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Visual Word Ambiguity
J.C. van Gemert, C.J. Veenman, A.W.M. Smeulders, J.M. Geusebroek

Abstract— This paper studies automatic image classification
by modeling soft-assignment in the popular codebook model.
The codebook model describes an image as a bag of discrete
visual words selected from a vocabulary, where the frequency
distributions of visual words in an image allow classification.
One inherent component of the codebook model is the assign-
ment of discrete visual words to continuous image features.
Despite the clear mismatch of this hard assignment with the
nature of continuous features, the approach has been applied
successfully for some years. In this paper we investigate four
types of soft-assignment of visual words to image features. We
demonstrate that explicitly modeling visual word assignment
ambiguity improves classification performance compared to the
hard-assignment of the traditional codebook model. The tradi-
tional codebook model is compared against our method for five
well-known datasets: 15 natural scenes, Caltech-101, Caltech-
256, and Pascal VOC 2007/2008. We demonstrate that large
codebook vocabulary sizes completely deteriorate the perfor-
mance of the traditional model, whereas the proposed model
performs consistently. Moreover, we show that our method profits
in high-dimensional feature spaces and reaps higher benefits
when increasing the number of image categories.

Index Terms— Computer vision, Object recognition, Im-
age/video retrieval.

I. INTRODUCTION

VERBAL descriptions of visual characteristics like a color

or a texture are often ambiguous. For example, quantifying

a texture with “A predominantly smooth yellowish-red surface

with a few cracks” leaves considerable room for interpretation.

One of the interpretations of the popular codebook model for

automatic image classification [1]–[31] is that it expresses images

in terms of visual words. The model represents high-dimensional

image features by discrete and disjunct visual prototypes that

are predefined in a vocabulary. The visual word analogy of the

codebook model includes semantic modeling at the word level [6],

[10], [18], [29] or at the topic level [1], [4], [6], [8], [13],

[23], [26], [30]. Spatial image layout [1], [5], [6], [14], [19],

[26] can be seen as modeling phrases, whereas visual vocabulary

tuning [12], [13], [15], [21], [28], [30], [31] resembles modeling

domain-specific terminology. These models incorporate image-

specific properties within the conceptual visual word analogy.

In this paper we introduce another aspect of the visual word

analogy, namely the use of ambiguous linguistic quantifiers as

“some”, “a few”, “-ish”, “predominantly”, “much”. Without

such quantifiers to express ambiguity, the description of the

aforementioned texture is reduced to “A smooth red surface”.

We incorporate ambiguity in the codebook model by smoothly

assigning continuous image features to discrete visual words. We

show that ambiguity modeling leads to more expressive models

that improve classification performance.

One inherent component of the codebook model is the assign-

ment of image feature vectors to visual words in the vocabulary.

Manuscript received June 26 2008.
The authors are with with the University of Amsterdam.
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Fig. 1. An example illustrating visual word ambiguity in the codebook model.
The small dots represent image feature vectors. The labeled red circles are
visual words found by unsupervised clustering. The triangle represents a data
sample that is well suited to the codebook model. Visual word uncertainty is
exemplified by the square, whereas visual word plausibility is illustrated by
the diamond.

Here, an important assumption is that a discrete visual word is a

characteristic representative of an image feature. The continuous

nature of visual appearance complicates selecting a representative

visual word for an image feature. An image feature may have

zero, one, or multiple candidates in the visual word vocabulary.

With one candidate there is no ambiguity. Selecting a codeword

from multiple realistic candidates gives rise to visual word un-

certainty, whereas visual word plausibility refers to selecting a

codeword without a suitable candidate in the vocabulary. Figure 1

illustrates these cases. Current methods assume that an image

feature is well represented by its single, best representing visual

word.

The contribution of this paper is an investigation of visual

word ambiguity leading to explicit ambiguity modeling in the

codebook model. We investigate the effect of ambiguity modeling

on four aspects of the codebook model. First, we investigate the

classification performance of various types of ambiguity model-

ing. Second, we look at vocabulary expressiveness by relating

ambiguity modeling and the vocabulary size. Third, we consider

the effect of ambiguity on the image feature dimensionality. Our

fourth contribution investigates the connection between ambiguity

modeling and the number of image categories. All contribution

are thoroughly experimentally verified on five well-known image

categorization datasets: 15 natural scenes, Caltech-101, Caltech-

256, and Pascal VOC 2007/2008. Given the current drive of the

state of the art to increase feature dimensionality, vocabulary size,

and the number of image categories, we argue that our contribu-

tions play an important role in practical image classification.

This paper is organized as follows. The next section discusses

the related literature on codebook-based scene classification.

Section III introduces ambiguity in the codebook model. We show

the performance and consequences of our method on five datasets
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in section IV, whereas section V concludes the paper. In this paper

we use the terms codeword and visual word interchangeably.

II. RELATED WORK

The visual word vocabulary in the codebook model may be

constructed in various ways. Typically, a vocabulary is constructed

by applying k-means clustering on image features [4], [14]–

[16], [20], [23]–[26], [30], [31]. K-means minimizes the variance

between the clusters and the data, placing clusters near the most

frequently occurring features. The most frequent features, as

noted by Jurie and Triggs [12] and others [3], [23], are not

necessarily the most discriminative. The discriminative power

of the vocabulary may be improved by alternative clustering

algorithms [12], [15], incorporating image class labels [19], [30],

[31], or creating specifically tuned vocabularies for each image

category as suggested by Perronnin et al. [21] and others [13],

[28]. In contrast to clustering, a vocabulary may be obtained

by manually labeling image patches with a semantic label [6],

[10], [18], [29]. For example, Vogel et al. [29] construct a

vocabulary by labeling image patches of sky, water or grass.

The idea behind a semantic vocabulary is that the meaning of

an image may be expressed in the meaning of its constituent

visual words. Both the semantic and the clustered vocabulary

creation methods may reduce visual word ambiguity by carefully

selection the vocabulary. For example, when distinguishing a

sunset from a forest, the ambiguity between the colors pink and

orange is irrelevant, since both colors will be absent in a forest.

Careful vocabulary selection, however, does not address visual

word ambiguity itself.

In literature, visual word ambiguity modeling is used occa-

sionally, often ad-hoc motivated, and rarely evaluated. Tuytelaars

and Schmid [28] and Jiang et al. [11] assign an image feature to

visual words that are neighbors in feature space. Alternatively,

a probabilistic visual word voting scheme may be used [1],

[2], [7], [17], [21], [22]. Here, each image feature contributes

to multiple visual words relative to the posterior probability of

the image feature given the visual word. Since multiple visual

words are being considered, these methods cope with visual

word uncertainty. These works recognize the importance of visual

word uncertainty and show that it leads to increased classification

performance. These works, however, lack a clear motivation

for their type of ambiguity modeling, and ignore visual word

plausibility. The plausibility of a visual word is employed by

Boiman et al. [3] who use the distance to the single best neighbor

in feature space. Their method cannot select multiple relevant

visual words and therefore does not take visual word uncertainty

into account. The uncertainty of a visual word as well as its

plausibility are used by Jégou et al. [32]. The authors weight

closer neighbors heavier than farther ones, without normalizing

the scores to a posterior probability. Hence, multiple candidates

can be selected, and implausible ones are given a low weight.

None of these methods provide much motivation or evaluation

for their choice of dealing with visual word ambiguity. In this

paper, however, we motivate and evaluate several types of visual

word ambiguity, extending our preliminary work [9] with state-of-

the-art results on two additional datasets, an extensive evaluation

of the vocabulary size, and ample extra analysis for all evaluated

datasets.

Besides direct ambiguity modeling, ambiguity might be ad-

dressed by modeling visual word co-occurrences. Co-occurrence

modeling may address ambiguity because it is likely that similar

visual words with high ambiguity co-occur frequently. When

these ambiguous visual words are grouped together their intra-

ambiguity is resolved. Co-occurring visual word modeling is

performed after assigning visual words to image features. Typ-

ically, co-occurrence is captured with a generative probabilistic

model [33]–[35]. A generative codebook model [1], [4], [6],

[8], [13], [17], [23], [26], [30] assumes that the visual words

in an image are generated by underlying, latent, topics. These

topics, in turn, characterize a distribution over the visual word

vocabulary. With the assumption that similar visual words of-

ten co-occur, a generative model may deal with visual word

uncertainty since similar visual words will be modeled by the

same topic. Moreover, a generative model may take visual word

plausibility into account because non-representative visual words

will attain low probabilities. A generative probabilistic model,

however, is dependent on large amount of visual word co-

occurrence counts, or co-occurrence with the same other words,

to properly model ambiguity. In contrast, directly modeling visual

word ambiguity does not rely on such constraints. What is more,

since a generative visual word model builds on top of visual

word assignments, direct ambiguity modeling can be used as input

for a generative model. In this paper, we do not take generative

models into account. A generative model on top of our ambiguity

modeling would add another layer of complexity. This additional

complexity complicates measuring the effect of direct ambiguity

modeling. Since we are interested in measuring ambiguity, we

concentrate on direct ambiguity modeling.

III. VISUAL WORD AMBIGUITY BY KERNEL CODEBOOKS

Given a vocabulary of codewords, the traditional codebook

approach describes an image by a distribution over codewords.

For each word w in the vocabulary V the traditional codebook

model estimates the distribution of codewords in an image by

CB(w) =
1

n

n
∑

i=1

{

1 if w = arg min
v∈V

(D(v, ri));

0 otherwise,
(1)

where n is the number of regions in an image, ri is image region i,

and D(w, ri) is the distance between a codeword w and region ri.

Typically, the regions ri are detected interest regions, or densely

sampled image patches. The codebook model represents an image

by a histogram of word frequencies that describes the probability

density over codewords.

A robust alternative to histograms for estimating a probability

density function is kernel density estimation [3], [36]. Kernel

density estimation uses a kernel function to smooth the local

neighborhood of data samples. A one-dimensional estimator with

kernel K and smoothing parameter σ is given by f̂(x) =
1

n

∑n
i=1

Kσ (x − Xi), where n is the total number of samples

and Xi is the value of sample i.

Kernel density estimation makes use of a kernel with a given

shape and size. The kernel size determines the amount of smooth-

ing between data samples whereas the shape of the kernel is

related to the distance function between data samples [33], [37]. In

this paper we use the SIFT descriptor that draws on the Euclidian

distance as its distance function [38]. The Euclidean distance

assumes a Gaussian distribution of the SIFT features, with identity

as the covariance. Hence, the Euclidian distance is paired with

a Gaussian-shaped kernel Kσ(x) = 1√
2πσ

exp(− 1

2

x2

σ2 ). The
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Best Candidate Multiple Candidates

Constant Weight Traditional Codebook Codeword Uncertainty
Kernel Weighted Codeword Plausibility Kernel Codebook

TABLE I

THE RELATIONSHIP BETWEEN VARIOUS FORMS OF CODEWORD

AMBIGUITY AND THEIR PROPERTIES.

Gaussian kernel assumes that the variation between an image

feature and a codeword is described by a normal distribution. This

normal distribution has a smoothing parameter σ which represents

the size of the kernel. This smoothing parameter determines the

degree of similarity between data samples, and is dependent

on the dataset, the feature dimensionality, and the range of the

feature values. Note that we do not try to obtain the best fit

of the data. In contrast, we aim to find the kernel size that

discriminates best between classes. Therefore, we tune the kernel

size discriminatively by cross-validation. Hence, the size of the

kernel is dependent on the dataset and the image descriptor,

whereas the shape of the kernel follows directly from the distance

function.

In the codebook model, the histogram estimator of the code-

words may be replaced by a kernel density estimator. Moreover,

a suitable kernel (such as the Gaussian kernel) allows kernel

density estimation to become part of the codewords, rather than

the data samples. Specifically, when the kernel is symmetric,

Kσ(x − Xi) = Kσ(Xi − x), it trivially follows that there is

no distinction between placing the kernel on the data sample or

placing the kernel on a codeword. That is, if the centre of the

kernel coincides with the codeword position, the kernel value at

the data sample represents the same probability as if the centre

of the kernel coincides with the data sample. Hence, a symmetric

kernel allows for transferring the kernel from the data samples to

the codewords, yielding a kernel codebook,

KCB(w) =
1

n

n
∑

i=1

Kσ (D(w, ri)) , (2)

where n is the number of regions in an image, ri is image region

i, D(w, ri) is the distance between a codeword w and region ri,

and σ is the smoothing parameter of kernel K. The outcome now

is represented by a continuous variable rather than a discrete one.

In essence, a kernel codebook alleviates the hard mapping of

features in an image region to the codeword vocabulary. This soft-

assignment models two types of ambiguity between codewords:

codeword uncertainty and codeword plausibility. Codeword un-

certainty indicates that one image region may distribute proba-

bility mass to more than one codeword. Conversely, codeword

plausibility signifies that an image feature may not be close

enough to warrant representation by any relevant codeword in

the vocabulary. Each of these two types of codeword ambiguity

may be modeled individually. Codeword uncertainty,

UNC(w) =
1

n

n
∑

i=1

Kσ (D (w, ri))
∑|V |

j=1
Kσ

(

D(vj , ri)
)

, (3)

normalizes the amount of probability mass to a total constant

weight of 1 and is distributed over all relevant codewords.

Relevancy is determined by the ratio of the kernel values for all

codewords v in the vocabulary V . Thus, codeword uncertainty

retains the ability to select multiple candidates, however does
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Fig. 2. An example of the weight distribution of a kernel codebook with a
Gaussian kernel, where the square, diamond and triangle represent the image
features taken from figure 1.
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Fig. 3. Summary of different types of codeword ambiguity, according to
table I. These distributions are based on the kernels shown in figure 2.

not take the plausibility of a codeword into account. In contrast,

codeword plausibility,

PLA(w) =
1

n

n
∑

i=1

{

Kσ (D(w, ri)) if w = arg min
v∈V

(D(v, ri));

0 otherwise,
(4)

selects for an image region ri the best fitting codeword w and

assigns it probability mass proportional to the kernel value of that

codeword. Hence, codeword plausibility will give a higher weight

to more relevant data samples. However, it cannot select multiple

codeword candidates. Note that the selection of a single codeword

retains sparsity, which is advantageous for large datasets. The

relation between codeword plausibility, codeword uncertainty, the

kernel codebook model, and the traditional codebook model is

summarized in table I.

An example of the weight distributions of the various types

of codeword ambiguity with a Gaussian kernel is shown in

figure 2. Furthermore, in figure 3 we show an example of

various codeword distributions corresponding to different types

of codeword ambiguity. Note the weight difference in codewords

for the data samples represented by the diamond and the square.

Where the diamond contributes full weight in the traditional

codebook, it barely adds any weight in the kernel codebook

and codeword plausibility model. This may be advantageous,

since it incorporates the implausibility of outliers. Furthermore,

in the traditional codebook, the square adds weight to one single

codeword, whereas the kernel codebook and codeword uncertainty

adds weight to the two relevant codewords. In the latter two

methods, the uncertainty between the two codewords is not

assigned solely to the best fitting word, but divided over both
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Fig. 4. Histograms of Euclidean distances over 200 clusters, where each
column represents a different cluster. The top row displays the distances from
this cluster to all other points in the train set. The data samples that are closest
to this cluster are indicated as in whereas the points that are assigned to other
clusters are denoted out. The bottom row shows the distances from this cluster
center to all other cluster centers.

codewords. Hence, the kernel codebook approach can be used to

introduce various forms of ambiguity in the tradition codebook

model. We will experimentally investigate the effects of all forms

of codeword ambiguity in section IV.

In this paper we consider the kernel size fixed for all code-

words. We have considered a variable kernel density estima-

tor [36], where the smoothing factor σ varies per codeword. This

variable smoothing factor could be determined by the variance

of the image features that are assigned to each codeword by the

clustering algorithm. However, varying the kernel size for each

codeword yields an inhomogeneous feature space where distances

are measured differently depending on their location in feature

space. Essentially, a varying kernel size makes certain codewords

more important than others. This difference in codeword im-

portance may be justified, however, should be tied to the final

classification performance. Since the classification performance is

not taken into account by an unsupervised clustering algorithm,

we adhere to a homogenous feature space by keeping the kernel

size fixed for all codewords.

The ambiguity between codewords will be influenced by the

number of words in the vocabulary. A large vocabulary allows

a rich selection of visual words, increasing the likelihood that

an image feature is well-represented. Moreover, in the case of a

large vocabulary, the probability of multiple relevant visual words

increases, suggesting the use of visual word uncertainty. On the

other hand, when the vocabulary is small, essentially different

image parts will be represented by the same vocabulary element.

This misrepresentation may be alleviated by considering visual

word plausibility. Hence, visual word ambiguity influences both

small and large vocabularies. We extensively investigate the effect

of the vocabulary size in section IV.

Since codewords are image descriptors in a high-dimensional

feature space, we expect a relationship between codeword ambi-

guity and feature dimensionality. With a high-dimensional image

descriptor, codeword ambiguity will become more significant. If

we consider a codeword as a high-dimensional sphere in feature

space, then most feature points in this sphere will lay on a thin

shell near the surface. Hence, in a high-dimensional space, more

feature points will be close to the boundary between codewords

than in a lower-dimensional feature space. Thus, they introduce

ambiguity between codewords. See Bishop’s textbook on pattern

recognition and machine learning [33, Chapter 1, pages 33–

38] for a thorough explanation and illustration of the curse of

dimensionality. Consequently, increasing the dimensionality of

the image descriptor will in general increase the level of codeword

ambiguity. In the next section we will experimentally investigate

the effects of the dimensionality of the image descriptor.

IV. EXPERIMENTS

We experimentally compare codeword ambiguity modeling

against the traditional codebook approach for five large and varied

datasets: fifteen natural scene categories from Lazebnik et al. [14],

Caltech-101 by Fei-Fei and Perona [39], Caltech-256 by Griffin et

al. [40] and the Pascal VOC sets of 2007 [41] and 2008 [42]. We

start our experiments with an in-depth analysis of our methods

on the set of fifteen natural scene categories, after which we

transpose these findings to the experiments on the two Caltech

sets and the two issues of Pascal VOC. For our experimental

setup we closely follow Lazebnik et al. [14] as this setup has

shown excellent performance on these datasets.

A. Experimental Setup

To obtain reliable results, we repeat the experimental process

10 times. We select 10 random subsets from the data to create 10

pairs of train and test data. For each of these pairs we create a

codeword vocabulary on the train set. The exact same codeword

vocabulary is used by both the codebook and the codeword

ambiguity approaches to describe the train and the test set. For

classification, we use an SVM with a histogram intersection

kernel. Specifically, we use libSVM, and use the built in one-

versus-one approach for multi-class classification. We use 10-fold

cross-validation on the train set to tune parameters of the SVM

and the size Kσ of the codebook kernel. The classification rate we

report is the average of the per-category recognition rates which

in turn are averaged over the 10 random test sets.

For image features we follow Lazebnik et al. [14], and use a

SIFT descriptor sampled on a regular grid. A grid has been shown

to outperform interest point detectors in image classification [8],

[12], [20]. We compute all SIFT descriptors on overlapping 16x16

pixel patches, computed over a dense grid sampled every 8 pixels.

Due to small implementation differences, our re-implementation

of [14] performs slightly under their reported results. However,

we use the same re-implementation for all methods of codeword

ambiguity. Thus we do not bias any method by a slightly different

implementation.

We create a codeword vocabulary by radius-based clustering.

Radius-based clustering ensures an even distribution of codewords

over the feature space and has been shown to outperform the

popular k-means algorithm [12]. Whereas Jurie and Triggs [12]

use mean-shift with a Gaussian kernel to find the densest-point,

we maximize the number of data samples within its radius r for

efficiency reasons.

In figure 4 we illustrate for 200 clusters the effect of clustering.

We show the similarity distribution from cluster centers to other

SIFT descriptors. The similarity distribution adheres to a Weibull

shape, as expected [44]. For the Scene-15 dataset, the radius-

based clustering algorithm used a radius of r = 240 to arrive

at 200 clusters. Note, that this radius guarantees that the next

cluster is at least a distance of 2r away, as can be seen in the

bottom row of figure 4. Furthermore, note that for each cluster,

the distance distribution from the cluster to all points (top row)
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bedroom (FP) coast (OT) forest (OT)
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kitchen (FP) living room (FP) mountain (OT)

office (FP) open country (OT) store (L)
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Fig. 5. Example images from the Scene-15 dataset. Each category is labeled with the annotator, where (OT) denotes Oliva and Torralba [43], (FP) is Fei-Fei
and Perona [8], and (L) refers to Lazebnik et al. [14].
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Fig. 6. Classification performance results of various types of codeword ambiguity for the Scene-15 dataset over various vocabulary sizes and feature
dimensions.

is fairly similar to the distance distribution from this cluster to

the other clusters (bottom row). This similarity suggests that the

clusters give a good representation of the complete data.

B. Experiment 1: In-depth Analysis on the Scene-15 Dataset

The first dataset we consider is the Scene-15 dataset, which

is compiled by several researchers [8], [14], [43]. The Scene-

15 dataset consists of 4,485 images spread over 15 categories.

The fifteen scene categories contain 200 to 400 images each and

range from natural scenes like mountains and forests to man-

made environments like kitchens and offices. In figure 5 we show

examples of the scene dataset. We use an identical experimental

setup as Lazebnik et al. [14], and select 100 random images per

category as a train set and the remaining images as the test set.

For the Scene-15 dataset, we analyze the types of codeword

ambiguity, vocabulary size and feature dimensionality. To evaluate

the effect of feature dimensionality on visual word ambiguity we

project the 128 length SIFT descriptor to a lower dimensionality.

This dimension reduction is achieved with principal component

analysis, which reduces dimensionality by projecting the data on a

reduced-dimensional basis while retaining the highest variance in

the data. We compute a reduced basis on each complete training

set, after which we project the train set and corresponding test set

on this basis. We reduce the feature length from 128 dimensions

to 12 dimensions. A projection to 60 dimensions shows very

similar results (data not shown). In evaluating vocabulary size,

we tune the radius in the radius-based clustering algorithm to

construct eight differently sized vocabularies. The vocabulary

sizes we consider are {25, 50, 100, 200, 400, 800, 1600, 3200}. The

results for all types of codeword ambiguity evaluated for various

vocabulary sizes and the two feature dimensionalities (12 and

128) are given in figure 6.

We start the analysis of the results in figure 6 with the various

types of codeword ambiguity. The results show that codeword

uncertainty consistently outperforms other types of ambiguity for

all dimensions and all vocabulary sizes. This performance gain is

not always significant, however. Nevertheless, for 128 dimensions

and a vocabulary size of 200, codeword uncertainty (UNC) out-

performs hard assignment with a vocabulary size of 400 and this

trend holds for larger vocabulary size pairs: (200-UNC > 400-

HARD), (400-UNC > 800-HARD), (800-UNC ≥ 1600-UNC) and

(1600-UNC > 3200-HARD). On the other end of the performance

scale there is codeword plausibility, which always yields the worst

results. The third option, a kernel codebook, outperforms hard
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Fig. 7. Analysis of the class label overlap as predicted by various types of codeword ambiguity for the Scene-15 dataset.
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Fig. 8. Analysis of the best kernel size, found with 10-fold cross-validation, used by various types of codeword ambiguity for the Scene-15 dataset.

assignment for smaller vocabulary sizes. For smaller vocabulary

sizes the differences between codeword ambiguity types become

more pronounced, whereas using a larger vocabulary dampens

the differences between ambiguity types. And, as expected, the

highest performance gain for codeword ambiguity is in a higher-

dimensional feature space. When taking overall performance into

account, the results indicate that a higher-dimensional descriptor

yields the best results. Moreover, increasing the vocabulary size

seems to asymptotically improve performance for all methods.

We will investigate larger vocabularies in more detail, later.

To gain insight in the performance variation between the vari-

ous types of codeword ambiguity we show the overlap percentage

between the predicted category labels for all paired method in

figures 7. The first thing that is striking in figure 7, is the high

category label overlap between hard assignment and codeword

plausibility. This high overlap may be explained by noting that

codeword plausibility resembles hard assignment when the kernel

size is sufficiently large. Inspecting the kernel sizes as found

with cross-validation reveals that the kernel size for codeword

plausibility is indeed large. The kernel size for codeword plau-

sibility is typically 200 or larger, whereas the other types of

codeword ambiguity range around 100. Furthermore, this label

overlap between hard assignment and codeword plausibility is

highest with a small number of dimensions. This may be due to

the fact that a higher-dimensional space leaves more room for

implausible features than a lower dimensional space. The kernel

codebook and hard assignment pair have the least number of

labels in common. This low label overlap may be expected, since

these two types represent the extremes of the types of codeword

ambiguity as shown in table I. Further differences of label overlap

can be seen between the low- and the high-dimensional feature

space. In a high-dimensional feature space there tends to be

less correlation between category labels. In a high-dimensional

space, the differences between the types of ambiguity become

more pronounced, reducing the label overlap. A further trend

may be observed in the increased overlap for an increasing

vocabulary size. Increasing the vocabulary size yields an increased

performance, which requires more labels to be predicted correctly.

We attribute the increase in label overlap to those images that

are predicted correctly by a larger vocabulary. This link between

increased performance and increased category label overlap also

explains that the category label overlap is generally high between

all types of codeword ambiguity.

To evaluate the influence of the kernel size, we show the kernel

size found with 10-fold cross-validation in figure 8. The figure

shows the optimal kernel size for the various ambiguity types

for the two feature dimensions and for an increasing vocabulary

size. The kernel size for codeword uncertainty and the kernel

codebook show a low variance over the 10 random repetitions.

This indicates that these two types of codeword ambiguity have
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Fig. 9. Classification performance results of various types of codeword ambiguity for the Scene-15 dataset, trained on 5 images per class. This figures
illustrates the effect of relatively large vocabulary sizes compared to the total number of image features.

a stable, optimal kernel size. In contrast, the best kernel sizes for

codeword plausibility fluctuate heavily over the 10 repetitions.

Analyzing the scores, we found that increasing the kernel size of

codeword plausibility beyond a sufficiently large value does not

change the classification scores much. I.e., for large kernel sizes

there are no implausible features left in the finite feature space.

Therefore, sufficiently large kernels lead to similar classification

performance without a clear optimum, resulting in high kernel

size variance for codeword plausibility. In analyzing the kernel

size over the number of vocabulary elements shows that a

larger vocabulary leads to slightly smaller kernels. This may be

expected, since a larger vocabulary is formed by a smaller radius

between codewords. When considering the dimensionality of the

descriptor, it shows that lower dimensional features use a smaller

kernel. This is the case because low-dimensional features typically

have a smaller Euclidean distance than high-dimensional features.

In summary, the kernel size depends on the type of ambiguity,

feature dimensionality and the number of codewords. Therefore,

the optimal kernel size cannot be easily inferred from the data and

should be found in a discriminative manner, linking it directly to

classification performance as achieved with cross-validation.

As illustrated in figure 6, increasing the vocabulary size in-

creases the classification performance and the performance of the

four ambiguity types seems to converge. In figure 6, however,

the vocabulary sizes are relatively small. The largest vocabulary

in figure 6 has 3200 elements and comprises only 0.23% of all

features. The behavior of relatively small vocabularies may not

be identical to relatively large vocabularies. With vocabulary sizes

that are relatively large compared to the total number of training

image features, ambiguity type performance may diverge again.

To evaluate this, we compared ambiguity type performance on

the Scene-15 dataset over relatively large vocabularies.

To make the computation of relatively large vocabularies

practically feasible, we reduced the total number of features in

the training set. The number of features may be reduced by

only extracting features on detected interest points in an image.

However, interest point detection would deviate too much from

our uniform experimental setup for the Scene-15 dataset. Hence,

we keep extracting image features on a regular grid yet constrain

the total number of image features by reducing the number of

images per class as is also done by [4], [8], [40]. For this

experiment, we randomly select 5 images for each of the 15

classes, using the remaining images for the test set. The average

number of training feature over the 10 random repetitions amounts

to a total of 67, 408±348 unique SIFT descriptors. Our experiment

is not as much concerned with the total number of features per

se, but with the ratio between the number of features and the size

of the vocabulary. We want to measure the effect of relatively

large vocabularies. We evaluated vocabulary sizes ranging from

12 (0.02%) to 25,600 (38%) unique visual words. The underlying

assumption is that the results in this experiment trend will hold

for various feature and vocabulary sizes, however with similar

ratios.

The results for relatively large vocabularies are given in fig-

ure 9. Note that the performance for relatively small vocabularies

show a similar trend as in figure 6. Hence, the results in figure 6

and figure 9 are in agreement. The main difference is the lower

performance in figure 9 because only 5 images per class are

used for training. In figure 9 it can be seen that for vocabulary

sizes larger than 800 visual words (1.2%), the performance of

all methods decreases. We attribute this performance decrease to

the curse of dimensionality, albeit that we use a discriminative

SVM classifier. In analyzing ambiguity types, it can be seen that

for vocabulary sizes of 6,400 and higher, the performance of hard

assignment and visual word plausibility severely deteriorates. This

may be expected, since both of these ambiguity types can not

select multiple suitable visual words. For example, in the extreme

case of a vocabulary size equal to the number of image features,

codeword plausibility and hard assignment map each training

image feature to it’s own unique visual word, reverting to exact

feature matching. In contrast, the kernel codebook and codeword

uncertainty methods both allow selecting multiple relevant visual

words. When increasing the vocabulary size, the performance

of these two types remains relatively stable, where codeword

uncertainty is the better performer. As shown by this experiment,

a larger vocabulary does not necessarily yield better results. Actu-

ally, a too large vocabulary severely deteriorates performance for

codeword plausibility and hard-assignment. A kernel codebook

and codeword uncertainty, however, only decrease slightly. Hence,

for relatively large vocabularies visual word ambiguity modeling

makes a significant difference.

To show the modularity of our approach and improve results
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Fig. 10. Classification performance on the Scene-15 dataset of various types
of codeword ambiguity using the spatial pyramid.
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Fig. 11. Relative confusion matrix of the Scene-15 dataset, for 200 codewords
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codeword uncertainty compared to hard assignment matrix. We show the
average classification percentage per category. The value at column x and row
y represents the difference between codeword uncertainty and hard assignment
in classifying images of category y as category x.

we incorporate the spatial pyramid by Lazebnik et al. [14]. The

spatial pyramid divides an image into a multi-level pyramid of

increasingly fine subregions and computes a codebook descriptor

for each subregion. The spatial pyramid has been shown to yield

excellent performance [5], [14], [15]. We use the 128 dimensional

features and a vocabulary of 200 codewords in accordance with

Lazebnik et al. [14]. The results for the various forms of codeword

ambiguity for the first two levels of the spatial pyramid are

shown in figure 10. Our best result with codeword uncertainty is

76.7 ± 0.4%, whereas hard assignment scores 75.8± 0.6%, both

on level 2 of the pyramid. Codeword uncertainty at pyramid level

1 outperforms the traditional codebook at pyramid level 2, effec-

tively saving a complete pyramid level. For the Scene-15 dataset,

codeword uncertainty gives the highest improvement at level 0

of the spatial pyramid, which is identical to a codebook model

without any spatial structure. Nevertheless, codeword uncertainty

outperforms the hard assignment of the traditional codebook for

all levels in the pyramid.

The relative confusion matrix of the Scene-15 dataset for 200
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Fig. 12. Classification performance on the Caltech-101 dataset of various
types of codeword ambiguity using the spatial pyramid.

0 1 2
Spatial Pyramid Level

18

20

22

24

26

28

C
la

ss
if
ic

a
ti

o
n
 R

a
te

 (
%

)

Caltech-256

Hard Assignment
Codeword  Uncertainty
Codeword  Plausibility
Kernel Codebook

Fig. 13. Classification performance on the Caltech-256 dataset of various
types of codeword ambiguity using the spatial pyramid.

codewords at level 0 of the pyramid is shown in figure 11.

The relative confusion denotes the absolute difference between

entries in the confusion matrix of codeword uncertainty relative

to the matrix of hard assignment. We focus on hard assignment

versus codeword uncertainty, since uncertainty gives the highest

improvement of the three types of visual word ambiguity. The

non-diagonal entries that represent misclassification rates mostly

decrease, or do not change much. The only pair with a higher

confusion rate is the confusion between livingroom as bedroom.

Nevertheless, this confusion is compensated by increased discrim-

inative ability between livingroom and the categories kitchen and

office. Further considerable confusion reduction is between open

country as coast and highway as coast. Note that codeword uncer-

tainty improves or matches the correct classification performance

for all categories, given by the diagonal.

C. Experiment 2 and 3: Caltech-101 and Caltech-256

We conduct our second set of experiments on the Caltech-

101 [39] and Caltech-256 [40] datasets. The Caltech-101 dataset

contains 8,677 images, divided into 101 object categories, where

the number of images in each category varies from 31 to 800

images. The Caltech-101 is a diverse dataset, however the obects

are all centered, and artificially rotated to a common position. In

figure 14 we show some example images of the Caltech-101 set.

Some of the problems of Caltech-101 are solved by the Caltech-

256 dataset. The Caltech-256 dataset holds 29,780 images in 256

categories where each category contains at least 80 images. The

Caltech-256 dataset is still focused on single objects. However, in

contrast to the Caltech-101 set, each image is not manually rotated
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Fig. 14. Examples of the Caltech-101 set. Top: the top 4 categories where our method improves most, Bottom: the 4 categories where our method decreases
performance. The numbers in brackets indicate the classification rate (hard / uncertainty).
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Fig. 15. Examples of the Caltech-256 set. Top: the top 4 categories where our method improves most, Bottom: the 4 categories where our method decreases
performance most. The numbers in brackets indicate the classification rate (hard / uncertainty).
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Fig. 16. The classification performance difference per category between hard
assignment and codeword uncertainty for Caltech-101.

to face one direction. In figure 15 we show some example images

of the Caltech-256 set. We report classification performance on

both Caltech sets.

Our experimental results for both the Caltech-101 as Caltech-

256 are generated by 30 images per category for training. For

testing, we employed 50 images per category for the Caltech

101, and 25 images per category for the Caltech-256. These

number of train and test images are typically used for these

sets [14], [40]. We use 128 dimensions, and compare the four

types of visual word ambiguity. The average classification results

per spatial pyramid level for Caltech-101 and Caltech-256 are

shown in figure 12 and figure 13. These results on Caltech

are similar to the results on the Scene-15 dataset. For both

sets, the codeword uncertainty method outperforms the traditional

codebook considerably in the light of the difficulty of the problem

and the simplicity of the improvement. Our best result for Caltech-

101 with codeword uncertainty is 64.1 ± 1.5%, whereas hard

assignment scores 62.2± 1.2%, both on level 2 of the pyramid.

For Caltech-256 our best result is 27.2± 0.4%, whereas hard

assignment scores 25.63± 0.5%. The classification performance

difference per category between hard assignment and codeword

uncertainty are given in figure 16 and figure 17. For the Caltech-

101 set, there are 86 categories that perform better, or equal with

codeword uncertainty. In the case of the Caltech-256 set, there

are 199 categories with better or equal performance.

The relative confusion matrices of each Caltech dataset for
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Fig. 17. The classification performance difference per category between hard
assignment and codeword uncertainty for Caltech-256.
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Fig. 18. Relative confusion matrix for the Caltech-101 dataset, best viewed
in color. We show the 4 categories that increase most, and the 4 categories that
decrease performance most. Each of these 8 categories is paired with its most
confusing and least confusing category. The value at column x and row y

represents the difference between codeword uncertainty and hard assignment
in classifying images of category y as category x.

200 codewords at level 0 of the pyramid are given in figure 18

and figure 19. The relative confusion denotes the difference

between entries in the confusion matrix of codeword uncertainty

compared to the matrix of hard assignment. Since the size of these

datasets prohibits displaying the full confusion matrix, we show

the four categories that increase most, and the four categories

that decrease most by using codeword uncertainty over hard

assignment. Moreover, for each of these categories we show their



ACCEPTED IN IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

1
2
9
.l
e
o
p
a
rd

s-
1
0
1

0
9
0
.g

o
ri

lla
0
2
9
.c

a
n
n
o
n

0
8
9
.g

o
o
se

1
6
1
.p

h
o
to

co
p
ie

r
0
3
5
.c

e
re

a
l-

b
o
x

1
7
2
.r

e
v
o
lv

e
r-

1
0
1

0
5
3
.d

e
sk

-g
lo

b
e

1
8
4
.s

h
e
e
t-

m
u
si

c

1
2
4
.k

ill
e
r-

w
h
a
le

2
4
1
.w

a
te

rf
a
ll

1
5
2
.o

w
l

0
3
0
.c

a
n
o
e

2
1
7
.t

e
n
n
is

-c
o
u
rt

0
3
4
.c

e
n
ti

p
e
d
e

0
1
3
.b

ir
d
b
a
th

0
8
3
.g

a
s-

p
u
m

p

1
7
1
.r

e
fr

ig
e
ra

to
r

2
1
5
.t

e
le

p
h
o
n
e
-b

o
x

1
6
0
.p

e
z-

d
is

p
e
n
se

r
0
9
7
.h

a
rm

o
n
ic

a

2
2
9
.t

ri
cy

cl
e

0
5
4
.d

ia
m

o
n
d
-r

in
g

0
5
1
.c

o
w

b
o
y
-h

a
t

129.leopards-101

090.gorilla
029.cannon

089.goose

161.photocopier
035.cereal-box

172.revolver-101

053.desk-globe

-4 -1 +1 +1

-4 -2 +3

-3 -2 -1 +2

-3 -2 +2

+11 -2 +2

+9 -2 -2 +2

+8 -2 +2

+8 -2 +2

Caltech-256 Relative Confusion Matrix Codeword Uncertainty

Fig. 19. Relative confusion matrix for the Caltech-256 dataset, for the top
4 and bottom 4 categories as in figure 18. The value at column x and row y

represents the difference between codeword uncertainty and hard assignment
in classifying images of category y as category x.

most confusing, and least confusing category. We focus on the

difference between codeword uncertainty and hard assignment,

since the former gives the best results and the latter is most

commonly used in literature. Some examples of the classes that

increase, and decrease most are given in figures 14 and 15.

We start the analyses of the relative confusing matrices of the

Caltech datasets with the categories where performance decreases

most. These object categories consist mostly of natural images

that are captured including their contextual background. We deem

this background as the reason for a decreased performance by

ambiguity modeling. The background is very similar for several

natural images. By incorporating ambiguity modeling this simi-

larity is enhanced, leading to more confusion. In analyzing the

categories that improve most, we observe that these categories

mainly consist of man-made objects, and objects that are pho-

tographed without context. We conjecture that the reason why

these classes benefit most from codeword ambiguity is that these

object classes have little intra-class variation. Small variations

may lead to completely different codewords when using the hard

assignment as in the traditional codebook model. In contrast, our

approach of ambiguity modeling will reserve weight for multiple,

suitable codewords, leading to classification improvements.

D. Experiment 4: PASCAL VOC07-20 and VOC08-20 Datasets

As a final experiment, we consider the Pascal VOC 2007 [41]

and 2008 challenge [42]. The VOC challenges consist of twenty

object classes with 9,963 images in 2007 and in 10,057 im-

ages in 2008. These image sets are each split in half to a

given train and test set. The Pascal VOC Challenge provides a

yearly benchmark of object recognition algorithms. We follow

the successful approach by Marszałek et al. [16], which was

extended by Tahir and Van de Sande et al. [27]. Specifically,

for each image we combine Harris-Laplace point sampling with

densely sampling every 6 pixels. These points are subsequently

represented by SIFT, and various color-SIFT descriptors [24]. The

descriptors of the train set with around 5000 features per image

are subsequently clustered by k-means to create a vocabulary of

4,000 codewords. This vocabulary is used in the codebook model

at level 1 of Lazebniks spatial pyramid where we use a support

vector machine with a χ2 kernel for image classification. We fuse

the classification scores for the various SIFT descriptors with a

simple geometric mean. The final classification performance is

measured in average precision, which represents the area under

the precision-recall graph.

We experimentally compared the traditional codebook model

with codeword uncertainty and with the best two participating

systems on the respective Pascal challenge. In figure 20 we show

the results for both Pascal VOC 2007 and 2008. For Pascal VOC

2007 (VOC07-20) our implementation with codeword uncertainty

performs best for 15 of the 20 object classes. The best method

for the 5 other object classes is INRIA Genetic. In terms of mean

average precision over all object classes, our implementation

with codeword uncertainty scores best with 0.605, followed by

INRIA Genetic with 0.594, hard assignment with 0.580 and

XRCE with 0.556. Note that the traditional codebook model

occupies the third place, whereas replacing hard assignment with

codeword uncertainty yields the best result. Moreover, codeword

uncertainty outperforms hard assignment for all 20 categories

of VOC07-20. In the case of Pascal VOC 2008 (VOC08-20),

SurreyUvA SRKDA claims 9 categories, LEAR shotgun wins

9, and codeword uncertainty is the best for 4 categories1. The

best system in mean average precision is SurreyUvA SRKDA

with 0.549, followed by LEAR shotgun with 0.545, codeword

uncertainty with 0.541 and 0.521 for the traditional codebook. The

SurreyUvA SRKDA system with the best mean average precision

already uses codeword uncertainty as a part of their method [27].

The main difference between SurreyUvA SRKDA and our results

presented here, is the use of a classifier with multiple kernel

learning which is out of scope for this article. In comparing

hard assignment with codeword uncertainty, the latter slightly

decreases the performance for the category cow. For the other 19

categories of VOC08-20 the performance of codeword uncertainty

is equal or better than hard assignment.

V. DISCUSSION

This paper presented a principal improvement on the popular

codebook model for scene classification. The traditional codebook

model uses hard assignment to represent image features with

codewords. We replaced this basic property of the codebook ap-

proach by introducing uncertainty modeling, which is appropriate

as discrete feature vectors are only capable of capturing part of

the intrinsic variation in visual appearance. This uncertainty is

achieved with techniques based on kernel density estimation.

The experiments on the Scene-15 dataset in figures 6 and 10

show that of the four considered ambiguity types, codeword plau-

sibility hurts performance. Codeword plausibility (PLA), and the

unnormalized kernel-codebook (KCB), are dominated by those

few representative image features that are significantly close to a

codeword. In essence, PLA and to a lesser extent KCB, ignore the

majority of the features, and leads us to conclude that it is better to

have an implausible codeword representing an image feature then

no codeword at all. When no codeword is selected, all statistical

classification techniques developed to deal with noisy data are not

used to their full potential. Therefore, codeword uncertainty yields

the best results, since it models ambiguity between codewords,

without taking codeword plausibility into account.

The results in figure 6 indicate that codeword ambiguity is more

effective for higher-dimensional features than for lower dimen-

sions. The curse of dimensionality prophesizes that increasing the

1This totals to 22 because 2 systems share the best score for the categories
person and bus.
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Fig. 20. Average Precision of the traditional codebook model and codeword uncertainty per category, compared against the best two participants for Pascal
VOC 2007 (left) and Pascal VOC 2008 (right). The mean average precision for each method is shown in the legend. Note that codeword uncertainty is used
by the SurreyUvA SRKDA method that participated in Pascal VOC 2008.

Data set Train set size Test set size Performance Increase

Scene-15 1,500 2,985 4.0 ± 1.7 %
Caltech-101 3,030 5,050 6.3 ± 1.9 %
Caltech-256 7,680 6,400 9.3 ± 3.0 %

VOC07-20 5,011 4,952 4.3 %
VOC08-20 4,340 5717 3.8 %

TABLE II

THE RELATIONSHIP BETWEEN THE DATA SET SIZE AND THE RELATIVE

PERFORMANCE OF CODEWORD UNCERTAINTY OVER HARD ASSIGNMENT

FOR 200 CODEWORDS IN THE SCENE-15 AND CALTECH DATASETS AND

4,000 CODEWORDS FOR THE VOC07-20 AND VOC08-20 SETS.

dimensionality increases the fraction of feature vectors on or near

the boundary of codewords. Hence, increasing the dimensionality

will increase codeword uncertainty, leading to better results for

ambiguity modelling with higher-dimensional features.

Figure 6 seems to suggest that a larger vocabulary is always

better. Furthermore, the figure suggests that for larger vocabularies

the performance of hard assignment and soft-assignment con-

verges. Figure 9 illustrates that both these suggestions are not the

case. Figure 9 shows that a too large vocabulary severely deterio-

rates the performance of hard assignment, whereas codeword am-

biguity degrades only slightly. In the case of the VOC2007/2008

with around 5000 images in the training set with close to 5000

features per image, a vocabulary of 4000 words is rather small.

Because of this relatively small vocabulary there is a significant

improvement of soft-assignment over hard assignment. Even more

performance improvement can be expected by choosing a much

larger vocabulary. However, as shown in figures 6 and 9, the

positive effect of a larger vocabulary size on the performance

decreases logarithmically. Hence, it takes a vocabulary size of

several orders of magnitude higher to obtain a significant improve-

ment. Such larger vocabularies makes it practically infeasible

to compute all (color) descriptors, spatial pyramid levels, and

machine learning techniques. In contrast, ambiguity modeling

provides increased performance at much lower computational

costs.

The results over the Scene-15, Caltech-101, Caltech-256, and

Pascal datasets are summarized in table II. This table shows

the relative improvement of codeword uncertainty over hard

assignment. Note that the result for the Pascal datasets is set apart,

since it adheres to a different experimental setup. As can be seen

in this table, the relative performance gain of ambiguity modeling

increases as the number of scene categories grows. A growing

number of scene categories requires a higher expressive power

of the codebook model. Since the effects of ambiguity modeling

increase with a growing number of categories, we conclude that

ambiguity modeling is more expressive then the traditional code-

book model. The results of all experiments show that codeword

uncertainty outperforms the traditional hard assignment over all

dimensions, all vocabulary sizes, and over all datasets.

We have demonstrated the viability of our approach by improv-

ing results on recent codebook methods. These results are shown

on five well-known datasets, where our method consistently

outperforms the traditional codebook model. We have shown that

ambiguity modeling can obtain the same performance as hard

assignment with a considerable smaller vocabulary. What is more,

we found that hard assignment suffers more from the curse of

dimensionality, whereas our ambiguity modeling approach reaps

higher benefits in a high-dimensional feature space. Furthermore,

the performance of hard assignment completely deteriorates when

using relatively large vocabularies, while the proposed model

performs consistently. Similarly, an increasing number of scene

categories increases the effectiveness of our method. As future

image features and datasets are expected to increase in size, our

ambiguity modeling method is unambiguously likely to have more

impact.
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