5 reports the kinship

Table 5. Effect of using contrastive loss in kinship verification.

Pre-training Fine-tuning
AUC Accuracy (%)

(appearance-based) (feature-based)

Contrastive Contrastive 0.96 93.65

Contrastive Standard 0.94 92.72

Standard Contrastive 0.91 90.28

Standard Standard 0.88 86.30

verification performance of these models, where “standard”

and “contrastive” pre-training indicate the sole use of �kinship

and �contrastive in the proposed visual-similarity based pre-

training architecture, respectively (see Section 3.3). Simi-

larly, “contrastive” fine-tuning indicates the use of �̂contrastive

in the proposed feature-similarity based fine-tuning archi-

tecture (see Section 3.4). “Standard” fine-tuning represents

a modified fine-tuning architecture that replaces the pre-

sented classification layer with the logistic regression.

As the first and the last rows of Table 5 show, using

contrastive loss in both of the visual-similarity based pre-

training and feature-similarity based fine-tuning provides

8.3% AUC improvement compared to the use of standard

loss. This indicates the success of contrastive learning for

kinship verification. When the contrastive loss functions

that are defined in the appearance space and in the feature

space are compared, appearance-based (visual-similarity

based) contrastive loss is found to be more effective than

the feature-based (see the second and third rows in Table 5).

This finding may indicate the additional regularization pro-

vided by the optimization in appearance space, while the

supervised verification task is defined in the feature space.

5.4. Comparison to Video-based Methods

The proposed method is compared with the state-of-the-

art video-based kinship verification approaches from the

literature [8, 3]. The method proposed by Dibeklioğlu et
al. [8] extracts spatio-temporal features (CLBP-TOP) [25],

from different facial regions. To represent temporal dy-

namics, a set of statistical descriptors are extracted from

regional facial movements. Boutellaa et al. present two

approaches in [3]. First one extracts deep features for each

frame of smile videos using the pre-trained VGG-face CNN

model [22]. Then, each video is represented by averaging

the features of all frames. The second approach represents

smiles by combining the deep representation with several

spatio-temporal descriptors.

An additional baseline has been implemented, where

matched sequences of five frames are used, the proposed

transformation network is replaced with the stacked de-

noising autoencoders (SDAE; 4 hidden layers), and the

fine-tuning is kept same. Furthermore, two state-of-the-

art image-based methods, namely, Neighborhood Repulsed

Metric Learning (NRML) [20] and Similarity Metric based

CNN (SMCNN) [17] have been modified, using the pro-
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Table 6. Accuracy (%) of different video-based methods. * shows the methods that have been modified for video-based verification.

Method Representation M-D M-S F-D F-S S-S B-B S-B Mean

Proposed Method Short-term Temporal Appearance (Deep) 93.64 92.24 93.83 93.35 94.18 95.71 92.58 93.65
SDAE Short-term Temporal Appearance (Deep) 85.24 85.44 87.48 87.89 86.33 87.88 84.54 86.40

SMCNN: Li et al. [17]* Static Appearance (Deep) 83.58 81.46 85.15 84.81 84.64 86.43 85.84 84.56

NRML: Lu et al. [20]* Static Appearance 76.36 77.94 79.48 80.99 78.24 78.43 76.78 78.32

Boutellaa et al. [3] Static Appearance (Deep) + Temporal Appearance 91.23 90.49 93.10 88.30 88.93 94.74 90.07 90.98

Boutellaa et al. [3] Static Appearance (Deep) 90.24 85.69 89.70 92.69 88.92 92.82 88.47 89.79

Dibeklioğlu et al. [8] Displacement Dynamics + Temporal Appearance 67.54 75.00 75.00 78.95 75.00 70.00 68.75 72.89

posed expression matching (single-frame) and frame-score

fusion, for video-based kinship verification, and compared

with the proposed model. NRML learns a metric that mini-

mizes the distance between kin pairs while maximizing that

of non-kins. For NRML, Learning-Based features [4] are

employed. SMCNN is a convolutional Siamese network

with metric constraints and shared weights.

As shown in Table 6 the proposed method, outperforms

all the competitor methods. The use of handcrafted fea-

tures that represent temporal appearance and facial dynam-

ics [8] can only reach an accuracy of 72.89%, where that

of the proposed method is 93.65%. Accuracy of employing

deep face features [3] obtained from pre-trained VGG [22]

model is 89.79%. When temporal appearance representa-

tion is combined with these deep-learned features, the veri-

fication accuracy of [3] reaches to 90.98%. Notice that the

deep representation used in [3] is learned using 13 linear

convolutional layers and trained on 2.6 million images of

2622 people. Still, the accuracy of the proposed method in

this study is 2.67% (absolute) higher than that of [3]. Accu-

racy of the modified single-image based methods SMCNN

and NRML are 84.56% and 78.32%, respectively. Lower

accuracy of these methods can be explained by the fact that

they do not exploit temporal information and solely rely on

static images. Compared to the SDAE-based approach, the

proposed method provides an additional accuracy of 7.25%
(absolute). Notice that the SDAE-based approach is a mod-

ified version of our method which replaces the proposed

encoder/decoder blocks with SDAE. All these findings in-

dicate the effectiveness of the proposed method even it is

trained with a limited number of kin pairs (subjects). Ad-

ditionally, the accuracy of the method for each kin relation-

ship is analyzed. It is shown that the best results are ob-

tained for B-B and S-S pairs, respectively. Such a finding

can be explained by the age and gender resemblance.

5.5. Comparison to Image-based Methods

To assess the effectiveness of the proposed model for

image-based kinship verification, a modified version of

the method has been prepared by removing the expression

matching step, and setting the level of frame-neighborhood

(m) to 0. The modified method is evaluated on KFW-I

and KFW-II datasets, and compared with the state-of-the-

Table 7. Accuracy (%) of different image-based methods.

Method KFW-I KFW-II

Proposed Method 80.5 82.3
Block-based Neighbor. Repulsed Metric [23] 78.7 80.6

Local Large-Margin Multi-Metric [14] - 80.0

Similarity Metric Based CNN [17] 72.7 79.3

Neighborhood Repulsed Correlation Metric [34] 66.3 78.7

Ensemble Similarity [40] 78.6 75.7

Scalable Similarity [41] 77.6 74.8

Asymmetric Metric [18] 78.4 80.9

Neighborhood Repulsed Metric [20] 64.3 75.7

art image-based methods in terms mean verification accu-

racy. As shown in Table 7, the proposed model outperforms

all the competitors, and reaches an accuracy of 80.5% and

82.3% on KFW-I and KFW-II, respectively.

6. Conclusion

In this paper, a deep contrastive learning architecture for

video-based kinship verification has been proposed. The

proposed architecture employs an appearance-based pre-

training step followed by a feature-based supervised fine-

tuning. For pre-training, a novel contrastive loss that is de-

fined in the visual-appearance space, has been introduced.

To minimize the influence of facial expression differences

between given subject pairs, an expression matching pro-

cedure has been proposed. Furthermore, to capture tempo-

ral similarity patterns of kin expressions, facial image se-

quences of kin pairs have been used in the analysis instead

of solely focusing on static appearance.

Each of the proposed components employed in the pre-

sented kinship verification framework such as represen-

tation optimization in the visual-appearance space, con-

trastive learning, frame matching, and the use of short-term

facial dynamics, has been evaluated on the UvA-NEMO

Smile Database in a detailed manner. Furthermore, the pro-

posed method has been contrasted with the state-of-the-art

methods for video- and image-based kinship verification.

The experimental results have confirmed the effectiveness

of each of the proposed components as well as showing the

reliability of the method for kinship verification even with

employing a limited number of subject pairs for training.
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