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∗Speech, Audio, Image and Video Technology Lab, Queensland University of Technology, Australia.
†Disney Research Pittsburgh, USA.

Abstract—Visual activity detection of lip movements can be
used to overcome the poor performance of voice activity detection
based solely in the audio domain, particularly in noisy acoustic
conditions. However, most of the research conducted in visual
voice activity detection (VVAD) has neglected addressing vari-
abilities in the visual domain such as viewpoint variation. In this
paper we investigate the effectiveness of the visual information
from the speaker’s frontal and profile views (i.e left and right
side views) for the task of VVAD. As far as we are aware, our
work constitutes the first real attempt to study this problem.
We describe our visual front end approach and the Gaussian
mixture model (GMM) based VVAD framework, and report the
experimental results using the freely available CUAVE database.
The experimental results show that VVAD is indeed possible
from profile views and we give a quantitative comparison of
VVAD based on frontal and profile views The results presented
are useful in the development of multi-modal Human Machine
Interaction (HMI) using a single camera, where the speaker’s
face may not always be frontal.

I. INTRODUCTION

The detection of voice activity (i.e. when speech occurs and

not what is said) is a challenging problem, especially when the

level of acoustic noise is high. Most current approaches only

utilise the audio signal, making them susceptible to acoustic

noise [1, 2]. Frame-energy [3] and entropy [4] are some of the

audio based techniques which can be used for voice activity

detection (VAD). However, the robustness and effectiveness

depends on the acoustic environment and these approaches

perform poorly when the level of background noise increases.

An obvious approach to overcome this problem is to use the

visual modality in the form of speaker’s lip information as it

is not susceptible to the problems associated with audio based

VAD.

In visual speech recognition or in lip reading, hidden

Markov models (HMMs) [5] are used as the recognition tool

and it is widely recognised that this is the defacto standard.

However, in terms of detecting visual voice activity, there is no

current standard technique being used. This is because research

in this area has been rather dormant.

There are few attempts to incorporate the visual modality

in VAD. An early work in visual voice activity detection was

the work done by Liu and Wang [6], where they presented

a visual VAD (VVAD) framework using a template matching

method and applied principal component analysis (PCA) [7]

for the feature extraction on the detected mouth region. They

modeled the distribution of speech and non-speech using two

different Gaussian mixture models (GMMs). The authors,
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Fig. 1. An example of the setup to capture the frontal, left and right poses.
The detected region-of-interest (ROI) was directed to the VAD system, to
recognize the speech and non-speech.

demonstrated their experiments using two French speakers.

Sodoyer et. al [8] presented a VVAD system using lip contour

geometric parameters where they applied temporal smoothing

to extract the visual features using the width and the height

of the mouth region. In 2007, Libal et. al [9] developed a

real-time system to recognise visual speech activity on low

cost embedded platforms. This system uses a camera mounted

on the rearview mirror to monitor the driver. It detects face

boundaries and facial features, and finally employs lip motion

clues to recognise VAD. More recently, Aubrey et. al [10]

proposed a method for VVAD based on the optical flow

of the speaker’s mouth region. The authors show that they

can obtain less false detection when they train on a small

number of observations. A small database was utilised which

contains only one male and one female speaker. Furthermore,

all the above research work in VVAD has been conducted

using only the frontal images with small amounts of data.

A realistic scenario of using the visual modality to detect

voice activity is to have the system being able to function

in different views. An example of this is given in Figure 1.

Having a VVAD system which can recognize the voice activity

from both frontal and profile views will be a major benefit

to many applications such as voice based Human Computer

Interaction. For example in-vehicle environments. Research

todate on VVAD has been conducted only on the frontal view

of the face and no research has addressed VVAD using profile

views. In our work we present a VVAD system using different



 

   GMM Visual 
Speech Classifier

Fig. 2. An overview of the visual voice activity detection framework.

poses using the publicly available CUAVE database [11],

which consists of 36 speakers. We view this work as the first

and necessary step to develop an efficient human computer

interaction system based on audio-visual input.

II. GMM BASED VAD

This section gives an overview of the speech detection

framework and the detailed module descriptions in the sub

sections. An overview of the operation of the main components

of the speech detection framework is outline in Figure 2.

A. Feature extractors

The feature extraction module is designed to extract the

visual features from the ROIs. The module is designed to

extract the visual features by first dividing the incoming speech

sequence utterance into a number of fixed-length frames, at a

particular frame-rate, and then return a feature vector for each

frame and direct it to the GMM visual speech classifier. A

brief description of the feature extraction stage can be found

in Section III.

B. GMM visual speech classifier

The Visual speech classifier module was implemented to

estimate the speech-likelihood by assigning scores to frames

of feature files. Feature files are generated from the feature

extractor module. The GMM classifier module takes the fea-

ture sequences and produces the corresponding list of scores

files. Output score files are a list of scores for each frame

of the video utterance. The GMM classifier is trained using

the speech/non-speech reference speech segmentation (ground

truth values) obtained on the training set. GMM training takes

the features corresponding to speech and non-speech events

from the video utterance in training set in order to estimate

the means and the variation of each Gaussian mixture. Two

8 mixture GMMs were used to separately model speech and

non-speech events and classified scores are given as the log

likelihood ratio of the speech GMM over the non-speech

GMM.

C. Score smoother

The score smoother takes a list of score files from a

speech detector module and produces a corresponding list

of smoothed score files. For this research, a one-second

median filter is used for smoothing. This smoother operates by

replacing each score with the median of a one-second window

centered on the score.

D. Speech segmenter

The speech segmenter module is the final stage of the

framework. This stage converts the log-likilihood score files

into speech/non-speech segment decisions. It is designed to

take a list of score files and a threshold value and produce

a corresponding list of speech segment files which can be

compared with the reference speech segment files (ground-

truth values) to evaluate the performance of VVAD system. A

simple threshold-based segmentation is used where the output

of the smoother is divided based upon a single threshold;

frames below the threshold are designated non-speech and

frames above are designated speech. The training data was

used for the tuning of the segmentation thresholds based

on minimising the half total error rate (HTER) defined in

Section IV-C.

III. VISUAL FEATURE EXTRACTION SYSTEM

A. Visual front-end

An efficient visual front end system which is able to track

and locate the ROI from the speaker’s frontal or profile (i.e left

and right profile) face and lip area was developed using the

Viola-Jones algorithm [12]. The visual-front end was similar

to Lucey et. al [13].

Given a video of a speaker, initially face localization is

applied according to the view to estimate the position of the

speaker’s face using 16×16 frontal or profile face classifiers. If

the face image is frontal, the eyes were searched over specific

regions of the face. Next, the mouth center classifier was used

to refine the search region. The resulting mouth region was

then used as the search region to locate the right and left

mouth corners. After locating the mouth corners, the extracted

mouth ROI was rotated so that these two points were aligned

horizontally.

The visual front-end for the profile view was similar to the

frontal view. Once the face is detected we used a 20×20 eye

classifier and a 15×15 nose classifier to localise the profile eye

and the nose. The mouth region was located in the bottom part

of the face region. Once the general mouth region is found,
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Fig. 3. An overview of the visual feature extraction system.

the left mouth corner is detected. The extracted mouth ROI

was normalised based on the left mouth corner.

Finally, the extracted frontal and profile views mouth ROI

was smoothed using a mean filter and downsmapled to 40×40

to keep the dimensionality low. This process was performed on

every incoming video frame of the speaker. All the classifiers

were developed using the OpenCV libraries. An example of

extracted mouth ROIs from frontal, left and right views is

presented in Figure 4.

B. Visual features

We extracted the visual features in the form of cascading

appearance based features, which consist of both static and

dynamic feature extraction [14] stages. In the field of audio-

visual speech recognition (AVSR) [15], this method has been

established as the state-of-the-art for visual feature extraction.

Following the ROI extraction from the visual front end

system, an image mean normalization step was performed

to remove any irrelevant information, such as illumination or

speaker variances. The mean image was calculated from the

given entire utterance and subtracted from every incoming

frame in the utterance, before extracting the static feature

vector. The subtracted image is called the mean removed

image (MRI). Then two-dimensional separable, discrete cosine

transform (DCT) is applied to the MRI and the top 100

higher energy components were selected to capture the static

information.

Visual speech is represented by the movements of the

visual articulators. The best features for representing visual

speech are generally considered to focus on the movement of

the features, rather than the features within each frame. In

order to incorporate dynamic speech information, the static

features were concatenated before speech-class based linear

discriminant analysis (LDA) was performed based on a known

transcription.

We used seven of these neighboring static feature vectors

over ±3 consecutive frames were concatenated around the

frame under consideration, and projected via an inter-frame

LDA step to yield a 40-dimensional “dynamic” visual feature

vector, extracted at the video frame rate of 30 Hz. The classes

used for LDA matrix calculation were the HMM states, based

on forced alignment using audio transcriptions. A depiction

of the visual feature extraction system for the frontal and the

profile views is given in Figure 3.

IV. EXPERIMENTAL SETUP

A. Research data

The experiments were conducted using the freely available

audio-visual CUAVE database [11], which contains speakers

talking in frontal and non-frontal poses. It consists of two

sections: the individual and the group section. The individual

section was designed to give realistic conditions such as

speaker movement, while the group section was included to

look at pairs of simultaneous speakers.

The CUAVE database consists of 36 speakers (19 male and

17 female speakers). The database has over 7000 utterances

and all the recorded speech was in English. The data were

collected using frontal, left and right views. In the frontal view,

each speaker spoke 50 digits whilst standing still naturally. In

the profile views, each speaker utters 10 digits. Some of the

examples of the various speakers and poses available in the

CUAVE database are given in Figure 5.

B. Evaluation protocol

The main motivation behind the creation of the CUAVE

database was to create a flexible, realistic and easily dis-



(a) From left profile. (b) From frontal view. (c) From right profile.

Fig. 4. Examples of the extracted 40×40 ROI Images using different views.

(a)
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Fig. 5. Examples of the CUAVE individual sequences: (a) Left profile, (b)
Frontal view and (c) Right profile.

tributable database that allows a representative and fairly com-

prehensive testing in speaker-independent audio-visual speech

recognition not for VVAD. Therefore we derived an evaluation

protocol for task of VVAD using the CUAVE database for our

experiments.

An example of the categorisation of the speech and non-

speech events for the frontal and profile views is shown in

Figure 6. We categorised the entire “zero” to “nine” session

as speech and the session between “nine” to “zero” as non-

speech in the frontal view. In the profile view, we categorised

the digits as speech and silence between digits as non-speech.

The main reason was there were significant amounts of silence

between digits in the profile data in most of the subjects.

For example, as shown in Figure 6(b), there are 10 digits

around 25s, but there are around 30 digits in Figure 6(a). We

selected 24 subjects from the CUAVE database (some of the

subjects were discarded due to random head movement and

bad tracking) for the experiments and they were categorised

into 8 groups as shown in Table I. Since the number of

subjects are limited, a number of VVAD experiments have

been performed according to the folds information as outlined

in Table II to obtain an average result. For a particular fold,

75% of the data was selected for training of the GMM models

and for the tuning of the segmentation thresholds and 25% was

selected for testing.

C. Performance metrics calculation

In order to evaluate the performance of the VVAD system,

performance metrics were designed to compare the final

TABLE I
SPEAKER LIST

Group Speakers Group Speakers

I s01, s02, s03 V s19, s22, s23

II s06, s07, s09 VI s24, s25, s26

III s10, s14, s15 VII s27, s29, s30

IV s16, s17, s18 VIII s31, s32, s34

TABLE II
FOLDS FOR VVAD EXPERIMENTS

Fold Training Groups Testing Groups

1 I, II, III, IV, V, VI VII, VIII

2 III, IV, V, VI, VII, VIII I, II

3 I, II, V, VI, VII, VIII III, IV

4 II,III, IV, V, VI, VII I, VIII

5 I, II, III, IV, VII, VIII V, VI

6 I, IV, V, VI, VII, VIII II, III

7 II, III, V, VI, VII, VIII I, IV

8 I, II, III, IV, VI, VIII V, VII

9 I, II, III, V, VI, VII IV, VIII

10 I, II, III, IV, V, VII VI, VIII

speech segmentation files with the reference speech segmen-

tation files as follows:

• Miss rate (MR) - How often a real speech frame is

missed,

MR =
Tm

Tref

∗ 100%, (1)

• False alarm rate (FAR) - How often a non-speech frame

is detected as a speech frame,

FAR =
Tfa

Tsys

∗ 100%, (2)

• Half total error rate (HTER),

HTER =
MR+ FAR

2
∗ 100%, (3)

where, Tfa represents the duration of speech in false-alarm

and Tsys represents the duration of speech in the system,

Tm is defined as the duration of speech misses, and Tref

represents the reference event transcriptions.
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Fig. 6. Examples of the ground-truth values. The top rows illustrate the audio signals and the bottom rows illustrate how we derive the ground-truth values.
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(a) From frontal view.
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(b) From profile view.

Fig. 7. The variation of HTER performance with the threshold for the frontal and profile-view systems in a selected fold. The thick blue and red lines show
the HTER for the frontal and profile views with the minimum HTER also indicated on the curves using a point. HTER define as the mean of the MR and
FAR values. The solid thin lines are for the FAR and the dashed lines indicate the MR.

V. EXPERIMENTAL RESULTS

In this section, we report a number of experimental results

on the performance of the developed VVAD system using

the frontal, left and right views. The experiments were con-

ducted using the CUAVE database which was described in

the previous section. We report the experimental results using

FAR, MR and HTER at segmentation thresholds based on the

minimising the HTER over all speakers in the training fold.

The choice of the segmentation threshold value is important in

this framework as it separates the speech and the non-speech

events. An example of threshold sensitivity for frontal and

profile views systems is shown in Figure 7, which illustrates

the variation of the HTER based on the threshold choice. The

chosen operating point, based on minimising the HTER, on

the curve is also indicated for the selected fold. Eight mixture

GMMs were used and trained to minimise the HTER for all

the experiments.

The performance of the frontal and the profile system are

compared in Table III. As one would expect intuitively from

the lesser amount of visual speech information that is present

in the profile (side) views, the performance of the profile view

based VVAD is less than that of the frontal view with HTER

of 35.95% for the left profile and 33.95% for the right profile

view compared of 25.9% for the frontal view. However, this

results show that profile views are still capable of providing

much of the visual modality to benefit VVAD. We view this

result to be important in the development of efficient human

computer interaction systems in many ’real-world’ applications

such voice based control in vehicular environment where

frontal view of the speaker’s (driver’s) face may not always

be available.

A typical example of the speech segmentation output ob-

tained from the VVAD system using the frontal and the profile

views is shown in Figure 8. In Figure 8 the third row presents

the smoothed values from the framework with the threshold

which is indicated as a dashed line. The smoothed value below

the dashed line indicates the non-speech events and above

indicates the speech events.

VI. CONCLUSION

In this paper, we have presented a voice activity detection

framework using visual articulators. Specifically the paper

addressed the effectiveness of the variabilities in the visual do-
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(a) From frontal view.
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Fig. 8. Examples of VVAD on a sample of testing speakers which illustrates the score values in the second row according to the ground-truth in the first
row, the smoothed values in the third row (dashed lines indicate the threshold value) and the output of the speech and non-speech events in the last row.

TABLE III
COMPARISON OF FRONTAL AND PROFILE VIEWS RESULTS

Performance metrics Frontal results Left results Right results
(%) (%) (%)

FAR 24.20 42.50 48.80

MR 27.60 29.40 19.10

HTER 25.90 35.95 33.95

main from the speaker’s frontal and profile views for the task

of VVAD. To our best knowledge this work represents the first

attempt for VVAD using profile views. By our experiments,

we demonstrated that profile views do contain important visual

speech information, but as would be intuitively obvious, less

compared with the frontal data due to the poor capturing of

visual information from profile views. Having a VVAD system

which can recognize the speech activity from both frontal and

profile views will be a major benefit in the development of an

efficient human computer interaction system based on audio-

visual information.
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