
Visualizing Proofs and the Modular Structure of

Ontologies to Support Ontology Repair

Christian Alrabbaa1, Franz Baader1, Raimund Dachselt2, Tamara Flemisch2,
and Patrick Koopmann1

1 Institute of Theoretical Computer Science, TU Dresden, Germany
2 Interactive Media Lab, TU Dresden, Germany

Abstract. The classical approach for repairing a Description Logic (DL)
ontology in the sense of removing an unwanted consequence is to delete
a minimal number of axioms from the ontology such that the resulting
ontology no longer has the consequence. While there are automated tools
for computing all possible such repairs, the user still needs to decide by
hand which of the (potentially exponentially many) repairs to choose. In
this paper, we argue that exploring a proof of the unwanted consequence
may help us to locate other erroneous consequences within the proof,
and thus allows us to make a more informed decision on which axioms
to remove. In addition, we suggest that looking at the so-called atomic
decomposition, which describes the modular structure of the ontology,
enables us to judge the impact that removing a certain axiom has. Since
both proofs and atomic decompositions of ontologies may be large, vi-
sual support for inspecting them is required. We describe a prototypical
system that can visualize proofs and the atomic decomposition in an
integrated visualization tool to support ontology debugging.

1 Introduction

We report here on first steps in a project whose goal it is to visualize various
aspects of ontologies, with the purpose of supporting design, debugging, main-
tenance, and comprehension of ontologies. In a first prototype of our system, we
concentrate on the visualization of proofs of consequences computed by a DL
reasoner and the visualization of the modular structure of the ontology, and use
ontology repair as an application scenario to guide our design decisions.

As is the case with all software artifacts, creating large ontologies is a diffi-
cult and error-prone process. However, the reasoning facilities provided by DL
systems allow designers and users of DL-based ontologies to detect errors by
finding incorrect consequences (called defects in the following). Such defects can
be the inconsistency of the whole ontology, the unsatisfiability of a concept, or
a derived subsumption relationship that obviously does not hold in the appli-
cation domain (like amputation of finger being a subconcept of amputation of

Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Alrabbaa, Baader, Dachselt, Flemisch, Koopmann

hand [5]). The classical method for repairing an ontology in the sense of re-
moving a given defect employs Reiter’s approach for model-based diagnosis [28].
First, one computes all justifications for the defect, i.e., all minimal subsets of
the ontology that have the defect as a consequence [31,4,16,15]. In order to get
rid of the defect as a consequence of the whole ontology, it is then sufficient to
remove from the ontology a hitting set of the justifications, i.e., a set of axioms
that intersects with every justification [17,35,25]. Following [28,25], we call such
a hitting set a diagnosis and the ontology obtained by removing it a repair.

Example 1. Let T = {A ⊑ B ⊓ C,B ⊑ D,C ⊑ D} be a TBox , where A ⊑ D

is an undesired consequence, i.e., a defect. The sets {A ⊑ B ⊓ C,B ⊑ D} and
{A ⊑ B ⊓ C,C ⊑ D} are all justifications of the defect w.r.t. T ; and the sets
{A ⊑ B ⊓ C} and {B ⊑ D,C ⊑ D} are all subset-minimal diagnoses.

While all justifications and diagnoses of a given defect can be computed
automatically, deciding which of the diagnoses to choose for constructing the
actual repair requires human interaction. There are, however, some systems that
support the user in making this choice, based on the impact that removing a
certain diagnosis has on the ontology. One possibility to evaluate this impact
is to count the number of subsumptions between concept names that are lost
in this repair [23], but there are also other criteria for measuring the impact
[17,26,27,34,35].

In the present paper, we propose to use not just the justifications of a given
defect α when trying to repair it, but also proofs of α from the justifications.
Basically, the idea is that, while navigating through such a proof, the user may
find another defect β that is “closer” to the ontology axioms in the proof, and
thus may pinpoint the “real” reason for the observed problem in a more precise
way. Instead of repairing α, the idea is then to repair β first (possibly using the
same approach recursively). If this also repairs α, then we are done. Otherwise,
we can continue by looking at another proof of α from a new justification w.r.t.
the new ontology.

It may happen, of course, that the user does not notice a defect other than the
original one in the proof. For this case, we propose to use the modular structure of
the ontology as described by the atomic decomposition [36] for judging the impact
of a diagnosis. Basically, the atomic decomposition is a graph structure whose
nodes are so-called ⊤⊥∗-modules [11] and whose edges describe dependencies
between the modules. The idea is now to visualize the impact of a given diagnosis
by showing which modules are affected by the removal of its axioms. The user
can then decide, based on her knowledge of the modules, which diagnosis to
prefer.

The realization of the ontology debugging approach sketched above requires
a tool that can visualize proofs and atomic decompositions in an appropriate
way. Whereas proofs are trees, atomic decompositions are graphs. Many graph
visualization [13,12] and tree visualization techniques [32,33] as well as their com-
bination [10] have been proposed in the literature, on which we could base our
approach. For our application scenario, we had to select, adapt, and combine ap-
propriate visualization techniques and to design the interaction with them. Our

Visualizing Proofs and the Modular Structure for Ontology Repair 3

prototype is designed for a dual monitor setup, and consists of two main compo-
nents: Defects Comprehension, which provides an interactive view for exploring
proofs of defects; and Diagnoses Comprehension, which provides an interactive
view for displaying diagnoses, and their impact on the modular structures of
the given ontology. The dual monitor setup allows for a seamless interaction of
the two components, while providing sufficient space for displaying proofs and
atomic decompositions in a comprehensible way.

2 Diagnoses, Repairs, Proofs, and Modular Structure

In this section we discuss our suggestion of a new workflow for repairing DL-
based ontologies. In particular, we describe in more detail how proofs of defects
and the modular structure of the ontology can support the repair process. The
system that provides us with visual support for this approach is described in the
next section.

In the following, we do not fix a particular ontology language. We only assume
that the language can be used to formulate axioms (e.g., concept inclusions and
assertions written in some DL). An ontology is a finite set of axioms. In addition,
we assume that there is a monotonic consequence relation between ontologies
and axioms, and write O |= α to indicate that axiom α is a consequence of the
ontology O. In case the user thinks that the inferred consequence α actually does
not hold in the application domain, we call α a defect. Under the assumption that
the reasoning process that has produced the consequence is sound, the existence
of a defect means that the ontology contains incorrect axioms, and thus needs to
be repaired. We say that O′ ⊂ O is a repair of O w.r.t. the defect α if O′ 6|= α.

Classical Repair The classical method for repairing an ontology is to remove
some of its axioms, as defined above. However, given a detected defect α, it may
not be obvious to the user which axioms in O are actually the culprits. In the
amputation example mentioned in the introduction, while it is clear that “am-
putation of finger” should not be a subconcept of “amputation of hand,” finding
the responsible axioms is not easy since this requires a detailed understanding of
the intricacies of the so-called SEP-triplet encoding employed by the modelers
of the medical ontology SnomedCT (see Fig. 1 in [5]).

The first step towards finding a possible repair automatically is to compute all
justifications of the defect α, i.e., all sets J ⊆ O such that J |= α, but J ′ 6|= α for
all strict subsets J ′ ⊂ J . In the worst case, α may have an exponential number
of justifications (in the cardinality of O). There is a large body of work on
how to compute justifications for DL-based ontologies (some of which was cited
in the introduction). In our prototype, we currently compute justifications by
employing the functionalities provided by the Java-based Proof Utility Library
PULi [22], which enumerates justifications using resolution.

In order to get rid of the defect α, it is then sufficient to remove (at least)
one axiom from every justification. In fact, it is an obvious consequence of the

4 Alrabbaa, Baader, Dachselt, Flemisch, Koopmann

minimality of justifications that every subset of the ontology that has the con-
sequence α must contain a justification. More formally, let J1, . . . ,Jn be all
justifications of α. A diagnosis of α in O is a set D ⊆ O that is a hitting set of
J1, . . . ,Jn, i.e., satisfies D ∩ Ji 6= ∅ for i = 1, . . . , n. As already shown by Re-
iter [28], if D is a diagnosis of α, then O\D is a repair of α, and every repair of α
can be obtained in this way. In addition, there is also a 1–1 relationship between
minimal diagnoses and maximal repairs. In the worst case, a defect may have an
exponential number of (minimal) diagnoses, and thus an exponential number of
(maximal) repairs. In our prototype, diagnoses are computed using a modified
version of a tool for navigating answer-set programs, called INCA [2].

Proofs What amounts to a proof of an entailment O |= α depends on the
employed ontology language and formal proof system. Here we abstract from
the specific proof system, and assume that a proof of α from O is a tree whose
nodes are labeled with axioms such that

1. the root has label α,
2. the leaves are labeled with elements of O or axioms β satisfying ∅ |= β,
3. if a node with label β has as n ≥ 1 children with labels β1, . . . , βn, then

{β1, . . . , βn} |= β.

An example of such a proof, as displayed by our prototype, is given in Fig. 2
in the next section. It is a proof of the defect SpicyIceCream ⊑ ⊥ entailed by a
modified version of the Pizza Ontology.1 This proof is based on the classification
rules of the DL reasoner Elk [21], and its visualization contains auxiliary nodes
that show names of the employed rules and indicate whether a leaf corresponds
to an element of the ontology or to a rule application with an empty set of
premises. There has been some work in the DL community on how to generate
proofs of consequences [7,19,20,1], but usually with explanation of the proved
consequences as use case [24,9,30]. In our prototype, we use proofs generated
by the proof service available in the Elk reasoner [21,19,20], but minimize the
proofs using the techniques described in [1].

In this paper, we propose to use proofs in the context of ontology repair.
Assume that the user has found a defect α. As a first step, we compute a jus-
tification J of this defect, and then show a proof of the entailment J |= α to
the user. By exploring this proof, the user may notice that the proof contains
another axiom β derived from J that is also a defect. Instead of repairing the
defect α directly, we can now switch to repairing β. While this switch may not
always be advantageous, we believe that it will often be, though this still needs
to be investigated empirically. On the one hand, β may be derivable from a strict
subset of J , and then there are less axioms to choose from when removing an
element from J . On the other hand, the defect β may be more fundamental
than α. For instance, consider the amputation example. The erroneous version
of SnomedCT also had the consequence that “amputation of finger” is a sub-
concept of “amputation of arm.” If the proof of this consequence contains the

1 Available at https://lat.inf.tu-dresden.de/Evonne/PizzaOntology/

https://lat.inf.tu-dresden.de/Evonne/PizzaOntology/

Visualizing Proofs and the Modular Structure for Ontology Repair 5

axioms stating that “amputation of finger” is “amputation of hand” and “am-
putation of hand” is “amputation of arm,” then it is sensible to repair first one
of these more specific defects.

The proof of the defect α = SpicyIceCream ⊑ ⊥ depicted in Fig. 2 pro-
vides us with another illustration of this idea. This proof contains the axiom
β = SpicyIceCream ⊑ Pizza, which appears to be the real reason for the observed
problem, and thus should be repaired first. Also note that any repair of β also
repairs α, but not vice versa. Thus, repairing β fixes the overall problem, whereas
repairing α would have just dealt with a symptom of it.

At some point, the user will not find another defect to switch to in a proof,
and thus the classical repair approach must be applied to the current defect. We
propose to use the modular structure of the ontology to support the decision of
which diagnosis to choose for repairing this defect.

The Modular Structure From a formal point of view, an ontology is just a
flat set of axioms. In practice, however, ontologies usually consist of different
components dealing with different topics, though this structure may not have
been made explicit when defining the ontology. For instance, in the pizza on-
tology, there are axioms specifying fundamental aspects (such as: pizzas always
have toppings), axioms defining different types of pizzas, axioms concerned with
dietary issues, etc. In case the ontology at hand has not been structured into
different such components in the design phase, one can use automated module
extraction techniques to compute such a structure for a DL-based ontology. In-
tuitively, given an ontology O written in some DL and a set Σ of concept and
role names (called signature), a module M ⊆ O for Σ in O contains all axioms
from O that are “relevant” for the meaning of the names in Σ.

In the DL literature, there is a large body of work defining different notions of
modules, as well as algorithms for computing modules for some of these notions.
In this paper, we focus on a specific type of modules called ⊤⊥∗-modules [11].
Such modules have the following useful properties:

1. For each signature Σ and ontology O, there exists a unique ⊤⊥∗-module.
2. The ⊤⊥∗-module M for Σ in O preserves all Σ-entailments, i.e., for any

axiom α that uses only names from Σ, it holds that M |= α iff O |= α.
3. Each ⊤⊥∗-module M is self-contained in that it is also a module of the

(possible larger) set of all concept and role names occurring in M.
4. If we have Σ1 ⊆ Σ2 for two signatures, then also M1 ⊆ M2 for the corre-

sponding modules.

The last two properties imply a hierarchical structure between all possible ⊤⊥∗-
modules of O, which can be represented in a compact way by the atomic de-
composition [36]. For an ontology O, the atomic decomposition is a pair (A,�),
where A is a partitioning of O into atoms, and � ⊆ A × A is the dependency

relation, which satisfies the following property: if an atom a1 is a subset of some
⊤⊥∗-module M and a1 � a2 (meaning a1 depends on a2), then also a2 ⊆ M.
This means that an atom represents the module that consists of the union of

6 Alrabbaa, Baader, Dachselt, Flemisch, Koopmann

Fig. 1. Atomic decomposition of the ⊤⊥∗-module for the signature {SpicyIceCream} of
a variant of the pizza ontology.

itself with all atoms it depends on. Since all ⊤⊥∗-modules can be obtained as
the union of such atomic modules, the atomic decomposition indeed provides
us with a compact representation of all ⊤⊥∗-modules. Atoms that are not in a
dependency relation to each other can indeed be seen as being independent of
each other: if we remove an atom and all atoms that depend on it, then the re-
maining modules are not impacted, that is, all entailments over their signatures
are preserved.

An example of an atomic decomposition is shown in Fig. 1 for the sub-
set of our modified pizza ontology that is the ⊤⊥∗-module of the signature
{SpicyIceCream}. The figure shows the Hasse-diagram of the partial order �,
i.e., � is the transitive closure of the relation → depicted there. To compute
the atomic decomposition, we implemented the algorithm described in [36]. For
extracting the ⊤⊥∗-modules, we used the tool provided by the OWL API [14].

The atomic decomposition can be used to support the user in choosing a
diagnosis, and thus a repair, as follows. Given a diagnosis D, we can show to
which of the atoms its axioms belong. By going upward in the hierarchy, this
allows us to see which other atoms (and thus ⊤⊥∗-modules) may be impacted
by removing these axioms. However, minimizing the number of affected modules
is only one possible criterion for making the decision. The ontology engineer
might trust some modules more than others, either because of her knowledge
about who wrote these axioms or because she knows this topic well enough to
be certain that the axioms are correct. Thus, she may look only at diagnoses that
concern other parts of the ontology. Also, it may be reasonable to assume that
an axiom that interacts with many other axioms in the ontology is less likely to
be erroneous, in the case that not many defects have been observed.

Example 2. Let us revisit our example concerned with defects in the pizza on-
tology. After inspecting the proof of the defect α, we have switched to repairing
the more fundamental defect β = SpicyIceCream ⊑ Pizza. It turns out that this
defect has a single justification, consisting of three axioms, and thus there are
three diagnoses, each consisting of one of the axioms:

Visualizing Proofs and the Modular Structure for Ontology Repair 7

– D1 = {domain(hasTopping) = Pizza}
– D2 = {SpicyIceCream ≡ IceCream ⊓ ∃hasSpiciness.Hot}
– D3 = {IceCream ⊑ ∃hasTopping.FruitTopping}

Removing the diagnosis D2 would affect the least number of ⊤⊥∗-modules, since
no other atom depends on the one consisting of this axiom. However, removing
it would remove all information about SpicyIceCream from the ontology, and
thus does not appear to be a good idea. The other two axioms belong to the
same atom, and thus the atomic decomposition cannot help us choosing between
them. Actually, while it is clear that it does not make sense to have both in the
ontology, one could either allow things other than pizzas to have toppings or use
another role to describe what is put on top of ice cream.

3 Visual Support for Ontology Debugging

Our tool, called Evonne (Enhanced visual ontology navigation and emendation),
is a prototypical web application for ontology debugging of unwanted conse-
quences. It visualizes proofs of defects occurring in ontologies as well as the
impact of computed diagnoses based on the atomic decomposition. Currently,
Evonne supports the lightweight ontology language OWL 2 EL. It is designed for
a dual monitor setup, and consists of two main components: Defects Compre-

hension, which provides an interactive view for explaining defects through proofs
exploration; and Diagnoses Comprehension, which provides an interactive view
for showing diagnoses of defects and their impact on the modular structures of
ontologies. As a central design goal we wanted to seamlessly integrate both views
into a coherent tool with appropriate interactive functionality.

Fig. 2. Screenshot of Evonne showing the Defects Comprehension component

8 Alrabbaa, Baader, Dachselt, Flemisch, Koopmann

Fig. 3. Screenshot showing the collapsed proof of SpicyIceCream ⊑ Pizza in Fig. 2

The Defects Comprehension Component This component offers an inter-
active view for understanding defects through exploring and interacting with
proofs (see Fig. 2). Its core element is a representation of the proof itself, which
in our example shows unsatisfiability of SpicyIceCream. As argued in the previous
section, by exploring and interacting with this proof, the user can find a more
specific defect within the proof, i.e., SpicyIceCream ⊑ Pizza.

When visualizing proofs, the main problem is that they are usually very large,
which makes it hard to display them in a sufficiently compact yet comprehensive
manner. Protégé, for instance, contains an explanation plug-in that displays
proofs provided by the Elk reasoner [20] as indentation lists. It shows all proofs
for a consequence at once, which can potentially lead to visual clutter and a high
cognitive load for the user. For our purposes, it is sufficient to display a single
proof from a single justification, rather than multiple ones at the same time. In
addition, the proofs shown in Evonne are minimal tree proofs, computed using
the approach described in [1].

We visualize proofs as node-link diagrams since this encoding emphasizes the
connection between nodes, their depth level, and the topological structure of the
tree [33]. This representation ensures that (1) the premise of inference steps is
localized, which makes it easier to focus on individual inferences; and (2) it puts
emphasis on the different paths that lead to the final conclusion. Additionally,
we use an axes-oriented layout for visualizing trees since it is extremely common
and most users are familiar with its representation [32].

Since the minimal tree proofs displayed by Evonne can still be quite large,
the tool is equipped with interactive elements, which provide users with multiple
navigation functionalities that make large proofs easier to digest.

The button at the top of the component (see Fig. 2) allows the user to
load a proof in GraphML format, which is then displayed within the component
and can be explored. Selecting axioms by clicking on them reveals buttons (see

Visualizing Proofs and the Modular Structure for Ontology Repair 9

Fig. 4) with either navigation functionalities (discussed now), or communication
functionalities (discussed later). The navigation buttons as well as toggling the
Stepwise Mode switch allow the user to explore and traverse the proof in both
directions, top-down and bottom-up. In our case, top-down and bottom-up refer
to the tree structure and not to the position of nodes, i.e., top is the tree’s root
node whereas bottom means the tree’s leaf nodes.

Generate and

Show diagnoses

Show justification

of the corresp. proof

Communication buttons

Hide all prev. inferences

Show all prev. inferences

Show the next inference

Navigation buttons

Fig. 4. Buttons associated with axioms in proofs

The top-down approach starts with showing only the final conclusion, and
previous inferences can be revealed step-wise. This helps users to steer the explo-
ration process in a way that focuses on specific paths that they deem important
to understand the entailment. Thereby, the next inference is only revealed if
the current visible part of the proof is understood. In contrast, when exploring
the proof in a bottom-up manner, that is, starting from the premises, users can
mark the parts of the proof they have already understood by collapsing them,
and thereby decreasing the size of the proof. Again, this reduces the amount of
displayed information while allowing users to focus on the next part of the proof
during traversal. Users can adjust and traverse the proof according to their own
preferences. At any stage, collapsed parts can be revisited.

In case a user finds a certain part of a proof particularly hard to comprehend,
he can take this sub-proof and display it in isolation by clicking on the “delink”
button on the connection to the following inference (see Fig. 5). This provides
a localized view of all inferences leading to the chosen link, to be inspected
separately and without distractions.

The large size of proofs is not the only factor that can make them hard to
understand. Even a single application of an instance of a rule may be puzzling,
either because the user is not familiar with the employed calculus or since the
large size of the involved concept descriptions makes it hard to see why the
concrete inference is an instance of a certain inference rule. To support com-
prehension of inference steps, Evonne is equipped with a tooltip that can be
invoked by clicking on a specific rule (see Fig. 6) and provides (1) a display of
the abstract rule using meta-variables for concepts, (2) a display of the currently
considered instance below the abstract rule, (3) a color coding that clarifies how
the instance was obtained.

10 Alrabbaa, Baader, Dachselt, Flemisch, Koopmann

Fig. 5. Clicking on the delink icon next to the link in the left image isolates the sub-
proof starting from this connection, which can be seen in the right image.

Fig. 6. Explanation of an instance of Intersection Composition displayed by Evonne.

The Diagnoses Comprehension Component This component is responsible
for computing all diagnoses of defects and for showing their impact through the
atomic decomposition. As shown in Fig. 7, the view of this component consists
of two parts: the atomic decomposition (ontology) and the diagnoses part.

For the atomic decomposition, users can either employ the default layout
provided by Evonne, which is based on the force-directed layout algorithm [18];
or they can rearrange the nodes into a more suitable layout, which can be saved
for later use. Users can choose between two types of labels for the nodes in the
atomic decomposition. The default labeling scheme uses axioms occurring in the
corresponding atoms, while the other option is to label nodes with the signature
of the corresponding atoms.

Diagnoses are shown in a collapsed side menu, grouped into collapsed pan-

els, based on their size, to minimize their number on display. Hovering over a
diagnosis triggers a color change of the corresponding axioms in the atomic de-
composition. This Brushing and Linking [6] is a common interaction technique
to explore relations between data [29]. It also changes the color of all nodes con-

Visualizing Proofs and the Modular Structure for Ontology Repair 11

Fig. 7. Screenshot of Evonne showing the Diagnoses Comprehension component

taining these axioms, as well as of their predecessors, thereby highlighting the
impact of a diagnosis on the ⊤⊥∗-modules of the ontology.

In our pizza example, after locating SpicyIceCream ⊑ Pizza as the more spe-
cific defect to be repaired, Evonne computes all diagnoses of this defect, i.e.,
D1, D2 and D3 (see Example 2), and displays them together with the atomic
decomposition in the Diagnoses Comprehension view. Fig. 8 depicts how the
colors of axioms and nodes in the atomic decomposition change when hovering
over D1 (left) or D2 (right). This shows the impact of D1 to be more significant
than the impact of D2, since more atoms are affected. Based on the observed
impact, the atomic decomposition can also be used to determine which parts of
the ontology might need to be adapted once a repair based on this diagnosis is
generated.

Fig. 8. Highlighted axioms and atoms for diagnoses D1 (left) and D2 (right).

We have designed two techniques for the interplay between the two main
components of Evonne. While both are triggered in the Defects Comprehension

view, by using the communication buttons shown in Fig. 4, the effects are shown
in the Diagnoses Comprehension view. The first technique is diagnoses highlight-

12 Alrabbaa, Baader, Dachselt, Flemisch, Koopmann

ing. The user can select the final conclusion, or any entailment appearing in a
proof, and ask Evonne to compute all diagnoses of this entailment. The second
is justification highlighting. For any axiom β occurring in the proof, the justifi-
cation that corresponds to the proof (i.e., the ontology axioms used in the proof
to entail β) can be highlighted in the ontology view. This changes the color of
the axioms occurring in the justification and the nodes containing them in the
atomic decomposition – an important feature for repairing since it helps users
to understand which part of the ontology, causing the defect, is currently being
investigated.

4 Conclusion

We presented the interactive tool prototype Evonne that visualizes proofs of
consequences and the modular structures of ontologies as described by the atomic
decomposition. In this paper, we concentrated on ontology debugging as possible
use case for our system, but the visual support it provides can also be employed
in other settings, such as explaining why a correct consequence holds rather than
repairing an incorrect one. To evaluate the usefulness of the debugging workflow
sketched in this paper, we intend to perform a user study, which hopefully will
also provide us with interesting new ideas for how to improve Evonne.

In the current version of Evonne, proofs and the atomic decomposition are
precomputed separately and then provided as an input for the system. In the
future, we want to seamlessly integrate these computations into our tool. There
are, of course, many other improvements of Evonne that we intend to make, both
regarding improved or additional functionality and how proofs and ontologies
are displayed. In the context of repair, it would be usefull to be able to declare
certain atoms or modules to be strict, in the sense that their axioms cannot be
removed, and then compute only diagnoses that respect these declarations. In
addition, we intend to support not only classical repairs (which remove axioms),
but also more gentle kinds of repairs that weaken axioms [15,23,8,3]. It will be
interesting to see how proofs can help locating parts of an axiom that need to
be changed.

Acknowledgements. This work was partially supported by DFG grant 389792660
as part of TRR 248 (https://perspicuous-computing.science), and the DFG
Research Training Group QuantLA, GRK 1763 (https://lat.inf.tu-dresden.
de/quantla).

References

1. Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., Kovtunova, A.: Finding
small proofs for description logic entailments: Theory and practice. In: LPAR-23.
23rd International Conference on Logic for Programming, Artificial Intelligence
and Reasoning. EPiC Series in Computing, vol. 73, pp. 32–67. EasyChair (2020)

https://perspicuous-computing.science
https://lat.inf.tu-dresden.de/quantla
https://lat.inf.tu-dresden.de/quantla

Visualizing Proofs and the Modular Structure for Ontology Repair 13

2. Alrabbaa, C., Rudolph, S., Schweizer, L.: Faceted answer-set navigation. In: Rules
and Reasoning - Second International Joint Conference, RuleML+RR 2018, Lux-
embourg, September 18-21, 2018, Proceedings. Lecture Notes in Computer Science,
vol. 11092, pp. 211–225. Springer (2018). https://doi.org/10.1007/978-3-319-99906-
7 14

3. Baader, F., Kriegel, F., Nuradiansyah, A., Peñaloza, R.: Making repairs in de-
scription logics more gentle. In: Principles of Knowledge Representation and Rea-
soning: Proceedings of the Sixteenth International Conference, KR 2018, Tempe,
Arizona, 30 October - 2 November 2018. pp. 319–328. AAAI Press (2018), https:
//aaai.org/ocs/index.php/KR/KR18/paper/view/18056

4. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007: Advances in Artificial
Intelligence, 30th Annual German Conference on AI, KI 2007, Osnabrück, Ger-
many, September 10-13, 2007, Proceedings. Lecture Notes in Computer Science,
vol. 4667, pp. 52–67. Springer (2007). https://doi.org/10.1007/978-3-540-74565-
5 7, https://doi.org/10.1007/978-3-540-74565-5_7

5. Baader, F., Suntisrivaraporn, B.: Debugging SNOMED CT using axiom pinpoint-
ing in the description logic EL+. In: Cornet, R., Spackman, K.A. (eds.) Proceedings
of the Third International Conference on Knowledge Representation in Medicine,
Phoenix, Arizona, USA, May 31st - June 2nd, 2008. CEUR Workshop Proceedings,
vol. 410. CEUR-WS.org (2008), http://ceur-ws.org/Vol-410/Paper01.pdf

6. Becker, R.A., Cleveland, W.S.: Brushing Scatterplots. Technometrics 29(2),
127–142 (May 1987). https://doi.org/10.1080/00401706.1987.10488204, http://

amstat.tandfonline.com/doi/abs/10.1080/00401706.1987.10488204
7. Borgida, A., Franconi, E., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F.:

Explaining ALC subsumption. In: Horn, W. (ed.) Proc. of the 14th Eur. Conf. on
Artificial Intelligence (ECAI 2000). pp. 209–213. IOS Press (2000)

8. Du, J., Qi, G., Fu, X.: A practical fine-grained approach to resolving
incoherent OWL 2 DL terminologies. In: Proc. of the 23rd ACM Int.
Conf. on Information and Knowledge Management, (CIKM’14). pp. 919–928
(2014). https://doi.org/10.1145/2661829.2662046, http://doi.acm.org/10.1145/
2661829.2662046

9. Engström, F., Nizamani, A.R., Stranneg̊ard, C.: Generating comprehensible ex-
planations in description logic. In: Bienvenu, M., Ortiz, M., Rosati, R., Simkus,
M. (eds.) Informal Proceedings of the 27th International Workshop on Descrip-
tion Logics, Vienna, Austria, July 17-20, 2014. CEUR Workshop Proceedings,
vol. 1193, pp. 530–542. CEUR-WS.org (2014), http://ceur-ws.org/Vol-1193/
paper_17.pdf

10. Graham, M., Kennedy, J.: A survey of multiple tree visualisation. Information Vi-
sualization 9(4), 235–252 (Dec 2010). https://doi.org/10.1057/ivs.2009.29, https:
//doi.org/10.1057/ivs.2009.29

11. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of on-
tologies: Theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008).
https://doi.org/10.1613/jair.2375, https://doi.org/10.1613/jair.2375

12. Hadlak, S., Schumann, H., Schulz, H.J.: A Survey of Multi-faceted Graph Vi-
sualization. In: Borgo, R., Ganovelli, F., Viola, I. (eds.) Eurographics Confer-
ence on Visualization (EuroVis) - STARs. The Eurographics Association (2015).
https://doi.org/10.2312/eurovisstar.20151109

13. Herman, I., Melancon, G., Marshall, M.S.: Graph visualization and navigation
in information visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics 6(1), 24–43 (2000)

https://doi.org/10.1007/978-3-319-99906-7_14
https://doi.org/10.1007/978-3-319-99906-7_14
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18056
https://doi.org/10.1007/978-3-540-74565-5_7
https://doi.org/10.1007/978-3-540-74565-5_7
https://doi.org/10.1007/978-3-540-74565-5_7
http://ceur-ws.org/Vol-410/Paper01.pdf
https://doi.org/10.1080/00401706.1987.10488204
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1987.10488204
http://amstat.tandfonline.com/doi/abs/10.1080/00401706.1987.10488204
https://doi.org/10.1145/2661829.2662046
http://doi.acm.org/10.1145/2661829.2662046
http://doi.acm.org/10.1145/2661829.2662046
http://ceur-ws.org/Vol-1193/paper_17.pdf
http://ceur-ws.org/Vol-1193/paper_17.pdf
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.1057/ivs.2009.29
https://doi.org/10.1613/jair.2375
https://doi.org/10.1613/jair.2375
https://doi.org/10.2312/eurovisstar.20151109

14 Alrabbaa, Baader, Dachselt, Flemisch, Koopmann

14. Horridge, M., Bechhofer, S.: The OWL API: A Java API for OWL ontologies. J.
Semant. Web 2(1), 11–21 (2011)

15. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: The Semantic Web - ISWC 2008, 7th International Semantic Web Con-
ference, ISWC 2008, Karlsruhe, Germany, October 26-30, 2008. Proceedings.
Lecture Notes in Computer Science, vol. 5318, pp. 323–338. Springer (2008).
https://doi.org/10.1007/978-3-540-88564-1 21

16. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: The Semantic Web, 6th International Semantic Web Confer-
ence, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan,
Korea, November 11-15, 2007. Lecture Notes in Computer Science, vol. 4825, pp.
267–280. Springer (2007). https://doi.org/10.1007/978-3-540-76298-0 20

17. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C.: Repairing unsatisfiable concepts in
OWL ontologies. In: The Semantic Web: Research and Applications, 3rd European
Semantic Web Conference, ESWC 2006, Budva, Montenegro, June 11-14, 2006,
Proceedings. Lecture Notes in Computer Science, vol. 4011, pp. 170–184. Springer
(2006). https://doi.org/10.1007/11762256 15

18. Kamada, T., Kawai, S.: An algorithm for drawing general undi-
rected graphs. Information Processing Letters 31(1), 7–15 (1989).
https://doi.org/https://doi.org/10.1016/0020-0190(89)90102-6

19. Kazakov, Y., Klinov, P.: Goal-directed tracing of inferences in EL ontologies. In:
Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic,
D., Groth, P.T., Noy, N.F., Janowicz, K., Goble, C.A. (eds.) Proc. of the 13th
International Semantic Web Conference (ISWC 2014). Lecture Notes in Computer
Science, vol. 8797, pp. 196–211. Springer (2014)

20. Kazakov, Y., Klinov, P., Stupnikov, A.: Towards reusable explanation services in
protege. In: Proceedings of the 30th International Workshop on Description Logics,
Montpellier, France, July 18-21, 2017. CEUR Workshop Proceedings, vol. 1879.
CEUR-WS.org (2017), http://ceur-ws.org/Vol-1879/paper31.pdf

21. Kazakov, Y., Krötzsch, M., Simancik, F.: The incredible ELK – from polynomial
procedures to efficient reasoning with EL ontologies. J. Autom. Reasoning 53(1),
1–61 (2014). https://doi.org/10.1007/s10817-013-9296-3

22. Kazakov, Y., Skocovský, P.: Enumerating justifications using resolution. In: Au-
tomated Reasoning - 9th International Joint Conference, IJCAR 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-
17, 2018, Proceedings. Lecture Notes in Computer Science, vol. 10900, pp.
609–626. Springer (2018). https://doi.org/10.1007/978-3-319-94205-6 40, https:
//doi.org/10.1007/978-3-319-94205-6_40

23. Lam, J.S.C., Sleeman, D.H., Pan, J.Z., Vasconcelos, W.W.: A fine-grained
approach to resolving unsatisfiable ontologies. J. Data Semantics 10, 62–95
(2008). https://doi.org/10.1007/978-3-540-77688-8 3, https://doi.org/10.1007/
978-3-540-77688-8_3

24. McGuinness, D.L., Borgida, A.: Explaining subsumption in description logics. In:
Proceedings of the Fourteenth International Joint Conference on Artificial Intel-
ligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes.
pp. 816–821. Morgan Kaufmann (1995), http://ijcai.org/Proceedings/95-1/
Papers/105.pdf

25. Moodley, K., Meyer, T., Varzinczak, I.J.: Root justifications for ontology re-
pair. In: Rudolph, S., Gutiérrez, C. (eds.) Web Reasoning and Rule Sys-
tems - 5th International Conference, RR 2011, Galway, Ireland, August 29-
30, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6902, pp.

https://doi.org/10.1007/978-3-540-88564-1_21
https://doi.org/10.1007/978-3-540-76298-0_20
https://doi.org/10.1007/11762256_15
https://doi.org/https://doi.org/10.1016/0020-0190(89)90102-6
http://ceur-ws.org/Vol-1879/paper31.pdf
https://doi.org/10.1007/s10817-013-9296-3
https://doi.org/10.1007/978-3-319-94205-6_40
https://doi.org/10.1007/978-3-319-94205-6_40
https://doi.org/10.1007/978-3-319-94205-6_40
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1007/978-3-540-77688-8_3
https://doi.org/10.1007/978-3-540-77688-8_3
http://ijcai.org/Proceedings/95-1/Papers/105.pdf
http://ijcai.org/Proceedings/95-1/Papers/105.pdf

Visualizing Proofs and the Modular Structure for Ontology Repair 15

275–280. Springer (2011). https://doi.org/10.1007/978-3-642-23580-1 24, https:
//doi.org/10.1007/978-3-642-23580-1_24

26. Nikitina, N., Rudolph, S., Glimm, B.: Interactive ontology revision. J. Web Semant.
12, 118–130 (2012). https://doi.org/10.1016/j.websem.2011.12.002, https://doi.
org/10.1016/j.websem.2011.12.002

27. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In:
Proceedings of the 14th International Conference on World Wide Web,
WWW 2005, Chiba, Japan, May 10-14, 2005. pp. 633–640. ACM (2005).
https://doi.org/10.1145/1060745.1060837

28. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987)

29. Roberts, J.C.: State of the Art: Coordinated Multiple Views in Exploratory
Visualization. In: Fifth International Conference on Coordinated and Multi-
ple Views in Exploratory Visualization (CMV 2007). pp. 61–71 (Jul 2007).
https://doi.org/10.1109/CMV.2007.20

30. Schiller, M.R.G., Schiller, F., Glimm, B.: Testing the adequacy of automated expla-
nations of EL subsumptions. In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Pro-
ceedings of the 30th International Workshop on Description Logics, Montpellier,
France, July 18-21, 2017. CEUR Workshop Proceedings, vol. 1879. CEUR-WS.org
(2017), http://ceur-ws.org/Vol-1879/paper43.pdf

31. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Gottlob, G., Walsh, T. (eds.) IJCAI-03, Pro-
ceedings of the Eighteenth International Joint Conference on Artificial Intelligence,
Acapulco, Mexico, August 9-15, 2003. pp. 355–362. Morgan Kaufmann (2003),
http://ijcai.org/Proceedings/03/Papers/053.pdf

32. Schulz, H.: Treevis.net: A tree visualization reference. IEEE
Computer Graphics and Applications 31(6), 11–15 (Nov 2011).
https://doi.org/10.1109/MCG.2011.103

33. Schulz, H., Hadlak, S., Schumann, H.: The design space of implicit hierarchy visu-
alization: A survey. IEEE Transactions on Visualization and Computer Graphics
17(4), 393–411 (April 2011). https://doi.org/10.1109/TVCG.2010.79

34. Shchekotykhin, K.M., Friedrich, G., Fleiss, P., Rodler, P.: Interactive ontology
debugging: Two query strategies for efficient fault localization. J. Web Semant.
12, 88–103 (2012). https://doi.org/10.1016/j.websem.2011.12.006, https://doi.
org/10.1016/j.websem.2011.12.006

35. Thomas, E., Sleeman, D.H., Pan, J.Z., Reul, Q., Lam, J.S.C.: The Aberdeen
University ontology reuse stack. In: Symbiotic Relationships between Seman-
tic Web and Knowledge Engineering, Papers from the 2008 AAAI Spring Sym-
posium, Technical Report SS-08-07, Stanford, California, USA, March 26-28,
2008. p. 83. AAAI (2008), http://www.aaai.org/Library/Symposia/Spring/

2008/ss08-07-013.php

36. Vescovo, C.D., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an
ontology: Atomic decomposition. In: IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July
16-22, 2011. pp. 2232–2237. IJCAI/AAAI (2011). https://doi.org/10.5591/978-1-
57735-516-8/IJCAI11-372

https://doi.org/10.1007/978-3-642-23580-1_24
https://doi.org/10.1007/978-3-642-23580-1_24
https://doi.org/10.1007/978-3-642-23580-1_24
https://doi.org/10.1016/j.websem.2011.12.002
https://doi.org/10.1016/j.websem.2011.12.002
https://doi.org/10.1016/j.websem.2011.12.002
https://doi.org/10.1145/1060745.1060837
https://doi.org/10.1109/CMV.2007.20
http://ceur-ws.org/Vol-1879/paper43.pdf
http://ijcai.org/Proceedings/03/Papers/053.pdf
https://doi.org/10.1109/MCG.2011.103
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1016/j.websem.2011.12.006
https://doi.org/10.1016/j.websem.2011.12.006
https://doi.org/10.1016/j.websem.2011.12.006
http://www.aaai.org/Library/Symposia/Spring/2008/ss08-07-013.php
http://www.aaai.org/Library/Symposia/Spring/2008/ss08-07-013.php
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-372
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-372

	Visualizing Proofs and the Modular Structure of Ontologies to Support Ontology Repair

