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Abstract.

Analytical models intend to reveal inner structure, dynamics or relationship of
things. However, they are not necessarily intuitive to humans. Conventional scientific
visualization methods are intuitive, but limited by depth, dimensions, and resolution.
The purpose of this study is to bridge the gap with transformation algorithms for
mapping the data from an abstract space to an intuitive one, which includes shape
correlation, periodicity, multi-physics, and spatial Bayesian. We tested this approach
with the oceanographic case study. We found that the interactive visualization increases
robustness in object tracking and positive detection accuracy in object prediction. We
also found that the interactive method enables the user to process the image data
at less than 1 minute per image versus 30 minutes per image manually. As a result,
our test system can handle at least 10 times more data sets than traditional manual
analysis. The results also suggest that minimal human interactions with appropriate
computational transforms or cues may significantly increase the overall productivity.
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1. Introduction

According to Constructionism, people not only discover things, but also con-
struct them and interact with them. For over half a century, people have been
developing computing systems for discovering lawful patterns in letters, num-
bers, words and images. The research has expanded into the computational
study of the process of scientific discovery, producing such well-known classic
AI programs as BACON (Langley, 1977) and DENDRAL (Linsay, Buchanan
and Feigenbaum, 1993). However, autonomous discovery systems have rarely
been used in the real world. While many factors have contributed to this, the
most chronic difficulties seem always to fall into two categories: the representa-
tion of the prior knowledge that people bring to their tasks, and the awareness
of new context. Many difficult scientific discovery tasks can only be solved in
interactive ways, by combining intelligent computing techniques with intuitive
and adaptive user interfaces. It is inevitable that human intelligence is used in
scientific discovery systems. For example, the human eyes can capture complex
patterns and detect anomalies in a data set. The human brain can easily manip-
ulate perceptions (shape, color, balance, time, distance, direction, speed, force,
similarity, likelihood, intent and well-being) to make decisions. The process con-
sists of perception and interaction and it is often ubiquitous and autonomous.
We refer to this kind of intelligence as Ambient Intelligence (AmI) (Aarts and
Marzano, 2003; Cai, 2005).

Ambient Intelligence is originally referred to smart electronic environments
that are sensitive and responsive to the presence of people. Since its introduction
in the late 1990s, the field has matured and expanded into cognitive aspects of
interactions. Ambient Intelligence is about human interaction with information
in a way that permits humans to spot interesting signs in massive data sources
- building tools that capitalize on human strengths and compensate for human
weaknesses in order to enhance and extend discovery capabilities. For example,
people are much better than machines at detecting patterns in a visual scene,
while machines are better than people at manipulating streams of numbers.

1.1. Studies in interactive visualization

The human-computer interactive discovery systems have risen from many pro-
fessional applications. Zudilova and Sloot investigate the practical deployment
of virtual reality systems in the medical environment (Zudilova and Sloot, 2005).
They explore the multi-modal interaction of virtual reality and desktop comput-
ers in Virtual Radiology Explorer. Pryke and Beale present their interactive data
mining system that helps users gain insight from the dynamically created virtual
data space (Pryke and Beale, 2005). Cowell et al. present the architecture of a
next-generation analytical environment for scientific discovery within continu-
ous, time-varying data streams (Devaney, et al, 2005). Devaney et al. develop a
high-end CAVE-based virtual laboratory for scientific discovery. By minimizing
the time between the generation of a scientific hypothesis and the test of that
idea, It enables scientific investigations at the speed of thought. Cai et al. (Cai,
et al, 2005) develop a game-based interactive scientific visualization system for
interdisciplinary biological discovery and education.

Understanding how people sense, understand, and use images and words in
everyday work and life can eventually help us design more effective discovery
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systems. Hubona and Shirah investigate how various spatial depth cues, such
as motion, stereoscopic vision, shadows, and scene background, are utilized to
promote the perceptual discovery and interpretation of the presented imagery in
3D scientific visualization (Hubona and Shirah, 2005).

1.2. Studies in spatiotemporal data mining

Spatiotemporal data are widely used in the remote sensing community. The im-
agery data usually contain multi-spectrum information such as visible, infrared,
UV, or microwave signals. Scientists need to find out the physical properties be-
hind the data flow and predict the future trends such as global warming, flood,
harmful algae blooms or river plumes. Spatiotemporal dynamics is not only about
frames but also multidimensional interaction and evolution. Spatiotemporal data
mining is often a computationally hard problem. For example, a co-location min-
ing problem for over 10,000 locations would take over several hours to solve by a
computer. In many cases, the inverse physics process is complicated. Heuristics
has to be used for approximate estimations.

Contemporary data mining methods intend to discover patterns without do-
main knowledge. Many models are based on statistics and geospatial applica-
tions. For example, the Bayesian model is used to geographically profile serial
killers; neural networks are used to model urban development dynamics, where
the spatiotemporal patterns and space-time transitions are extracted. Spatial
auto-regression is developed for spatial data mining. Furthermore, Variogram is
used for spatial variation analyses. However, spatial data are often sparse and
noisy. For example, normally over 80 percent of optical remote sensing satellite
images over Florida contain clouds so that the objects beneath remain unseen.
There are many artifacts in the images due to the noise in data acquisition and
processing. Furthermore, our knowledge about the spatial dynamics is often lim-
ited. Therefore, a fully autonomous data mining is nearly impractical. Human
intervention is necessary. It is desirable to use computers’ numerical power and
humans’ pattern recognition capabilities.

Spatiotemporal data mining is also an induction process that derives conclu-
sions from massive data. Models, such as regression, neural network, and statistic
models, can be extended to spatiotemporal domains. These models are quanti-
tative and programmable. However, it assumes that the future is what it used to
be. As a result, they only work in a well-controlled environment with ’clean data’.
They are better for short-term prediction, because they need less knowledge or
parameters.

Physics models are developed for augmenting dynamic objects in images. For
example, deformable finite meshed templates are used to model faces (Sonka, et
al, 1998). Particle filters (Zhou, Chellappa and Moghaddam, 2005) are used to
describe the spatiotemporal feature distributions as particle dynamics. Particle
filters assume the particle distribution follows a statistical pattern and a linear or
non-linear transformation trajectory. Unfortunately, many spatiotemporal data
include overwhelming noises and missing data that prevent using statistical as-
sumptions properly. Object tracking sometimes fails due to the discontinuity of
the patterns.

Field theories are developed to represent cognition dynamics with physical
analogy. For example, Leyton discovers that shape is energy (Leyton, 1992). His
shape process theory reveals the rules for recovering original shapes based on
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symmetry and other properties. Lewin (Bandini and Pavesi, 2002) uses metaphors
from well-known systems (e.g. physics), in order to understand and explain a
rather unknown system (e.g. psychology). In explaining phenomena around the
concept of behavior, Lewin uses the metaphor of a ’force field’ such as psycho-
logical tension, psychological force, and fluidity.

Studies of Cellular Automata (CA) suggest the possibility of modeling ar-
tificial life forms (Hardy, et al, 1976; Toffoli and Margolus, 1987; Wolfram,
2002; Wolfram, 1984a; Wolfram, 1983a; Wolfram, 1983b; Wolfram, 1985; Wol-
fram, 1984b), as well as at the large scale, such as urban and economic dynamics
(Gardner, 1980). Furthermore, CA has been employed in simulating and veri-
fying various types of physical interactions, such as the expansion patterns of
different lattice gases, surface tension of liquids, and diffusion-limited aggrega-
tion (Essam, 1980). Although CA’s rules are simple and local, it can simulate
complex spatiotemporal interactions that are challenging to other computational
methods.

1.3. Objectives of this study

Analytical models intend to reveal inner structure, dynamics or relationship of
things. However, they are not necessarily intuitive to humans. Conventional sci-
entific visualization methods are intuitive, but limited by depth, dimension, and
resolution. To bridge the gap, transformation algorithms are needed to map the
data from an abstract space to an intuitive one. For example, a spectrogram
maps an invisible sound to a visible frequency-intensity-time space. The conver-
gence of scientific visualization and data mining creates a new domain for visual
data mining. Sensing and understanding together enables humans to gain in-
sight from a large amount of data. This approach integrates a human’s Ambient
Intelligence and analytical computation to form a coherent knowledge discovery
environment.

The goal of this study is to develop a set of visual transformation algo-
rithms that incorporate computer vision, multi-physics simulation, and machine
learning models to solve the tracking and prediction problems across multiple
databases. Embedding vision into the conventional data mining algorithms en-
able us to automate the data pre-preprocessing and increase accuracy in the
overall process. In contrast to the conventional data mining algorithm that is
normally context-free and independent from the physical constraints, we intro-
duced a visual multiple physics model such as Cellular Automata to simulate
the physical, biological, and chemical phenomena. This provides a mechanism to
explore the deep knowledge about spatiotemporal patterns while the accurate
computational models are not available or impractical. For example, the cur-
rent data assimilation for weather models takes several hours so that it prevents
real-time weather forecasting. Machine learning has been a key feature in many
data mining algorithms. In this project, we extend learning algorithms to spa-
tial and temporal space and integrate them with vision and simulation models.
As learning models can be data mining tools alone, they also support vision
and simulation models for calibration or optimization of parameters. Moreover,
human-computer interaction and scientific visualization methods are introduced
as a comprehensive interface, which increases the robustness of the process.

The spatiotemporal data mining process involves multi-physics phenomena
and domain-oriented knowledge discovery. No single visualization method or sin-
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Fig. 1. Illustration of the system architecture that consists of computer vision, multi-physics
simulation and user interaction

gle interaction can cover the whole process. Instead, multiple visualization meth-
ods and human-computer interactions are embedded inside the complex process.
To bridge the analytical models and human visual perception, we have developed
a platform of the visual transformation models that enable the two-way visual
interactions, which are subtle but profound.

In this paper, we present general interactive cellular automata for tracking
and predicting the spatiotemporal dynamics in an imagery flow. The model con-
sists of a set of parameters and rules that control spatiotemporal dynamics in
the form of a shape, such as diffusion, transport, and collision. In this model,
cells not only interact with their neighbors locally, but also contain the holistic
shape of a cluster of cells as an object or a lump. Figure 2 shows an illustration of
the system architecture where the cellular automata model consists of Bayesian
inference, artificial life rules, and multi-physics rules such as multi-body collision,
etc. The visualization functions include fuzzy blobs, isosurfaces, correlation val-
ues, periodicity transform, animation and polarized glasses. On the other side,
the micro interactions include shape adjustment, parametric control, rotation,
pan, zoom, cut, and slide windows.

Fig. 2. Visual transformation for interactive data mining

In this paper, we aim to develop computational algorithms for tracking and
predicting the movement of objects from images and numbers. For tracking prob-
lems, given an object in an image sequence (t=1,..,n), we try to find the object
at t = n+1 and beyond. For prediction problems, given databases of histori-
cal data and current physical and biochemical conditions, we try to predict the
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occurrence of the object of interest at a particular time and location. Figure 3
illustrates a generalized spatiotemporal data mining problem.

Fig. 3. Illustration of the spatial tracking and prediction problems.

To validate the methods developed in this project, we conducted one case
study with the real world databases: tracking and prediction of harmful algal
blooms in the Gulf of Mexico area.

2. Shape Correlation Transform

Given a selected object in a very large imagery database, tracking the movement
of the object over time with multiple sensors is a challenging task for both
humans and computers. For example, it takes about 30 minutes for scientists
to analyze one frame of the multi-spectrum satellite image. On the other hand,
computer vision-based tracking is faster, but they are not very reliable in many
cases. The goal of the interactive object-tracking is to combine the machine vision
with human-computer interaction so that the computer takes care of most of the
time-consuming iterative task and humans contribute the minimal initiation and
evaluation processes.

The interaction protocol is developed for human-computer interaction during
the tracking task. In the protocol, the user identifies the tracking target. The
computer takes over the tracking frame by frame and superimposes the tracking
results on top of the original images. At a certain point, the computer stops
the tracking and sends the signal to the user for more information. After the
re-initiation, the computer moves on till the next break point. The key element
in this protocol is the context-awareness algorithm. In this study, we use the
correlation filter to measure the similarity of the object in the current frame and
the object in the previous frame. The correlation filter is built by using Fast
Fourier Transform and Correlation Theorem:

C = IFFT (FFT (a) ∗ conj (FFT (b))) (1)

where a is the test image while b is the reference object in the previous image
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to be tracked. X = FFT (x) and x = IFFT (X) represent Discrete Fast Fourier
Transform and Inverse Discrete Fast Fourier Transform respectively.

X(k) =
N∑

j=1

x(j)ω(j−1)(k−1)
N (2)

x(j) =
N∑

j=1

X(k)ω−(j−1)(k−1)
N (3)

where ωN = e(−2πi)fN , N denotes the length of the vector and symbol. The
symbol ∗ denotes array multiplication and conj returns the complex conjugate of
the argument. The pixel that gives the highest correlation value has the highest
confidence that the reference object is at that pixel location. The correlation
filter alone cannot reliably track the object over a long period of time because it
faces a dilemma when the object breaks into pieces. The computer would select
one of the pieces and track it. The scenario probably is not what we want for
object tracking due to lack of control of the process. Figure 4 shows the scenario
where the object breaks into two pieces and the computer is attracted to the
small piece at the fourth frame.

Fig. 4. Automatic tracking of a target which has split into 2 pieces.

In the interaction protocol, object tracking using correlation filter is based
on the similarity of the objects between images. If there is a large difference
in the values given by the correlation filter between two consecutive images,
we can conclude that the objects have changed significantly during this time
period. However, we cannot determine whether the object in the previous frame
has disappeared in the subsequent frame or if the object has just deformed
significantly. Scientists’ experience and intuition would help determine if the
object still appears in the next image in this case. We performed an experiment
to track an object in a series of 84 images. In frame 48, the correlation dropped
by more than 50% from the previous frame. Originally, the algorithm would
stop at this point because it cannot identify the object being tracked. However,
instead of terminating the tracking, the computer prompted the user to select
a particular object in the new image so that the tracking could go on. In our
experiment, the user selected an object that was most alike the previous object
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and the tracking progress continued until the end of series. There is also another
application that human interaction may help. When the object breaks into more
than one piece, the original algorithm would only try to find the single best
match of the previous tracking object. With the interaction method, the user
can select more than one object and multiple targets will be under the tracking
process.

Fig. 5. Correlation Value indicates the ’breaking’ point at the 50% level.

Fig. 6. Interactive tracking results.

Table 1. Automated versus Interaction.
Case Automatic Interactive

acceptable % for the coherent target 73/79 = 92% 73/79 = 92%
acceptable % for the target split to two pieces 48/79 = 60% 71/79 = 90%

3. Spatial Periodicity Transform

Although humans are capable of identifying spatial temporal and patterns, such
as the repetitions in textures, and the rhythms in music, human perceptions
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often miss the hidden patterns if the data set is complex. Computational trans-
forms are needed for semi-automatically identifying underlying patterns. Perhaps
the best known is the Fourier Transform, which attempts to explain a data set
as a weighted sum of sinusoidal basis elements. However, none of the available
methods directly search for periodicities, repetitions, or regularities in the data.
Sethares builds on a classical technique, called the Buys-Ballot table, for the
determination of hidden periodicities, the Periodicity Transform (Sethares and
Staley, 1999). In his method, the algorithm searches for the best periodic char-
acterization of the length N signal x. The underlying technique is to project x
onto a periodic subspace.

In this study, we expand the one-dimensional Periodicity Transform into the
two-dimensional space of the cellular automata. We construct spatial and tem-
poral windows to allow the user to select the region of interest (in the red box
of longitude and latitude coordinates), on a particular time frame. The algo-
rithm starts with cropping the data within the ROI (Region Of Interest) box
and sorting the data by time. Then it takes the Fast Fourier Transform (FFT)
and extracts the highest value. For each point, we take the average value of the
corresponding time. We then simply calculate the remaining signal and reprocess
it. The outputs include the detected periods and their energy. This method en-
ables user to interact with spatial periodicity transform in an interactive mode,
which is very important to many applications such as oceanographic studies.

From the Fourier Transform, we select the frequency of the component with
the highest energy. Then we turn this frequency (f) into a period (p) with the
formula:

p =
1
f

for all points xi (4)

The equation of the power (energy) is the following:

Power = ‖x‖2 =
1
p2

p2−1∑

i=0

x(i)2 (5)

There are many ways to render the spatial periodicities. First, we use two-
dimensional colored cells to represent the power (energy) for a particular period
component, e.g. 365.25 days. In this case, a user needs to select the period com-
ponent as an input. Fig.7 illustrates an example of the two-dimensional power
ratios in a database of Karenia Brevis cell counts in the Gulf of Mexico for 50
years. The brighter the cell, the higher the power ratio, which means that the
probability of finding the target every year at the same time is higher. Due to
the heterogeneity of the data set, pre-processing is necessary. That consists of
computing a space mean of the number of cells and the estimation of missing
data spots where we do not have any measurement. Based on the periodicity
transform and human-computer interaction, we can see on Figure 9c that for
each set of data we have a one-year period component.

Another two-dimensional rendering is to tile the individual period spectrum
diagram into a two dimensional matrix. Each cell has its periodicities along with
their powers. This matrix is called cellular periodigram and is represented in
Figure 8. The advantage of this method is its all-in-one solution. However, its
scalability is limited by the number of cells per screen.

Finally, we created the visual interaction interface for the spatial periodicity
transform. We assign an interactive window for two-dimensional data points. In
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Fig. 7. Map of the power ratios with measurement points overlayed. The lighter the back-
ground, the more powerful it is in the 365.25 day period.
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another window, we display the associated results of the periodicity transform,
where the x-coordinate is the period and the y-coordinate is the power ratio
of the component. Figures 9a through 9c are examples of the interactive data
mining results. The data is drawn from 50 years of the Karena Brevis cell counts
from Florida coast. Each piece of data contains the geographical coordinates and
level of concentration.

(a) All samples with narrow time window and the periodicity detection.

(b) Median window (ROI) selection and the periodicity detection .

(c) Small window (ROI) selection and the periodicity detection.

Fig. 9. Different zooming windows for the analysis of periodicity

4. Multi-Physics Transform

Conventional data mining models do not involve physical parameters. On the
other hand, traditional physical models only deal with particular phenomena
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with required calibration process. In this study, we try to merge the two with a
simple multi-physics model and an interaction process that overlays the results
from the simulated model on top of the collected data.

We build the simulation model for predicting the spatiotemporal dynamics.
Given the results obtained from the previous sections, we create scenarios of
object movements by modeling the artificial life, with diffusion, growth, shrink,
transport and collision. The growth diffusion function changes the object shape
by a predefined structuring element. The dilation or erosion morphology is based
on the assumption of a glass-like surface where no friction exists. They can
only deform the outline of a shape uniformly based on the population. It does
not reflect the intrinsic, external non-linear, or random factors that contribute
to the shape process. In order to simulate the non-uniform shape growth, we
investigate percolation clustering (Essam, 1980). Figure 10 shows an example of
the percolation process started from a given shape.

In the real-world, it is rarely the case that cells are allowed to grow or move
uninhibitedly in an infinite amount of space; rather, their growths and move-
ments are often affected by environmental factors such as external forces: like
winds and currents, and the presence of obstacles. A collision causes deformation.
The extent of a deformation depends on the elasticity of an object. For a rigid
object, it will stop at the collision contact point and keep the same shape. We
classify objects as rigid, elastic, and flexible. The two extreme cases are straight-
forward. Rigid objects don’t deform after the impact. Flexible objects completely
deform along the outline of the collided hard objects. For the case of an elastic
object and a rigid object, we use the following rules to model the deformation:

1. Detect the collision points
2. Move a portion of the collided cells to sideways, the ratio is proportion to

the elasticity of the object. The bigger the elasticity, the more the cells move
sideways.

3. Continue to deform until the motion stops.

Figure 11 shows a simple dynamics of growth and collision of the artificial
life, which starts at the left frame with a very small region. Through some inter-
nal factors, the life grows larger. But once the growth hits the wall, the growth
spreads to the side starting from the third frame. The frames above were gener-
ated using a Cellular Automata simulation with a relatively low elasticity.

To simulate the dynamics of artificial life, diffusion using Cellular Automata
is implemented for the growth and shrinking of cells, collision of cells onto a
boundary, and wind translations. The simulation rules are listed in the Appendix.

The surface current can also be combined with the Bayesian prediction model
to analyze the dynamics of artificial life. So far, Bayesian prediction model is a
better prediction than most other models because of its simplicity.

The CA simulation model can then use the predicted output and simulate
future shape deformations, collisions, and wind translations using surface cur-
rent conditions, such as temperature which would affect how the shape deforms,
grows, and shrinks. The dynamics are detailed by simulating predictions and
comparing them to the actual movement of artificial life. The error of simula-
tion compared to actual movements will allow humans to better understand the
dynamics of the internal and external factors of artificial life. With better un-
derstanding, the CA model can be improved to incorporate more rules dealing
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Fig. 10. A simulated result of diffusion with resistance. The image is projected onto the
dynamic data and calibrated by visual interactions

Fig. 11. A simulated result of the cellular growth and collision. From left to right, the cells
grow and deform at the left border.
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Fig. 12. Interactive parameter estimation with CA visualization and manual adjustment.

Fig. 13. The dual-channel polarized projectors for overlaying the simulated results on the
observation data.

with artificial life. This cycle can be repeated for the computer and the human
to learn together.

Visualization of the artificial life is implemented with the dual-channel dis-
play system, where we display the simulated results on the left channel and the
ground truth data on the right channel. The polarized display two datasets si-
multaneously. Furthermore, the multi-modal display system is scalable from a
desktop monitor to a large projected screen.

5. Spatial Bayesian Transform

Here we define a Bayesian cellular automata model to represent the spatial
stochastic formation of an artificial life ’alga.’ The alga lives in a two-dimensional
space divided by a grid of cells. In this model, we consider the location of an
alga (x, y), time (t), and other physical stressors. For historical images, c denotes
the presence of an alga. Given the location in (x, y), and time (t), the following
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equation can be used to find the probability that location is inhabited by alga
at that time.

P (c|x, y, t) =
P (c)P (x|c)P (y|c)P (t|c)

P (x, y, t)
(6)

Sometimes when additional evidence e such as the surface temperature is present,
it is necessary to use the recursive property of Bayesian to get a more accurate
value of the probability:

P (c|x, y, t, e1, e2, . . . , ek) =
P (c)P (x|c)P (y|c)P (t|c)∏k

i=1 P (ei|c)
P (x, y, t, e1, e2, . . . , ek)

(7)

Calculating each of the probabilities is simple:

P (c) =
Nc

N
(8)

P (x|c) =
Nx,c

N
(9)

Nc is the number of pixel occurrences of c in all images, N is the total number
of pixels in all images, and Nx,c is the number of pixel occurrences of c at location
x in all images. Similar calculations to P (x|c) are made for P (y|c), P (t|c), and
P (e|c).

Just calculating the probability of algae present is not good enough. To visu-
alize this prediction, we need a threshold α to determine the pixel of the output
image. The output pixel O(x, y) is a Boolean value decided by the equation
below:

O(x, y) = P (c|x, y, t, e1, e2, . . . , ek) ≥ α (10)

For images outputting the probability, the value of each grid represents the
probability the grid is inhabited by artificial life. The higher the probability,
the darker the region is on the probability image. Probability images are used to
predict the location of life given the location, time, and any additional evidence.

5.1. Gray area rendering and interaction

The probabilities under those certain conditions/evidence, such as time and tem-
perature, can be calculated. Figure 14 shows examples of the estimated target
locations.

Fig. 14. a) Probability of location being inhabited by algae using a single input temperature
= 15�. b) output image of using 15� and , c) probability of location being inhabited by algae
using a single input time = January, d) output image of January.

Prediction using one input becomes much more inaccurate during months
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with cold temperature because during certain times of the year, no alga is de-
tected when the temperature falls below 15�. In Figure 14, a) and c) are poor
probability models because of the lack of evidence for the Bayesian model to
make an accurate prediction; this is indicated by the large number of cells in
each image with very low probability (light colored cells). When the model is
fed with both temperature and time: 15� and January, it becomes much more
accurate, as shown in Figure 15.

Fig. 15. Left: probability of location being inhabited by algae. (Note the reduced amount of
light cells). Right: predicted location after applying the interaction (threshold setting).

5.2. Isosurface rendering and interaction

Isosurface is an interactive tool for volumetric visualization. The isosurface plots
in Figure 16 have latitude, longitude, and time. Each slice of the blue isosurface
with respect to the time axis represents the predicted image at time t = z with
some constant α where α is the probability threshold constant or confidence
level. Humans can interact with the iso-surface plot and be able to make more
accurate predictions by adjusting the value of α. This visualization tool can be
used by the user to determine what confidence level, or α to use.

In Figure 16, the horizontal axes are the latitude and longitude axes of pre-
dicted image. Each time slice of the blue iso-surface represents the predicted
location of life. For the figure above, α = 0.4 was used for the prediction.

Isosurface images can be viewed from any angle and the user has the choice
of choosing the time interval to view the plot, and the α threshold. Through
visualizing different slices of the plot with different α values, the user can inter-
act with the Bayesian probability model to produce more accurate images by
adjusting the α value for each time period.

We verify the process with a case study predicting the movement of harmful
algal bloom (HAB) of Karena Brevis. In this case, the HABs are lumps, rather
than individual cells. The input data are satellite images and cell counts. The
prediction model uses the satellite images as additional evidence. A Spatiotem-
poral Bayesian prediction model is implemented using a modified version of the
equations above. The inputs for the prediction are the location in latitude and
longitude, the time, and the patch of the image for the region of interest. For
the prediction, the probability of HAB present is compared to the probability of
not present. The higher probability will determine the classification. Because the
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Fig. 16. Iso-surface plot of predicted image α = 0.8.

denominator for calculating both of the probabilities is the same, the prediction
equation summarizes to:

SB(x, y, t, I) = argmax
c∈C

P (c)P (x|c)P (y|c)P (t|c)P (Ix,y|c) (11)

I is input image, and Ix,y is the c ∈ C patch for the region of interest. See the
next section ”Usability Study” for more details.

6. Usability Study

We investigate the visual transformation methods in the context of our real-world
scientific research projects in oceanographical studies. Therefore, our approach
has to make sense to scientists who conduct day-to-day analyses and discovery
tasks. Table 4 summarizes the advantages and disadvantages of the visualization
modes and interaction modes in a matrix form.

We tested our interactive spatiotemporal data mining system with the field
data of cell counts from the Gulf of Mexico area and SeaWiFS satellite images
from NASA. We quantified our results, for example, positive accuracy, which
describes the percentage of predictions which were correct when Harmful Algal
Bloom cell count, was greater than or equal to 5,000. The measurements are
defined as following:

– Positive accuracy is the percent of the cases in which target is present and the
model predicted correctly.

– Positive accuracy = confirmed positive / (confirmed positive + false negative).
– Positive detection is the percent of all predictions that are correct.
– Positive detection = (confirmed positive + confirmed negative) / (sum).
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Table 2. Interactive Spatio-Temporal results
Method False Confirmed False Confirmed Sum Positive Positive Negative

positive positive negative negative detection accuracy accuracy
Image only 44 17 6 306 373 86.60% 73.91% 87.43%

SB1w/oSDT 2 161 423 142 1658 2384 87.29% 74.87% 91.15%
SBw/SDT 176 445 120 1643 2384 87.58% 78.76% 90.32%

SBw/SDT&Int3 166 441 124 1653 2384 87.84% 78.05% 90.87%
SBw/SDT&Or4 173 445 120 1646 2384 87.71% 78.76% 90.49%

1- Spatiotemporal Bayesian Model 2- Sparse Data Treatment
3-Interpolated images 4- Original Images

Table 3. Manual-only results (Tomlinson, et al, 2004)
Method False Confirmed False Confirmed Sum Positive Positive Negative

positive positive negative negative detection accuracy accuracy
Reference Results 5 36 23 124 188 85.10% 61.02% 96.12%

7. Conclusion

Analytical models intend to reveal inner structure, dynamics, or relationship of
things. However, they are not necessarily intuitive to humans. Conventional sci-
entific visualization methods are intuitive but limited by depth, dimensions and
resolutions. The purpose of this study is to bridge the gap with transformation
algorithms for mapping the data from an abstract space to an intuitive one.

The visual transformation algorithms incorporate computer vision, multi-
physics simulation, and machine learning models to solve the tracking and pre-
diction problems across multiple databases. In particular, the visual transformers
include shape correlation for interactive tracking, periodicity for periodical pat-
terns, multi-physics for simulating the complex surface dynamics, and spatial
Bayesian for spatio-temporal prediction.

Embedding computer vision into the conventional data mining algorithms en-
able us to automate the data pre-precessing and increase accuracy in the overall
process.

In contrast to the conventional data mining algorithm, which is normally
context-free and independent from the physical constraints, we introduced a
visual multiple physics model Cellular Automata to simulate the physical, bio-
logical and chemical phenomena. This provides a mechanism to explore the deep
knowledge of spatiotemporal patterns while the accurate computational models
are not available or impractical.

In this study, the human-computer interactions are embedded into the data
mining process with multi-modal interfaces such as desktop computers and stereo
projectors. The interactive visualization is not only a display but also a learning
and problem solving process.

We have tested this approach with the oceanographic data mining from
NASA’s 8-year SeaWiFS satellite database along with NOAA’s 50-year in-situ
cell count databases. We found that the interactive visualization increases ro-
bustness in object tracking and positive detection accuracy in object prediction.
We found that the interactive method enables the user to process the image data
at less than 1 minute per image versus 30 minutes per image manually. As a re-
sult, our test system can handle significantly more data sets (e.g. 5,000 samples)
than traditional manual analysis (e.g. 188 sample).

The empirical benchmarks and usability studies suggest that the visual in-
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Table 4. Comparisons of the visual transformation methods.
Visualization Interaction Advantage Disadvantage

Spatial Bayesian
Transform with
Gray-scale
rendering

Adjusting
probability
threshold

Showing the
possible algae
formation location
intuitively

One frame per
time slice, lack of
confidence
indication for
none measurement
spots

Spatial Bayesian
Transform with
iso-surface

Rotation, pan,
zoom, and cutting
planes

Combining
spatiotemporal
data in one object

Obscure and
over-confidence for
long-term
prediction

Shape Correlation
Transform

Human
intervention at the
breaking points
from the shape
correlation
indicator

Improvement of
the tracking
continuity.

The correlation
indicator is just
one visual cue. It
may not be always
working for
complex scenes

Periodicity
Transform with
zooming windows

Sliding windows
for spatiotemporal
data selection

The mathematical
transform enables
user to discover
the periodicity
easily and the
slide window
enables flexible
data selection

How to select the
suitable windows
is sensitive to the
detection results.
Also
pre-processing of
the raw data is
necessary to
recover the
missing spots.

Multi-Physics
Transform on a
desktop

Adjusting the
input parameters

Intuitive and
fewer input
parameters

The adjustment
process could be
time-consuming.

Multi-Physics
Transform with
the stereo
projectors and
polarized glasses

Adjusting the
balance of the two
channels

Displaying the
ground truth and
simulated data
simultaneously

Additional
equipment for
users. Possible
fatigue after
starring for a
while

teractions can improve the data mining quality. However, where, when and how
to engage the visual interaction are key factors in the process. The results also
suggest that minimal human interactions with appropriate computational trans-
forms or cues may significantly increase the overall productivity.
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Appendix: CA Simulation Rules

The growth rule is as followed given the growth amount N :

1. Pick an arbitrary cell neighboring the region of life
2. If the sum of neighboring cells ≥ 2 and the arbitrary cell is ’0’ then make the

cell ’1’
3. Repeat steps 1 and 2 until the desired N has been reached

The shrink rule is as followed given the shrink amount M :

1. Pick an arbitrary cell on the edges of the region of life
2. If the sum of neighboring cells ≤ 2 and the arbitrary cell is ’1’ then make the

cell ’0’
3. Repeat steps 1 and 2 until the desired N has been reached, or a maximum

iteration threshold has been reached. If the threshold is reached, it means the
region of life has shrunk to a very condensed region and will not easily reduce
in size.

The collision rule is as followed given elasticity E:

1. If any cells cross the boundary, proceed to the next step.
2. Treat the rows and columns outside of the boundary as ’1’
3. If the sum of neighboring cells around any cell is ≥ 4 then make the cell

’1’. This phase will add the cells onto the boundary row, or in the case that
the region of life has already collided with a boundary, add cells close to the
previously collided cells.

4. Repeat this step E times since the more elastic the collision, the more the cells
will spread.

The wind translation rules are as followed given wind speed W and
direction:

1. Using a constant for speed of translation with relationship to wind speed. (e.g.
.15 ∗W )

2. Move the shape at the speed of one iteration at a time in the x and y direction.
3. If there is a collision with a boundary, spread along the boundary, but continue

moving.
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