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Abstract

We present a new technique for the visual exploration of origins (O) and

destinations (D) arranged in geographical space. Previous attempts to map

the flows between origins and destinations have suffered from problems of

occlusion usually requiring some form of generalisation, such as aggrega-

tion or flow density estimation before they can be visualized. This can lead

to loss of detail or the introduction of arbitrary artifacts in the visual repre-

sentation. Here, we propose mapping OD vectors as cells rather than lines,

comparable with the process of constructing OD matrices, but unlike the

OD matrix we preserve the spatial layout of all origin and destination loca-

tions by constructing a gridded two-level spatial treemap. The result is a set

of spatially ordered small multiples upon which any arbitrary geographic

data may be projected. Using a HashGrid spatial data structure we explore

the characteristics of the technique through a software prototype that allows

interactive query and visualisation of 105 to 106 simulated and recorded OD

vectors. The technique is illustrated using US county to county migration

and commuting statistics.

1 Introduction

There are many applications for which associations between pairs of known ge-

ographic locations provide an important data source. These associations might

involve direct movements of people, for example migration (Tobler, 1987), com-

muting behaviour (Chiricota et al., 2008), GPS tracklog analysis (Andrienko and

Andrienko, 2008) or interaction between actors in social networks and service

use (Radburn et al., 2009). Alternatively movements of goods, knowledge (Paci

and Usai, 2009), disease and animals (Gilbert et al., 2005; Guo, 2007) may be

explored. A range of techniques have traditionally been used to represent such

associations, including direct mapping of geographic flow vectors (Tobler, 1987),

flow density maps (Rae, 2009), origin-destination (OD) matrices (Voorhees, 1955)

and statistical summaries of spatial association (Gilbert et al., 2005).
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We present the OD map – a new method of visualising associations between

datasets of this type that overcomes some of the problems traditionally asso-

ciated with mapping geographic vectors. Our aim is to develop visualization

techniques that enable trends in OD relationships to be identified and their

sensitivities explored while maintaining maximum cognitive plausibility of the

representation (Skupin and Fabrikant, 2003). In so doing we contribute a spa-

tially embedded view of trajectories that may be combined effectively with other

multiply-coordinated views.

2 Requirements and Prior Work

This work was motivated by the need to analyse and understand patterns in a

number of large data sets in which paired origins and destinations were key

characteristics. These included collections of mobile search enquiry locations

and result destinations (Wood et al., 2007), spatio-temporal records of borrow-

ing behaviour amongst library users relating home origin to library destination

(Radburn et al., 2009) and GPS records of traffic across London recorded by all

vehicles from a courier company over a one-month period that included pick-

up (origin) and drop-off (destination) points (Slingsby et al., 2008).

In each case our objective was to gain insight into the nature of the journeys

defined between pairs of locations. Developing an environment for the visual

exploration of movement and other interactions in time and space has potential

for building knowledge and understanding, but doing so has been recognised

as one of the major research challenges associated with visual analytics (Her-

nandez, 2007; Andrienko et al., 2008). When dealing with such large data vol-

umes, the transformation into a meaningful visual representation of the spatio-

temporal structure requires data reduction though selection or aggregation in a

manner that suits the need of the analyst (Rae, 2009). This led to the following

requirements:

1. to be able to visually represent large numbers of origin-destination vectors

(of order 105 to 106);

2. to create a visual environment that provides both overview and detail on

demand;

3. to emphasise representation of the origin and destination locations over

the geometry of the paths that link them;

4. to use a projection that preserves the spatial configuration of the study

area to allow integration of supplementary geographic data;

5. to provide a visual representation that can show both long and short tra-

jectories with minimal occlusion;

6. to be able to distinguish origin from destination without visual clutter and

so infer direction of flows;

7. to be able to to compare origin-destination vectors with destination-origin

vectors.
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8. to be able to distinguish artifacts of the visualisation from characteristics

of the data under investigation.

Existing techniques for flow mapping meet some of our requirements. To-

bler (1987) provides some early examples of computer generated flow maps, Rae

(2009) in his review of flow mapping methods showed how some of these tech-

niques could be implemented in Geographic Information Systems. The princi-

ple behind direct flow mapping is to project geographic space onto a plane and

plot each trajectory as a line from origin to destination. While this approach

has a long history and can produce maps that are familiar to many users, it does

not scale well to large numbers of trajectories. As the number of links increases it

also becomes increasingly difficult to indicate the direction of flow visually with-

out clutter. Occlusion of trajectories by others sharing the same space produces

maps that are difficult to interpret unless some form of generalisation is applied.

This problem increases as data sizes grow to orders of 105 or more and has re-

sulted in a trend identified in Andrienko et al. (2008) towards the “derivation,

depiction and visualization of abstract data summaries [such as] - aggregates,

generalization, samples”. For example, Cui et al. (2008) and Holten and van Wijk

(2009) have proposed aggregation of flows of high local density to overcome this

problem; Guo (2009) proposed aggregatation of flows according to space and

attribute. However, the spatial distortion involved in combining flows may re-

sult in unacceptable loss of detail, and perhaps more significantly, still retains

the problem of long trajectories occluding shorter ones that occupy the same

graphic space. Even with an acceptable level of generalisation, such as the flow

density surfaces of Rae (2009), density of flow lines does not necessarily indi-

cate the density of origin and destination locations and can result in arbitrary

patterns of flow density. The suitability for flow line density will depend on the

importance attached to the path of the trajectory connecting origin and destina-

tion. In our case we are more interested in the topology of connections between

origin and destination rather then their geometry (requirement 3 above).

An alternative solution to the occlusion problem is to filter selected flows

(Tobler, 1987). This may include only filtering to a single limited set of origins

or destinations (Phan et al., 2005). While this can declutter the display of flow

maps, it requires some intelligent selection of the origins and destinations to fil-

ter, or dynamic interaction to vary these on demand. It is also difficult to provide

a visual overview using this approach.

Instead of plotting trajectories as vectors, another commonly used approach

is to construct some form of origin-destination matrix (OD matrix) where matrix

rows represent the locations of flow origins and columns the locations of desti-

nations. Ghoniem et al. (2004) compared the usability of node-link views and

matrix views and found that for more than 20 nodes, the matrix view was supe-

rior for most tasks, although notably, ‘path finding’ was the only exception. Path

finding or similar geographic interpretation of flows may be important for ge-

ographically arranged trajectories when, for example, considering routes taken

3



D
RAFT

between mobile search locations and result destinations, home location and li-

brary or traffic flows in a large city to evaluate and plan the delivery of services

Visualizing the OD matrix directly also has a long history (Wilkinson and

Friendly, 2009) where the numbers of flows between an origin and destination

is used to colour the appropriate matrix cell. Some attempts have been made

to view the matrix as a 3-dimensional surface Marble et al. (1997), although the

cognitive plausibility of the results is highly questionable. To enhance the util-

ity of OD matrices, some form of sorting and aggregation is frequently applied.

However, there are many ways to aggregate and reorder Wilkinson (1979); Guo

and Gahegan (2006). This approach has been applied for computational effi-

ciency, especially for sparse matrices, but for visualization, the main benefit of

matrix sorting is to make clusters more apparent, famously illustrated by Bertin

(1983). Reordering can be achieved in a number of ways – for example by clus-

tering strongly connected nodes (Jarvis and Patrick, 1973; Karypis and Kumar,

2000), to reveal spatial clusters (Andrienko and Andrienko, 2008; Guo et al., 2006;

Guo, 2007) or to preserve spatial proximity relations (Marble et al., 1997).

While cluster detection has obvious benefits when analysing matrices, the

reordering required fails to meet requirement 4 outlined above as the original

spatial configuration of the matrix cells is lost during reordering. Guo (2007)

and Guo et al. (2006) suggest overcoming this problem by providing dynamic

linking between the transformed matrix space and a conventional geographic

view. Alternative strategies for preserving some of the spatial properties of the

matrix cells include reprojecting 2D space into 1D sequences using space-filling

Morton ordering (Marble et al., 1997) and aggregation into identifiable spatial

regions (Andrienko and Andrienko, 2008). These approaches, which we might

term quasi space-preserving allow some meaningful geographical interpretation

of results, but are limited in their ability to integrate with other geographic data

in the same projected space.

The approach we propose here attempts to retain as much of the geographic

space as possible by dividing it into a regular grid nested at two levels. As with

the work of Andrienko and Andrienko (2008), this is a form of S×S aggrega-

tion, but unlike their regional clustering, the regular grid is a property of the

geographic space, not the clustering algorithm or dataset. This has a significant

benefit in interpretation and integration with supplementary spatial informa-

tion which may support spatial tasks (such as the analysis of spatio-temporal

pattern across a city) more effectively (Ghoniem et al., 2004). Because of the

spatial autocorrelation of most geographic phenomena, retaining spatial struc-

ture can also reveal clustering in the data.

3 The OD Map

To overcome problems of occlusion inherent in node-link representations of

origin-destination vectors, we propose a transformation of graphical space whereby
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each 2-dimensional vector ~v from origin (po) to destination (pd ) is represented

by a cell pod in a 2-dimensional matrix. But unlike a conventional OD matrix,

we order cells to reflect their original 2-dimensional geographic location. This

is achieved by dividing geographic space into a regular coarse grid. Each tra-

jectory can therefore be referenced by two grid cell locations – the grid cell in

which the trajectory’s origin lies, and the grid cell in which its destination lies.

By nesting the destination grid cells within the origin grid cells, we can preserve

the spatial relationships between origin cells and the relationships between des-

tination cells in a single matrix (see Figure 1).
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Figure 1: Left: Geographic space partitioned into a regular grid. Right:OD map

space. Origin space uses identical gridding of geographic space (dark grid lines);

destination space consists of nested small multiples of the geographic space

(light grid lines). The red trajectory from geographic location (A,2) to (E,5) is

represented by the single OD map cell with coodinates (AE,25). The reverse blue

trajectory is is shown as a cell with coordinates (EA,52)

Assuming both OD map columns and rows are numbered from 0, the trans-

formation from geographic grid cells to OD map cells involves a simple rounding

and modulus arithmetic operation:

po = f l oor (pod /n ) (1)

pd =pod mod n (2)

where n is the number of cells along one side of the geographic space. The

transformation from geographic to OD space simply involves adding the two

locations, scaling origin space by n :

pod =n .po+pd (3)
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The result is a set of small multiples of destination space each arranged in

their geographic position in origin space. This is a special case of a treemap

(Shneiderman, 1992) in which the top two levels of the hierarchy are an identical

set of spatial nodes. These may be consistently sized cells that partition space

as a regular raster or the result of a spatial treemap (Wood and Dykes, 2008).

Indeed, the arrangement is a spatial treemap, denoted as sHier(/,$origin,

$destination); sLayout(/,SP,SP); sSize(/,FIXED,FIXED) using the

Hierarchical Visualization Expression language (HiVE) to describe the represen-

tation (Slingsby et al., 2009).

The recursive layout has similarities to the M a p 2 arrangement of trajecto-

ries proposed by Guo et al. (2006) in their VIS-STAMP system, but unlike their

system, we guarantee that the projection of origin space is an identical, but

scaled, projection of destination space. This consistent spatial arrangement be-

tween original and destination maps is likely to reduce cognitive load in com-

parison to arrangements that use a different spatial projection for origin and

destination spaces.

It also has the advantage that asymmetry of flows can be shown by swapping

O space and D space in the tree, thus meeting requirements 6 and 7 above. In

HiVE this is a move to sHier(/,$destination, $origin) through a swap

operation denoted as oSwap(/,1,2). Dynamically swapping O space and D

space provides a visual indication of flow asymmetry that can be identified with-

out the need for extra symbolisation to represent flow direction (e.g. Rae, 2009).

In addition to the removal of the line occlusion problem, a cell-based rep-

resentation of OD vectors allows us to colour each OD cell according to some

attribute of the aggregated trajectories between a pair of origin and destination

locations. The obvious symbolisation is to colour according to total flows, but

other attributes may be represented such as difference maps or the signed Chi

statistic (Census Research Unit, 1980; Dykes and Brunsdon, 2007; Wood et al.,

2007) when comparing actual flow magnitudes with those expected based on

some underlying model.

3.1 Simulated OD Vectors

To test the ability of the OD map to discriminate between different structures of

geographic vectors, various simulated flow sets were created. In particular, the

origin location distribution, the destination location distribution, the length of

and direction of flow were randomly generated under a range of assumptions.

The aim was (a) to see whether the OD map was adequately discriminating be-

tween different forms of flow distribution in large datasets (requirements 1 and

2 above); (b) to identify any visual artifacts produced by the OD map or conven-

tional flow map (requirement 8).

In the first set of simulations 100,000 vectors were generated each with a uni-

formly distributed random origin and destination (see Figure 2 top row). They

were represented as a conventional flow map (Figure 2 left) using alpha blend-
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ing to reveal the density of flow vectors. The same vectors were shown as an OD

map (Figure 2 right). As expected, the OD map indicates an approximately uni-

form density of origin-destination cells. In contrast, the flow map suggests an

apparent increase in density away from the edges. This is purely an artifact of

the probability of line overlap, and not a true variation in OD density. For studies

where the geometric path between origin and destination is not considered, it

is important to appreciate that a conventional flow map or flow density surface

(e.g. Rae, 2009) can produce such arbitrary variations in line density that do not

reflect the true distributions of OD locations.

To distinguish arbitrary edge effects from true variations in OD density, a

second set of 100,000 trajectories was generated, again with a uniformly random

set of destination locations, but containing a Gaussian distribution of origin lo-

cations around a center point and standard deviation of 20% of the map width

(see Figure 2 bottom row). In this case, the concentration towards the center is

clearly evident in both the flow map and OD map. The OD map further reveals

the uniform random nature of the destination cells as the approximately homo-

geneous density in each large grid square is apparent in this representation. This

would not be detectable from the flow map directly.

Many real geographic flows have a tendency to show spatial autocorrelation

Cliff and Ord (1973), i.e. shorter flows between origins and destinations are more

likely than longer flows. To simulate this effect, a further set of simulations was

created where each destination was generated in a uniformly random direction

and Gaussian distance (with standard deviation of 20% of the map width) from

each origin location (see Figure 3). For both a uniform (Figure 3 top row) and

Gaussian (Figure 3 bottom row) distribution of origins, the OD map representa-

tion shows the Gaussian flow length distribution clearly. The flow maps shown

on the left of the figure, while distinguishable from each other, do not clearly re-

veal the positive spatial autocorrelation of the trajectories, nor do they strongly

distinguish themselves from their uncorrelated equivalents in Figure 2.

To investigate the ability to reveal directional and distance bias, a final set of

simulations was created where flows from left-to-right were excluded (see Fig-

ure 4). This represents an extreme case of bias, but provides a useful benchmark

with which to compare output. In Figure 4 upper row, the length of each flow

is Gaussian (with standard deviation of 20% of the map width). Here the direc-

tional bias is visible only around the margins of the flow map where densities are

sufficiently low. In contrast, the OD map shows the bias as a clear edge in each

origin grid cell. In Figure 4 lower row, the length of each flow is fixed at 25% of the

map width, thus precluding short flows. Visually, this flow map is indistinguish-

able from the Gaussian distribution, but the OD map clearly shows ‘hollow’ OD

densities where close origin-destination flows are not permitted. It is important

that the visualization is able to reveal these types of structure as many real geo-

graphic vectors will possess a tendency to have a minimum length (e.g. vacation

trips or courier deliveries) or directional bias (e.g. animal migration).

It is recognised that there are many other structures that might exist in real
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Figure 2: 100,000 simulated trajectories shown as (left) a vector flow map and

(right) an OD map. Destination locations are uniformly randomly distributed.

In the upper example, origin locations are also uniformly random, in the lower

example origin locations have a Gaussian random distribution about the center.

In all cases, the OD map colour uses a Brewer ’YlOrBr’ colour scheme Brewer

(2002) exponentially scaled between 0 and the maximum OD density.

geographic OD interactions (e.g. polycentric commuting patterns, impact of ge-

ographic barriers to movement etc.) that are not tested with these simulations.

The case study (see Section 4) demonstrates how such structures may be iden-

tified, and the interaction enabled by our OD map software (see Section 4.2)

allows their characterisation to be explored.
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Figure 3: 100,000 simulated trajectories shown as (left) a vector flow map and

(right) an OD map. In the upper example, origin locations are uniformly ran-

dom, in the lower example origin locations have a Gaussian random distribution

about the centre. In both cases, destination locations are a random direction

with Gaussian random distance from the origin.

3.2 Rasterization Artifacts

Aggregation is often necessary when analyzing large data sets and geography

provides a meaningful framework for doing so. This enables the exploration

of large data sets while identifying trends and structure in the data (Andrienko

and Andrienko, 2008). However, any process that involves geographic aggrega-

tion can lose information that may have some value. Equally it is important to

recognise that any trends or structure revealed could be an artifact of the ag-

gregation undertaken rather than a property of the data. In particular, if the

spacing between origin or destination locations is at approximately the same

scale as the OD grid spacing, aliasing effects can be introduced. Figure 5 shows

a flow map for travel-to-work flows for the US counties of Ohio. In this dataset all

home and work locations are aggregated to the county/counties in which they
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Figure 4: 100,000 simulated trajectories shown as (left) a vector flow map and

(right) an OD map. Origin locations have a Gaussian random distribution about

the center and a directional bias that prevents any left-to-right flows. In the

upper example, length of the trajectory is Gaussian, in the lower example, length

of the flow is fixed at 25% of the map width (2 grid cells).

occur. In turn these locations are mapped to the county centroid. Dividing the

state into an 8×8 grid yields cells of approximately the same size as the coun-

ties. In most cases, the distribution of counties results in one centroid per grid

cell, but in some cases, two centroids can coincide with a cell (e.g. Union and

Logan in cell [3,2]), or even three (e.g. Geauga, Portage and Summit in cell [1,6]).

The resulting OD map may therefore show higher OD densities not necessarily

due to a regional control, but simply the coincidence of data points and arbi-

trary grid boundaries. This is one type of example of the modifiable area unit

problem (MAUP) Openshaw (1984). Dynamic OD Maps allow us to explore the

sensitivities and effects of the MAUP and we have implemented two interactive

approaches to do this.

The first is to permit dynamic variation of the number and location of the

grid cells used to aggregate the data. This allows a visual spatial sensitivity anal-
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Figure 5: Ohio travel-to-work flows showing county aliasing. Flows are located

at each county’s centroid. Where the scale of the county is approximately equal

to the scale of the OD grid, aliasing effects can occur

ysis to be undertaken where the user interactively changes the grid aggregation

to see if this has any significant effect on the trends evident in the OD map. A

sample set of OD map excerpts with differing grid aggregations is shown in Fig-

ure 6. Offsetting the grid location (Figure 6 top row) has relatively little effect on

the flow trends in this example, but changing the grid resolution (Figure 6 bot-

tom row) has a more significant impact. In particular increasing the number of

grid cells also increases the number of blank origin and destination cells as fewer

county centroids coincide with the smaller grid cells. This suggests that select-

ing an appropriate grid size is important if origins or destinations are clustered

in space.

The choice of appropriate grid size can be facilitated through interactive

control over grid size and location. In our optimised implementation (see Sec-
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tion 3.3 below), immediate visual feedback is given on the effect of grid changes

for OD Maps with up to order 106 OD vectors.

Figure 6: Effect of changing grid resolution and position on OD map densities of

travel to work flows from Franklin county Ohio. Top row shows effect of moving

the 10x10 grid in an east-west direction. Bottom row shows the effect of chang-

ing grid resolution from 9x9 (left) through 10x10 (middle) and 11x11 (right).

An alternative solution to the aliasing problem can be applied when grid

cells are approximately the same size as the spatial units under investigation.

Here we tessellate the county centroids to form a grid arrangement. This is in

effect a special case of the spatial treemap (Wood and Dykes, 2008), where all

centroids are forced to their nearest unique grid location. Where spatial units

have some meaning, this can produce a more interpretable OD map (see Fig-

ure 7). This quasi space-preserving solution may be more spatially consistent

than others proposed and thus has advantages over existing alternatives.

A spatial treemap may not result in a regular grid tessellation, and while this

would still allow an OD map to be created, its cognitive plausibility would be

reduced as each coarse grid cell could potentially be a rectangle of a different

aspect ratio. As a result the destination cells within each origin cell would be

subject to an inconsistent scaling. To overcome this problem, we ensure that the

number of tessellated grid cells is a perfect square, by if necessary, adding some

blank ‘dummy’ grid cells where no flows occur. The location of these cells is se-

lected at the points furthest away from any known origin or destination cells.

Typically this will be around the edge of non rectangular study regions (see bot-

tom corners and top central portion of the spatial treemap shown in Figure 7).
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Figure 7: Ohio travel-to-work OD map. Here counties are tessellated into a grid

using a spatial treemap (one county per grid cell plus 12 ‘dummy’ grid cells).

The disadvantage of regular grid tessellation is that for geographic regions

with elongated aspect ratios, the nested cells become even more elongated (the

aspect ratio is squared). Geographic integrity is maintained, but at the cost of

very thin cells that can be difficult to interpret when coloured. This can be over-

come by either reprojecting geographical space to give a squarer aspect ratio

or by inserting dummy cells along the ’thin’ edges of each cell. The former ap-

proach has the cost of transforming geographic space to something that may

be unfamiliar to users (e.g. Chile projected to a square), while the latter can re-

sult in inefficient use of graphical space (dummy cells repeated for each nested

cell). A balance between geographic familiarity, cell interpretability and space

efficiency must be struck by the analyst when constructing an OD map space.
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3.3 Optimisation with Hash Grids

The OD map provides a visual interface for filtering of a set of vectors or trajec-

tories. By selecting any given cell in the OD map, a query may be made of just

those trajectories that originate from the given origin cell and end in the given

destination cell implied by the OD cell location. Since the OD map itself retains

the geographic projection of the original data, such a query could be used to

project the full geographic path of the selected trajectories over the OD map by

plotting lines or polylines. To allow this to happen interactively, and to facilitate

rapid brushing over the OD map, an efficient data structure is required to store

the set of 105 to 106 OD trajectories. Here we use the spatial Hash Grid, more

commonly deployed for rapid collision detection (Eitz and Lixu, 2007).

The Hash Grid divides space into a regular grid, where each grid cell is acces-

sible via a 1D hash code. Each cell then stores a collection of references to spatial

objects associated with the region within the grid cell boundaries. This has an

obvious mapping to the OD map that also uses a regular gridding of space. In

this case, we construct two hash grids, one that stores references to all the tra-

jectories that originate from any given cell, the other that stores references to

the trajectories that end in each cell. The cell hash value is easily constructed in

such a coarse 2D grid as

ha s h = row ×n+col (4)

where row and col are the OD map coarse row and column values and n is

the number of rows or columns in the OD map. Given that n is likely to be of

order 10, there is no danger of overflow in the hash value if stored using at least

16 bit integers.

To select the set of trajectories between given origin and destination cells,

the origin hash grid is first queried to retrieve only those trajectories that orig-

inate from the given cell. The destination hash grid is likewise queried to find

only those trajectories that end in the given cell. Finally the intersection of these

two sets filters all but those vectors between the queried origin and destination

cells. If the collections within each hash grid cell in turn are sorted using some

sort of optimisation structure (implemented here using Java’s TreeSet structure),

queries are sufficiently fast to allow interactive brushing of trajectory sets of or-

der 105 to 106 trajectories.

4 Case Study

To explore the validity of OD mapping, we created a prototype environment for

visual exploration that could show flow maps, OD maps and OD matrices and

provide interactive control and linking between these views. It was developed in

Processing (www.processing.org; Reas and Fry, 2007; Fry, 2007), an extension to

Java for rapid visually oriented application development.
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We selected county to county migration flows for the conterminous United

States from the US 2000 census (US Cenus Bureau, 2008). This dataset recorded

the numbers of changes in home address between 1995 and 2000 aggregated to

the county of origin and destination. Locations were added by combining the

dataset with the 2000 census county gazetteer and projecting from latitude/lon-

gitude to an Albers Equal Area projection. In total 721,432 separate migration

vectors representing the inter-county movements of 46.6 million people were

recorded. These vectors are shown as a conventional flow map in Figure 8. Ev-

ident in this view of the data is the ‘population footprint’ showing some of the

major population centers, most clearly where they contrast with regions with

fewer migration paths. However from the experiments shown in 3.1 above, cau-

tion must be exercised in interpretation of artifacts. For example, it is not always

evident whether the higher flow line densities in the central states are due to mi-

grants at those locations or simply because they happen to be placed on the path

between origins and destinations to the west and east.

Figure 8: 20,000 US county-county migration vectors (3% random sample). Vec-

tors rendered using transparency and anti-aliasing to allow ’occlusion density’

to be seen.

In contrast, Figure 9 shows the OD map of the same data. As in the previous

OD maps, each OD cell is coloured according to the absolute numbers of move-

ments between the origin and destination using an exponentially scaled colour

scheme, and the ‘home cell’ for each origin is highlighted. The spatial autocorre-

lation inherent in migration is evident in that the highest densities of migration

are where origins and destinations are close (darker red cells clustered around

15



D
RAFT

the home cell). There appears to be significant migration along the west coast of

the US, both within California (e.g. LA and Orange County) and further north in

Oregon and Washington. Some grid cells appear to show a much more homoge-

neous set of destination cells than others. For example Southern California (0,6)

and Colorado (3,5) have destinations evenly spread while New York and Florida

show much more concentrated (and reciprocal) flows. The non-coastal North

West States show some inter-state migration between them, but relatively little

to other large parts of the US.

The grid cells containing large urban populations (e.g. Southern California,

Chicago, New York) inevitably show higher migration across the US, but caution

should be exercised when interpreting these patterns, especially with an expo-

nential colour scale.

Figure 9: All 721,432 US county-county migration vectors shown as an OD map.

Each large grid cell represents origin location, within which is shown the map of

destination densities using the same grid.

4.1 The Signed Chi statistic

Analysis of Figure 9 demonstrates that it is not always possible to separate high

frequency of migration from the underlying population footprint. It is inevitable

that on the whole areas of higher population density will have more migration,

simply because there are more people available to move. The cell-based sym-

bolization of the OD map allows us to substitute more discriminating measures

than absolute counts, such as the signed Chi statistic for comparing observed

with expected values:
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χ =
ob s −e x p
p

e x p
(5)

In this case we define the observed value as the numbers of migrations from

any given origin to a given destination and the expected value is weighted ac-

cording to the mean population of the observed and expected counties:

e x pod =

∑
m
∑

pop
∗

popo+popd

2(n−1)
(6)

where
∑

m is the total number of people who have moved from one county

to another,
∑

pop is the total population of all counties, popo and popd are

the populations of origin and destination counties and, n is the total number of

counties. In other words this particular measure of expectation assumes people

migrate to all other counties in proportion to their respective populations. This

simple model makes one of a number of different possible assumptions about

expectation, but serves to illustrate how the OD map can be used to summarise

such statistical measures. Other more sophisticated measures that could be

quantified using the Chi statistic might incorporate socio-economic status, geo-

graphical permeability or trends over time. The results of mapping the population-

based Chi value is shown in Figure 10.

The Chi OD map confirms that there is indeed greater than expected migra-

tion along the west coast (dark red destination cells). Cells that contain signifi-

cant numbers of darker blue cells show greater ‘selectivity’ in migration destina-

tion given the size of the origin populations. The OD resolution and spatial ori-

gin were varied interactively in order to examine the persistence of patterns with

scale and aggregation. It is apparent that there is less migration from Southern

California to most of the US, with the exception of the Pacific coast, Chicago, the

large cities of Texas and New York. Similar patches of blue can be seen at these

cities, suggesting a population less inclined to migrate away from big cities than

our simple model suggests. New York, Chicago and Southern California show

a relative lack of east-west migration, whereas Houston shows a resistance for

north-south movement. Dark red cells that are not close to the home cell indi-

cate larger than expected movements between geographically distant locations.

For example there are greater than expected flows from the NE coast to Florida

and from Florida to Colorado.

4.2 Interaction

Viewing static OD maps provides some insight into the structure of the geo-

graphic vectors under investigation, particularly in overview. Adding interac-

tive features to the prototype supports the exploratory process in a number of

ways. Various interactions are possible (Yi and Stasko, 2007) and provide ac-

cess to alternative layouts (Slingsby et al., 2009), transformations between them
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Figure 10: Chi statistic OD map showing the difference between observed

county-county migration and that expected based on the populations of origin

and destination counties (100% sample). Geographical context is provided by

both a large origin map of US states and small multiples of destination maps.

Chi values are coloured using an exponentially scaled diverging Brewer ’RdBu11’

scheme.

(Heer and Robertson, 2007) and details to be accessed on demand (Shneider-

man, 1996).

We found the following interactions useful in visually exploring spatial inter-

actions in a number of data sets and have implemented them in our flowMappa

environment for visual exploration (www.flowmappa.com):

• zooming and panning;

• toggling of numeric indicators of OD densities;

• toggling of context maps in both O space and D space;

• dynamic changing of grid cell size and offset;

• ability to swap O space for D space and vice versa;

• brushing to overlay selected OD vectors;

• linked views between flow map, OD map and OD matrix;

• Varying colour scheme between ColorBrewer alternatives;

• Varying colour scaling between log and linear scales.

Some selected examples of the effects of this interactive control are shown
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in Figure 11. While in this example selected OD vectors are shown as straight

lines, the projection into geographic space would allow the full geometry of the

trajectories between selected origins and destinations to be overplotted.

Figure 11: Example of interaction query and linked views. The application shows

a flow map view on the left hand side and an OD Map view on the right. Both

can be independently zoomed and panned allowing both overview and detail-

on-demand. By brushing over the various destination cells in the North Texas

origin cell, the trajectories between the locations are overlaid on both views.

Trajectories are stored at the resolution of the county centroids.

5 Conclusion

Revisiting our list of requirements (see Section 2), it is apparent that none of

the existing techniques for showing large sets of trajectories are able to meet all

eight of these. The OD map offers several advantages over the more commonly

used flow mapping and OD matrix representations. Due to aggregation of OD

vectors into a regular grid, the OD map is scalable to large collections of vectors

(requirement 1). The cost of this aggregation is twofold. Firstly, like any form of

aggregation, a potential loss of detail in origin and destination location results

as the geographic grid resolution of the OD map is limited to geographic grids

20×20 or so (each cell having to contain a further 20×20 cells). This limit can be

partially overcome by interactive zooming to reveal detail on demand (require-

ment 2). Secondly, aggregation into grid cells that do not reflect the underly-

ing geographic structure can give rise to aliasing effects. These can be partially

overcome through the use of a spatial treemap to aggregate into meaningful ge-

ographic units along with dummy cells to preserve key geographic properties.

For analysis where the vector between a pair of two locations has greater

importance than the geometric path between them, the OD map provides this

detail with minimal loss of information and little visual clutter (requirements 3
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and 5). Where the geometry of the path is important, such as transportation in-

frastructure management, the geographic projection of the OD map allows this

geometry to be overlaid (requirement 4). This works well for spaces with rela-

tively square aspect ratios, but would be more problematic when nesting long

thin regions. Methods for transforming geographic spaces, such as the spatial

treemap algorithm used in Figure 7 provide some solutions but with some loss

of spatial coherence and possible impacts on cognitive load.

All forms of trajectory mapping are liable to visualisation artifacts that do

not reflect true properties of the data. Despite their common use, flow maps

of large collections of vectors seem particularly vulnerable to this. Occlusion

effects are removed by the OD map, although the partitioning of space into a

grid introduces possible aliasing and MAUP artifacts. The effect of these on the

stability of the visualization can be explored though dynamic change in gridding

parameters (requirement 8). If the resolution of the vector data is much finer

than the grid resolution, this effect is minimal, but aggregation is greater. Where

grid resolution is closer to the data resolution, the spatial treemap provides one

way of removing aliasing effects, but at the cost of some spatial distortion.

The asymmetry between flows in both directions between pairs of points is

explicit in the OD map (requirement 6). It can be further explored by interactive

swapping of O space and D space as well as through brushing over OD cells

(requirement 7).

We do not propose the OD map as replacement for other forms of trajectory

exploration, but suggest that it offers a new spatial view of large collections of ge-

ographic vectors that may be integrated with existing systems to help reveal and

consider the geography of associations between pairs of locations. As the cells in

the OD Map are identical to those of the OD Matrix it provides a supplementary

spatial ordering of this much-used aspatial representation of geographic infor-

mation to which spatial cognition can be applied as we endeavour to explore

geographic interactions and processes.
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