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Many methods can fit models with a higher prediction accuracy, on average, than the least squares linear regression technique. But
the models, including linear regression, are typically impossible to interpret or visualize. We describe a tree-structured method that
fits a simple but nontrivial model to each partition of the variable space. This ensures that each piece of the fitted regression function
can be visualized with a graph or a contour plot. For maximum interpretability, our models are constructed with negligible variable
selection bias and the tree structures are much more compact than piecewise-constant regression trees. We demonstrate, by means of
a large empirical study involving 27 methods, that the average prediction accuracy of our models is almost as high as that of the most
accurate “black-box” methods from the statistics and machine learning literature.
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1. Introduction

Box (1979) wrote, “All models are wrong but some are use-
ful”. This statement is unquestionably true, but it raises the
question: useful for what? There are two ways in which a
model can be useful: (i) it can improve our understand-
ing of the system generating the data; or (ii) it can make
accurate predictions of future observations. For example,
linear models for designed factorial experiments are use-
ful because the terms they contain may be interpreted as
main and interaction effects. On the other hand, accurate
weather prediction models are useful even if they are hard
to interpret.

There are many applications, however, where traditional
statistical models are useless for prediction and for interpre-
tation. An example is the study on house prices in the greater
Boston area in 1970 reported in Harrison and Rubinfeld
(1978) and made famous by Belsley et al. (1980). There are
506 observations on a variety of variables, with each obser-
vation pertaining to one census tract. The goal of the study
was to build a regression model for the median house price
(MEDV) and to use it to estimate the “marginal-willingness-
to-pay for clean air,” namely, the effect of nitrogen oxide
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concentration (NOX). Table 1 lists the predictor variables.
After transforming some variables to satisfy normal-theory
assumptions, Harrison and Rubinfeld (1978) obtained the
fitted model shown in Table 2. Note that because the whole
population is represented in the data, there is nothing to
predict. In particular, the t-statistics do not have their usual
statistical meaning.

We may hope that the model can explain the effects of
the predictor variables on the response. For example, the
sign associated with the coefficient for NOX2 suggests that
it has a negative effect on MEDV. Similarly, the negative co-
efficient for log(DIS) leads to the conclusion that MEDV is
negatively associated withDIS. Table 2 shows, however, that
the correlation between log(DIS) and log(MEDV) is positive!
Another example is RAD, which has a positive regression
coefficient but a negative correlation with MEDV. Of course,
these apparent contradictions are easy to explain. First, a
regression coefficient quantifies the residual effect of the
predictor after the linear effects of the other predictors in
the model have been accounted for. Second, the correlation
between a predictor and the response measures their linear
association, ignoring the other predictors. Nevertheless, the
contradictions in signs are not intuitive.

Can we construct models that are more interpretable and
that also fit the data well? Since a model that involves a
single predictor variable is easiest to interpret because the
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Table 1. Variables in the Boston housing data

Var Definition

MEDV Median value in $1000
DIS Distance to employment centers
RAD Accessibility to radial highways
INDUS % nonretail business
CHAS One if on Charles River, zero else

NOX Nitrogen oxide conc. (p.p.109)
RM Average number of rooms
AGE % built before 1940
CRIM Per capita crime rate
ZN % land zoned for lots
TAX Property tax/$10,000
PT Pupil/teacher ratio

B (% black − 63)2/10
LSTAT % lower-status pop.

fitted function can be graphed, one solution is to employ the
best single-predictor model. Unfortunately, because such a
model does not incorporate the information contained in
the other predictors, it may not fit the data as well as a model
that uses more than one predictor. Furthermore, a single-
predictor model reveals nothing about the joint effect of all
the predictors.

The goal of this paper is to study an alternative approach
that: (i) retains the clarity and ease of interpretation of rel-
atively simple models; (ii) allows expression of the joint
effect of several predictors; and (iii) yields models with
a higher average prediction accuracy than the traditional
multiple linear regression model. We accomplish this by fit-
ting simple-models to partitions of the dataset and sample
space. One such model for the Boston data is shown by
the tree structure in Fig. 1. The predictor space is split into
three rectangular partitions. Within each partition, the best
single predictor variable is selected to fit a linear model to
MEDV. Notice that, unlike the Harrison-Rubinfeld model,

Table 2. Least squares fit for log(MEDV). The columns labeled by β,
t , and ρ give the estimated regression coefficients, t-statistics, and
correlation between log(MEDV) and the corresponding X variable

X β t ρ

Intercept 4.6 29.5
log(LSTAT) −3.7E-1 −14.8 −0.8
CRIM −1.2E-2 −9.5 −0.5
PT −3.1E-2 −6.2 −0.5
log(DIS) −1.9E-1 −5.7 0.4

NOX2 −6.4E-1 −5.6 −0.5
log(RAD) 9.6E-2 5.0 −0.4

RM2 6.3E-3 4.8 0.6
B 3.6E-4 3.5 0.4
TAX −4.2E-4 −3.4 −0.6
CHAS 9.1E-2 2.8 0.2
AGE 9.1E-5 0.2 −0.5
ZN 8.0E-5 0.2 0.4
INDUS 2.4E-4 0.1 −0.5

Fig. 1. Piecewise simple linear regression tree for the Boston data.
The sample mean MEDV value and the best linear predictor is
printed beneath each leaf node, together with the sign of its coef-
ficient. At each split, a case goes down the left branch if and only
if the associated inequality is satisfied.

we can directly model MEDV in terms of the original predic-
tors without needing any transformations.

Figure 2 displays the data and fitted functions in the three
partitions. The graphs indicate that LSTAT has a large neg-
ative effect on house price, except in census tracts with large
houses (right panel) where PT is a stronger linear predictor.
As expected, MEDV tends to increase with RM. These con-
clusions are consistent with the signs of the coefficients of
log(LSTAT) and RM2 in the Harrison-Rubinfeld model.

Besides a piecewise single-regressor model, a piecewise
two-regressor model can also be used to reveal more insight
into the data. The tree structure for the latter is presented in
Fig. 3, with the selected regressors printed beneath the leaf
nodes. By utilizing only two regressor variables in each node
of the tree, we can employ shaded contour plots to display
the fitted functions and the data points. These plots are
shown in Fig. 4, with lighter shades corresponding to higher
values of MEDV. Note that some of the contour lines are not
parallel; this is due to truncation of the predicted values, as
explained by the algorithm in Section 2. We observe that
the higher-priced census tracts tend to have high values of
RM and low values of LSTAT. The lowest-priced tracts are
mostly concentrated in one leaf node (bottom left panel in
dark gray) with below average values of RM and DIS, and
above average values of RAD, LSTAT, and CRIM. Although
the regression coefficients in each leaf node model suffer
from the problems of interpretation noted earlier, we do
not need their values for a qualitative analysis. The contour
plots convey all the essential information.

How well do the tree models fit the data compared to the
Harrison-Rubinfeld model? Figure 5 plots the fitted ver-
sus observed values of MEDV. The piecewise two-regressor
model clearly fits best of all. Notice the lines of points on
the right edges of the graphs for the Harrison-Rubinfeld
and the one-regressor tree models. They are due to the ob-
served MEDV values being truncated at $50 000 (Gilley and
Pace, 1996) and the inability of these two models to fit them
satisfactorily. Our two-regressor model has no trouble with
these points.

The rest of this article is organized as follows. Section 2
describes our regression tree algorithm. Section 3 analyzes
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Fig. 2. Data and fitted models in three leaf nodes of the tree in Fig. 1.

another well-known dataset and compares the results with
that of human experts. We take the opportunity there
to highlight the important problem of selection bias. In
Section 4 we compare the prediction accuracy of 27 algo-
rithms from the statistical and machine learning literature
on 52 real datasets. The results show that some machine
learning methods have very good accuracy and that our
methods are quite competitive. We prove an asymptotic
consistency result in Section 5 to lend theoretical support
to the empirical findings and close with some remarks in
Section 6.

2. Regression tree method

Our algorithm is an extension of the GUIDE algorithm
(Loh, 2002), which fits a constant or a multiple linear
model at each node of a tree. The only difference is that we
now use stepwise linear regression instead. The number of
linear predictors permitted at each node may be restricted

Fig. 3. Piecewise two-regressor linear regression tree for MEDV

(Boston data), with selected regressor variables beneath each leaf
node.

or unrestricted, subject to the standard F-to-enter and
F-to-remove thresholds of 4.0 (Miller, 2002). A one- or two-
regressor tree model is obtained by restricting the number of
linear predictors to one or two, respectively. We present here
the recursive sequence of operations for a two-regressor
tree model; the method for a one-regressor tree model is
similar.

Step 1. Let t denote the current node. Use stepwise regres-
sion to choose two quantitative predictor variables
to fit a linear model to the data in t .

Step 2. Do not split a node if its model R2 > 0.99 or if the
number of observations is less than 2n0, where n0

is a small user-specified constant. Otherwise, go to
the next step.

Step 3. For each observation, define the class variable Z =
1 if it is associated with a positive residual. Other-
wise, define Z = 0.

Step 4. For each predictor variable X :
(a) Construct a 2 × m cross-classification table.

The rows of the table are formed by the val-
ues of Z. If X is a categorical variable, its val-
ues define the columns, i.e., m is the number
of distinct values of X . If X is quantitative, its
values are grouped into four intervals at the
sample quartiles and the groups constitute the
columns, i.e., m = 4.

(b) Compute the significance probability of the
chi-squared test of association between the
rows and columns of the table.

Step 5. Select the X with the smallest significance proba-
bility to split t . Let tL and tR denote the left and
right subnodes of t .
(a) If X is quantitative, search for a split of the

form X ≤ x. For each x such that tL and tR

each contains at least n0 observations:
i. Use stepwise regression to choose two

quantitative predictor variables to fit a
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Fig. 4. Contour plots of the fitted functions in the leaf nodes of the tree in Fig. 3. Data points with positive and negative residuals are
marked with + and o symbols, respectively.

two-regressor model to each of the datasets
in tL and tR.

ii. Compute S, the total of the sums of squared
residuals in tL and tR.

Select the smallest value of x that minimizes S.
(b) If X is categorical, search for a split of the form

X ∈ C, where C is a subset of the values taken
by X . For each C such that tL and tR each has

at least n0 observations, calculate the sample
variances of Z in tL and tR. Select the set C
for which the weighted sum of the variances is
minimum, with weights proportional to sample
sizes.

Step 6. After splitting has stopped, prune the tree using
the algorithm described in Breiman et al. (1984,
Sec. 8.5) with ten-fold Cross-Validation (CV). Let

Fig. 5. Fitted versus observed values for the Harrison-Rubinfeld and the piecewise one- and two-regressor models for the Boston data.
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E0 be the smallest CV estimate of prediction Mean
Square Error (MSE) and let α be a positive num-
ber. Select the smallest subtree whose CV estimate
of MSE is within α times the standard error of E0.
We use the default value of α = 0.5 here and call
this the 0.5-SE rule. To avoid large prediction errors
caused by extrapolation, truncate all predicted val-
ues so that they lie within the range of the training
sample data values in their nodes. The nonparallel
contour lines in some of the plots in Fig. 4 are the
result of this truncation.

Our split selection approach is uniquely different from
that of CART (Breiman et al., 1984) and M5 (Quinlan,
1992), two other regression tree algorithms. CART con-
structs piecewise constant trees only and it searches for the
best variable to split and the best split point simultaneously
at each node. This requires the evaluation of all possible
splits on every predictor variable. Thus, if there are K quan-
titative predictor variables each taking M distinct values at
a node, K(M − 1) splits have to be evaluated. To extend the
CART approach to piecewise linear regression, two linear
models must be fitted for each candidate split. This means
that 2K(M − 1) regression models must be computed be-
fore a split is found. The corresponding number of regres-
sion models for K categorical predictors each having M
distinct values is 2K(2M−1 − 1). Clearly, the computational
cost grows rapidly with K and M.

Our approach avoids the computational problem by sep-
arating split variable selection from split point selection. To
select a variable for splitting, only one regression model is
fitted (Step 1 of the algorithm). If the selected variable is
quantitative with M distinct values, split set selection re-
quires only 2(M − 1) models to be fitted (Step 5a). On the
other hand, if the selected variable is categorical, no regres-
sion fitting is needed to find the set of split values (Step 5b).

M5 uses a hybrid strategy to build a piecewise linear
model. First it constructs a large piecewise constant tree us-
ing exhaustive search to minimize a weighted sum of stan-
dard deviations. Then it prunes the tree using a heuristic
argument instead of CV. A single linear model is fitted to
each node during pruning.

M5 also treats categorical variables differently. Our piece-
wise one- and two-regressor models use categorical vari-
ables for split selection only; they do not use them as re-
gressors in the linear models. M5, on the other hand, first
converts each categorical variable into a vector of zeros and
ones and then treats the elements of the vector as quantita-
tive variables for split selection and for regression modeling.

A consequence of these differences in approach is that
our method possesses an important property that CART
and M5 do not, namely, conditional unbiasedness in split
variable selection. We say that a selection method is unbi-
ased if, under the assumption that the predictor variables
are statistically independent of the response variable, each
predictor has the same chance of being selected. Unbiased-

ness is desirable because even a small amount of selection
bias in a tree can lead to erroneous or inexplicable conclu-
sions. The reason our method is unbiased can be traced to
Step 4 of the algorithm where selection of a variable to split
a node is based on contingency table analyses of the resid-
ual distribution versus the distributions of the predictor
variables. Suppose X1 and X2 are the regressor variables in
a two-regressor model. If the other predictor variables are
independent of the response variable, they will also be inde-
pendent of the residuals. Hence, conditional on X1 and X2

being the selected regressors, all the other variables have the
same chance of being selected to split the node. In contrast,
since CART and M5 are based on exhaustive search, their
split selection methods are biased toward variables that al-
low more splits, particularly categorical variables with many
distinct values. We demonstrate this with an example in the
next section.

3. Baseball data

This example utilizes a well-known baseball dataset pro-
vided by the American Statistical Association Section on
Statistical Graphics for its 1988 data exposition. The data
consist of the 1987 opening day salaries and various ca-
reer and 1986 performance statistics of 263 major league
baseball hitters (see Table 3). The purpose of the exposi-
tion was to invite statisticians to analyze the data and an-
swer the question, “Are players paid according to their per-
formance?” Fifteen teams took up the challenge and their
analyses were published in the conference proceedings.

Table 3. Predictor variables and their definitions for the baseball
data

Bat86 #times at bat, 1986
Hit86 #hits, 1986
Hr86 #home runs, 1986
Run86 #runs, 1986
Rb86 #runs batted in, 1986
Wlk86 #walks, 1986
Yrs #years in major leagues
Batcr #times at bat, career
Hitcr #hits, career
Hrcr #home runs, career
Runcr #runs, career
Rbcr #runs batted in, career
Wlkcr #walks, career
Leag86 League, end 1986 (2 values)
Div86 Division, end 1986 (2 values)
Team86 Team, end 1986 (24 values)
Pos86 Position, 1986 (23 values)
Puto86 #put outs, 1986
Asst86 #assists, 1986
Err86 #errors, 1986
Leag87 League, start 1987 (2 values)
Team87 Team, start 1987 (24 values)
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Table 4. Hoaglin-Velleman model for log(Salary)

X β t

Intercept 3.530 31.1
Runcr/Yrs 0.016 9.4√
Run86 0.083 4.1

min[(Yrs−2)+,5] 0.346 22.8
(Yrs−7)+ −0.041 −4.4

Hoaglin and Velleman (1995) give a critique of the pub-
lished results. Defining as “best” the models that are “most
parsimonious, most interpretable, and best fitting”, they
conclude that a log transformation of Salary is most
successful, and that the best predictor variables are Yrs,
Runcr/Yrs, and a 1986 performance measure. They also
find seven outliers in the data. Six are due to errors in the
data and are omitted from their analysis. The seventh out-
lier (Pete Rose) is retained because it is not erroneous. The
model fitted to the 257 cases is given in Table 4 (Hoaglin
and Velleman use base-10 log whereas we use natural log
here).

Although the t-statistics in Table 4 are all highly signif-
icant, they again do not have their usual statistical mean-
ing because the dataset is essentially the whole population
of major league hitters for 1987. Besides, even if the data
were a random sample, the t-statistics are expected to be
inflated by the process of variable selection and transfor-
mation. Despite this, the variables in the model make sense:
Yrs accounts for experience, Runcr/Yrs for productivity
rate, and Run86 for 1986 performance. What is difficult to
explain is the negative coefficient for (Yrs−7)+. It appears
to suggests that the players were penalized for experience
beyond 7 years.

Using the data from all 263 hitters, but with the errors
replaced by the correct values listed in Hoaglin and Velle-
man (1995), our piecewise one-regressor model tree has
three leaf nodes. It splits twice on Yrs, as shown on the
left side of Fig. 6. If Yrs ≤ 3, the best predictor is Runcr; if
3 < Yrs ≤ 6, the best predictor is Hitcr; otherwise the best
predictor is Hit86. Our model is thus quite similar to that
of Hoaglin and Velleman. While the latter is a three-piece
model divided along Yrs at two and seven, ours divides Yrs
at three and six. Our model similarly suggests that salary de-
pends on career performance for Yrs ≤ 6; beyond 6 years,

Fig. 6. Three regression tree models for the baseball data.

1986 performance is more important. Figure 7 shows the
data and fitted functions in the three leaf nodes of the tree.

The split of Yrs into three intervals suggests a curva-
ture effect. We can better model this with a piecewise one-
regressor quadratic model. This tree is shown in the middle
of Fig. 6. It is simpler, with only one split—again on Yrs.
The best predictor variable is Hitcr if Yrs ≤ 5 and Hit86
otherwise. Again, salary tends to increase with career per-
formance for the junior players and with 1986 performance
for the senior players. Plots of the fitted curves are shown
in Fig. 8.

The tree for our piecewise two-regressor linear model is
displayed on the right side of Fig. 6. It has the same struc-
ture as that for the one-regressor quadratic model, except
that two variables are selected as linear regressors in each
leaf node. We observe from the contour plots of the fit-
ted functions in Fig. 9 that Batcr and Hitcr are the most
important predictor variables for players with five or fewer
years of experience. As may be expected, the plot shows that
these two variables are highly correlated. Furthermore, ex-
cept for a couple of players, most of the junior ones have
lower salaries. For players with more than 5 years of expe-
rience, the most important predictors are Hit86 and Rbcr.
It is noteworthy that the sample correlation between these
two variables here is quite low at 0.18. Many of the highest-
paid players belong to this group. Figure 10 shows that the
fit of this model is as good as that of the Hoaglin-Velleman
model.

Figure 11 shows the CART and M5 models for these
data. The M5 tree is obtained using the WEKA (Witten and
Frank, 2000) implementation. The similarity in the splits is
due to CART and M5 both constructing piecewise con-
stant regression trees prior to pruning. CART minimizes
the residual sum of squares but M5 minimizes a weighted
sum of standard deviations. This is the reason for the dif-
ferent split values at the root node.

Given the prominent role of Yrs in our models and that
of Hoaglin and Velleman, it may seem odd that this vari-
able is completely absent from the CART tree. (Yrs is also
not used to split the M5 tree, but it is used as linear predic-
tor in the leaf node models.) CART and M5 split first on
Batcr instead. Since the latter is positively correlated with
Yrs, we conjecture that Batcr is acting as a surrogate to
Yrs. The reason it is chosen is most likely due to selection
bias—Batcr has 256 permissible splits while Yrs has only
20. Another possible manifestation of the bias appears in
the CART split on the categorical variable Team86, which
neither the Hoaglin-Velleman nor our tree models find im-
portant. It turns out that Team86 has 22 distinct categories
at that node. Therefore it yields 221 − 1 = 2097 151 permis-
sible splits. As a result, the residual sum of squares can be
reduced much more by splitting on Team86 than on an or-
dered quantitative variable. M5 is similarly affected by this
selection bias. It uses Team86 and Team87 as split variables
in the lower branches of the tree, but these branches are
removed by pruning. Nonetheless, some tell-tale evidence
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Fig. 7. Fitted functions and data for the one-regressor linear tree model for the baseball data.

involving these variables can be found in the piecewise linear
regression functions L1–L5 in the leaf nodes. For example:

104L1

= 41 300 + 97.2 Yrs − 29.2 Bat86 + 18.8 Batcr

+ 112 Hit86 − 44.7 Hitcr + 17.1 Wlk86 + 2.2 Hrcr

+ 0.456 Runcr + 35.6 Rbcr − 1.68 Wlkcr

+ 63 I(Team86∈ {Atl, Bal, Bos, Cal, Chi, Cin, Cle,
Det, Hou, LA, NY, Oak, Tor}) + 418 I(Team86 = StL)

+ 875 I(Team87 ∈ {Atl, Bal, Bos, Chi, LA, NY, Oak,
StL, Tor}) + 534I(Team87 ∈ {Cal, Cin, Cle, Det,
Hou, KC, Mil, Min, Mon, Phi, SD, SF, Tex}).

Notice the counter-intuitive change in signs between the co-
efficients of Bat86 and Batcr and between those of Hit86
and Hitcr. Since the M5 tree contains five linear regression
functions, it is five times as hard to interpret as a traditional
multiple linear regression model.

4. Prediction accuracy

We now put aside the issue of model interpretation and
consider how our methods compare against other methods

Fig. 8. Fitted functions and data for the one-regressor quadratic
tree model for the baseball data.

in terms of prediction accuracy when applied to real data.
Since there are few published empirical studies comparing
statistical with machine learning regression methods, we
include some of the most well-known algorithms from each
discipline. The results reported here are obtained using 27
algorithms and 52 datasets.

4.1. Datasets

The datasets are listed in Table 5 together with informa-
tion on sample sizes, numbers of quantitative and cate-
gorical predictor variables, and their sources. Sample size
ranges from 96 to 21 252, number of quantitative predic-
tor variables from one to 28, and number of categori-
cal variables from zero to six. All binary predictor vari-
ables are treated as quantitative. Figure 12 summarizes
the information in a graph. The datasets mostly come
from books and journal articles, although several are from
Statlib (http://lib.stat.cmu.edu/) and the UCI data reposi-
tory (Blake and Merz, 1998). Observations with missing or
incorrect values are removed.

For the six datasets accompanied by test sets, we apply
each algorithm to the training set and compute the pre-
diction MSE of the fitted model on the test set. For the
other datasets, we use ten-fold CV to estimate the prediction
MSE. That is, we first randomly divide each dataset into ten
roughly equal-sized subsets. Then we set aside one subset
in turn, pool the observations in the other nine subsets, ap-
ply each algorithm to the combined data, and compute the
prediction MSE of the fitted model on the set-aside subset.
The average of the ten results yields the CV estimate.

4.2. Algorithms

Table 6 lists the 27 algorithms. Unless stated otherwise,
each algorithm is used with its default parameter values.
For those algorithms that cannot directly deal with cate-
gorical predictor variables, we follow the standard practice
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Fig. 9. Data and contour plots of the piecewise two-regressor model for the baseball data. Points associated with positive and negative
residuals are denoted by + and o, respectively.

Fig. 10. Fitted versus observed log(Salary) for the baseball data.

Fig. 11. CART piecewise constant and M5 piecewise multiple linear models for the baseball data. The fitted values for the CART
model are given in italics beneath the leaf nodes. S consists of the teams: Atlanta, California, Cincinnati, Cleveland, Detroit, Houston,
Los Angeles, Oakland, Pittsburgh, San Diego, San Francisco, and Seattle. L1–L5 are linear functions.
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Table 5. Datasets (N denotes the number of training cases, N∗ the number of test cases (if any), Q the number of quantitative predictors,
and C the number of categorical predictors (category sizes in parentheses))

Name N N∗ Q C Source

Abalone 4177 7 1 (3) UCI
Ais 202 11 1 (9) Cook and Weisberg (1994)
Alcohol 2467 12 6 (3,3,3,4,4,6) Kenkel and Terza (2001)
Amenity 3044 19 2 (3,4) Chattopadhyay (2003)
Attend 838 7 2 (3,29) Cochran (2002)
Baseball 263 18 2 (23,24) Statlib
Baskball 96 4 0 Simonoff (1996)
Boston 506 13 0 Belsley et al. (1980)
Boston2 506 13 1 (92) Belsley et al. (1980)
Budget 1729 10 0 Bollino et al. (2000)
Cane 3775 6 3 (14,15,24) Denman and Gregory (1998)
Cardio 375 6 3 (7,8,12) Bryant and Smith (1996)
College 694 23 1 (3) Statlib
County 3114 12 1 (46) Harrell (2001)
Cps 534 7 3 (3,3,6) Berndt (1991)
Cps95 21 252 42 504 8 6 (2,3,4,5,7,9) ftp.stat.berkeley.edu/pub/datasets/fam95.zip
Cpu 209 6 1 (30) UCI
Deer 654 10 3 (2,6,7) Onoyama et al. (1998)
Diabetes 375 14 1 (3) Harrell (2001)
Diamond 308 1 3 (3,5,6) Chu (2001)
Edu 1400 5 0 Martins (2001)
Engel 11 986 11 986 5 0 Delgado and Mora (1998)
Enroll 258 6 0 Liu and Stengos (1999)
Fame 1318 21 1 (7) Cochran (2000)
Fat 252 14 0 Penrose et al. (1985)
Fishery 6806 11 3 (3,5,6) Fernandez et al. (2002)
Hatco 100 12 1 (3) Hair et al. (1998)
Houses 6880 13 760 8 0 Pace and Barry (1997)
Insur 2182 4 2 (7,9) Hallin and Ingenbleek (1983)
Labor 2953 18 0 Aaberge et al. (1999)
Labor2 5443 5443 17 0 Laroque and Salanie (2002)
Laheart 200 13 3 (4,4,5) Afifi and Azen (1979)
Medicare 4406 21 0 Deb and Trivedi (1997)
Mpg 392 6 1 (3) UCI
Mpg2001 852 5 5 (3,3,5,12,42) www.fueleconomy.gov
Mumps 1523 3 0 Statlib
Mussels 201 3 1 (5) Cook (1998)
Ozone 330 8 0 Breiman and Friedman (1988)
Pole 5000 10 000 26 0 Weiss and Indurkhya (1995)
Price 159 15 0 UCI
Rate 144 9 0 Lutkepohl et al. (1999)
Rice 171 13 2 (3,3) Horrace and Schmidt (2000)
Scenic 113 9 1 (4) Neter et al. (1996)
Servo 167 2 2 (5,5) UCI
Smsa 141 9 1 (4) Neter et al. (1996)
Spouse 11 136 11 136 21 0 Olson (1998)
Strike 625 4 1 (18) Statlib
Ta 324 3 3 (3,30,40) Authors
Tecator 215 10 0 Statlib
Tree 100 8 0 Rawlings (1988)
Triazine 186 28 0 Torgo (1999)
Wage 3380 13 0 Schafgans (1998)
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Fig. 12. Sample size versus number of predictor variables for the 52 datasets. Plot symbol indicates the number of categorical variables.

of converting them to zero-one dummy vectors. Each vec-
tor component is then treated as a quantitative predictor
variable.

CART. Piecewise constant regression tree (Breiman et al.,
1984). CART is a registered trademark of California Sta-
tistical Software, Inc. We use version 4 of the Windows

Table 6. The 27 algorithms considered in this study

Cart CART piecewise constant
Cr CUBIST rule-based model
Ci Cr and nearest-neighbor (composite)
Crb Boosted Cr (committee model)
gam Generalized additive model
Gc GUIDE piecewise constant
Gl GUIDE piecewise simple linear
Gq GUIDE piecewise simple quadratic
Gm GUIDE piecewise multiple linear
Gs GUIDE piecewise stepwise linear
Gs2 GUIDE two-regressor stepwise linear
Gf2 GUIDE two-regressor forward linear
lad Least absolute deviations regression
lr Least squares linear regression
mars MARS
mart MART
Mc M5 piecewise constant
Mcb Bagged Mc

Mm M5 piecewise multiple linear
Mmb Bagged Mm

nnet Neural network
pol POLYMARS
ppr Projection pursuit regression
Rc RT piecewise constant
Rm RT piecewise multiple linear
Rp RT piecewise partial linear
rreg Huber’s robust regression

implementation (Steinberg and Colla, 1995), with ten-fold
CV and the default 0-SE rule. The minimal node size is ten
except for the Cps95 dataset where the value is changed to
100 because of the program’s memory limitations.

CUBIST. A rule-based algorithm due to R. Quinlan
(www.rulequest.com/cubist-info.html). We use Release
1.10. Three type of models are studied: rule-based only
(Cr), composite (Ci), and committee (Crb) with five mem-
bers. The Ci model combines Cr with a nearest-neighbor
method. Crb is a boosted version of Cr.

GAM. Generalized additive model (Hastie and Tibshirani,
1990). We use the S-Plus function gam with the Gaussian
family and nonparametric smoothing splines (option s).

GUIDE. Generalized regression tree (Loh, 2002). Gc and
Gm denote piecewise constant and piecewise multiple linear
models. Categorical variables are used for splitting and for
regression modeling (via dummy vectors) in Gm. Our pro-
posed piecewise simple linear and simple quadratic mod-
els are denoted by Gl and Gq, respectively. Gs denotes the
method where forward and backward stepwise regression
is used in each node. If the number of regressors is limited
to two, the method is denoted by Gs2. Finally, Gf2 denotes
the method using two-regressor forward-only stepwise re-
gression at each node. The trees are pruned with the default
0.5-SE rule.

Least absolute deviations regression. We use the S-Plus
function l1fit.

Least-squares linear regression. We use the R function lm.

M5. Piecewise constant and linear regression tree. We use
the implementation in version 3.2 of WEKA (Witten and
Frank, 2000). Mc denotes piecewise constant and Mm piece-
wise multiple linear. If bagging is employed, we use ten
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Table 7. Geometric means of RMSE relative to linear regression, in increasing order (algorithms in the first row are not significantly
different from Crb)

Crb Mmb Mm Ci Cr Gs Gm gam Gf2 Gs2 mars Mcb ppr

0.78 0.80 0.82 0.82 0.84 0.86 0.86 0.90 0.90 0.90 0.91 0.91 0.92
nnet mart Gl Rp Cart Rm Gq Mc rreg Gc Rc lad pol

0.94 0.96 0.96 0.97 0.97 0.98 0.98 0.99 1.0 1.0 1.0 1.1 1.2

iterations. The resulting methods are denoted by Mcb and
Mmb, respectively.

MARS. Multivariate adaptive regression splines
(Friedman, 1991). We use the R function mars in the mda
library with parameter values degree=1, penalty=2,
and thresh=0.001.

MART. Multivariate adaptive regression tree (Friedman,
2001). This is a stochastic gradient boosting algorithm ap-
plied to regression trees. We use the software from www-
stat.stanford.edu/jhf/mart.html with 10-fold CV and 200
boosting iterations.

NNET. Neural network using the R function nnet
with size = 3, decay = 0.001, linout = TRUE,
skip = TRUE, and maxit = 200.

POLYMARS. An adaptive regression procedure using
piecewise linear splines (Kooperberg et al., 1997). We use
the R function polymars in the polspline library. The
gcv option is used for model selection. The maximum num-
ber of basis functions is min(6n1/3, n/4, 100) and the maxi-
mum number of knots per predictor is min(20, round (n/4)),
where n is the sample size.

Projection pursuit regression. (Friedman and Stuetzle,
1981). We use the R function ppr with optlevel=2 in the
modreg library.

Robust regression with M-estimate. (Huber, 1981, p. 194).
We use the R function rlm with init=ls, k2=1.345,
maxit=20, and acc=1e-4 in the MASS library (Venables
and Ripley, 1999).

RT. A regression tree algorithm due to Torgo (1999). Like
M5, it first grows a piecewise constant tree and then fits
various linear models to the leaf nodes during pruning. We
use version 4 of the software.Rcdenotes piecewise constant,
Rm piecewise multiple linear, and Rp piecewise partial linear
with a bandwidth size of ten.

4.3. Results

Because the measurement scale of the response variable
varies from one dataset to another, it is necessary to stan-
dardize the prediction MSEs. Let the square root of the pre-
diction MSE be denoted by RMSE. We divide the RMSE
of each algorithm by that of least squares linear regres-
sion (lr) and then take its logarithm. We call the result the
log relative root mean squared error (LRMSE). A positive

LRMSE indicates that the algorithm is less accurate than
lr.

Table 7 gives the geometric means of the RMSE relative
to linear regression and Fig. 13 displays them in a barplot.
The two algorithms with the lowest geometric means are
the ensemble methods Crb and Mmb, which have geometric
means of 0.78 and 0.80, respectively. They are followed by
Mm, Ci, Cr (all due to Quinlan), Gs, Gm, and gam. After these
come our proposed two-regressor tree methods Gf2 and
Gs2, which employ forward-only and forward-backward
stepwise regression, respectively.

It would be erroneous to conclude that if one algorithm
has a smaller geometric mean RMSE than another, then the
former always has smaller prediction error than the latter,
because there is substantial variability within each algo-
rithm across datasets. This can be seen in Fig. 14, which
shows boxplots of the relative RMSE values by algorithm,
ordered by their medians. We see there are datasets for
which some algorithms (e.g., Crb and Gc) have RMSE val-
ues as low as one-tenth that of linear regression. On the
other hand, there are also datasets for which algorithms
such as mart and Mcb have relative RMSEs that are two or
more.

To find out whether the differences in RMSEs are statisti-
cally significant, we fit a mixed-effects model to the LRMSE
values, using algorithm as a fixed effect, dataset as a random
effect, and their interaction as another independent ran-
dom effect in place of the usual “error term”. Calculations
based on Tukey 95% simultaneous confidence intervals for
pairwise differences show that algorithms with geometric
mean RMSEs less than 0.923 are not significantly different
from Crb. Thus differences among the prediction RMSEs
of the top 13 algorithms (listed in the first row of Table 7)
are not statistically significant. Our piecewise two-regressor
trees Gf2 and Gs2 belong to this group but not Gl and Gq.
Also belonging to this group are gam, mars, Mcb, and ppr.
Within this top group of 13, only Gf2 and Gs2 yield inter-
pretable and visualizable models.

Although regression trees are often thought to be more
interpretable than other methods, it should not be forgotten
that interpretability depends on the complexity of a tree. All
other things being equal, a tree with many leaf nodes takes
more effort to interpret than one with few nodes. Figure 15
shows how the 13 regression tree algorithms compare in
terms of mean number of leaf nodes. The piecewise con-
stant tree methods (Cart, Gc, Rtc, and Mc) tend to produce
trees with many leaf nodes—20 for Gc, 34 for all versions of
Rt, and 55 forCart. This makes them quite hard to interpret
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Fig. 13. Barplot of geometric mean prediction RMSE relative to that of linear regression. The RMSE of an algorithm is not statistically
significantly different from that of Crb if its associated bar ends to the left of the solid vertical line. The GUIDE algorithms are in
gray.

Fig. 14. Boxplots of RMSE relative to that of linear regression, ordered by their medians. GUIDE algorithms are in gray.
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Fig. 15. Mean number of leaf nodes versus geometric mean of prediction RMSE relative to that of linear regression. The plot symbols
for Gf2 and Gs2 almost coincide.

in practice. Gm has the lowest average of 3.7. But its trees are
not necessarily interpretable because each node is fitted with
a multiple linear model. The class of tree methods that lie in
between, namely the piecewise one- and two-regressor mod-
els, strikes a compromise with relatively simple node models
and relatively compact trees: Gl, Gq, Gf2, and Gs2 have on
average 10.3, 6.7, 6.1, and 6.1 leaf nodes, respectively.

5. Asymptotic behavior of regression estimates

We state and prove here an asymptotic consistency theorem
for piecewise two-regressor models. The theorem provides
hope that the good empirical performance of the method
will scale up to arbitrarily large sample sizes. First, we es-
tablish some notation. Let (Y1, X1), (Y2, X2), . . . , (Yn, Xn)
be n independent observations forming the training sam-
ple. The Y values are real valued and the X values take
values in a d-dimensional compact hyper-rectangle C in
the Euclidean space Rd . Suppose that Tn is a partition of C
consisting of sets that are also hyper-rectangles in Rd . For
any t ∈ Tn, we will denote by δ(t) the diameter of t defined
as δ(t) = sup{‖x − z‖ : x, z ∈ t}, where ‖.‖ is the usual Eu-
clidean norm of a vector, and we define the norm of the
partition Tn as |Tn| = sup{δ(t) : t ∈ Tn}.

For t ∈ Tn, let Nt be the number of Xs in t , Nn =
min{Nt : t ∈ Tn}, and X̄t = N−1

t

∑
Xi∈t Xi. Given a non-

negative integer m, let U be a set of pairs u = (u1, u2) of
non-negative integers such that [u] ≤ m, where [u] = u1 +
u2. Let s(U) denote the size of U. For x, z ∈ t , define
the s(U)-dimensional vector Ŵ(x, z; p, q) = [{δ(t)}−[u](xp −
zp)u1 (xq − zq )u2 ]u∈U, where 1 ≤ p, q ≤ d, x = (x1, x2, . . . ,

xd), and z = (z1, z2, . . . , zd). Also define D(p, q, t) =∑
Xi∈t ŴT (Xi, X̄t ; p, q) Ŵ(Xi, X̄t ; p, q).
Consider the least-squares fit of a two-regressor polyno-

mial model of order m in partition t and let pt and qt be

the indices of the two selected variables. Then the estimate
of the regression function g(x) = E(Y |X = x) for x ∈ t is
given by the expression:

ĝ(x) = Ŵ(x, X̄t ; pt , qt )D
−1(pt , qt , t)

∑

Xi∈t

ŴT (Xi, X̄t ; pt , qt ) Yi.

Let λt denote the smallest eigenvalue of D(pt , qt , t) and
write λn = min{λt : t ∈ Tn}. Furthermore, let ψ(a|x) =
E[exp{a|Y − g(x)|}|X = x] for any a > 0 such that the ex-
pectation is finite.

Theorem 1. Assume that the regression function is continuous
in C. Suppose that |Tn| and log n/Nn tend to zero and that λn

remains bounded away from zero in probability as n → ∞.
If there exists a > 0 such that ψ(a|x) is bounded in C, then
sup{|ĝ(x) − g(x)| : x ∈ C} → 0 in probability as n → ∞.

Proof. First observe that

ĝ(x) = Ŵ(x, X̄t ; pt , qt )D
−1(pt , qt , t)

∑

Xi∈t

ŴT

× (Xi, X̄t ; pt , qt )g(Xi) + Ŵ(x, X̄t ; pt , qt )D
−1

× (pt , qt , t)
∑

Xi∈t

ŴT (Xi, X̄t ; pt , qt ) ǫi,

where ǫi = Yi − g(Xi). Replacing g(Xi) with g(x) +
{g(Xi) − g(x)} in the first term on the right-hand side
above, we obtain after some straightforward algebraic
simplification:

ĝ(x) − g(x)

= Ŵ(x, X̄t ; pt , qt )D
−1(pt , qt , t)

∑

Xi∈t

ŴT (Xi, X̄t ; pt , qt ){g(Xi)

− g(x)} + Ŵ(x, X̄t ; pt , qt )D
−1(pt , qt , t)

∑

Xi∈t

ŴT

× (Xi, X̄t ; pt , qt ) ǫi.
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This is a consequence of D−1(pt , qt , t)
∑

Xi∈t ŴT (Xi, X̄t ;
pt , qt ) being an s(U)-dimensional vector with a one as
the first coordinate and the other coordinates all equal to
zero. �

Now, following the ideas in the proof of Theorem 1 in
Chaudhuri et al. (1994), the first term on the right-hand
side in the expression for ĝ(x) − g(x) can be viewed as a bias
term while the second term can be thought of as a variance
term that occurs in the decomposition of the error in a non-
parametric regression estimate. Since the function g(x) is a
uniformly continuous function in C, it follows immediately
that the bias term tends to zero in probability uniformly in x
as the sample size grows to infinity. Furthermore, since the
partition sets are hyper-rectangles and the moment generat-
ing function of Y − g(X) is bounded, the arguments in the
proof of Chaudhuri et al. (1994, Theorem 1) imply that the
variance term tends to zero in probability uniformly in x.

6. Conclusions

We set out seeking an algorithm that can automatically
generate interpretable and visualizable models with good
prediction accuracy. We gave as motivation the difficulty of
interpreting the coefficients in a multiple linear model. Our
solution embraces rather than discards the linear model,
but we limit it to at most two regressors and apply it to
partitions of the data. As the Boston and baseball examples
demonstrate, this approach can yield models that fit the
data at least as well as those built by human experts. Our
models do not require special training or equipment for
visualization; all that is needed are tree diagrams, graphs,
and contour maps. Our trees are also substantially more
compact than piecewise constant trees. And they can be
interpreted without worrying about selection bias.

In terms of prediction accuracy, our piecewise two-
regressor model Gf2 yields on average about 80% of the
prediction MSE of least squares linear regression. Although
Gf2 does not have the lowest average, its prediction MSE
does not differ significantly from the lowest at the 0.05 si-
multaneous level of significance. We note that the lowest
average value over the 27 algorithms is 60%. If the datasets
used in our study are representative of all real datasets, this
result suggests that it is hard to beat the prediction MSE
of least squares linear regression by a very large amount
in real applications. Given this, it is quite reasonable to de-
mand more from all algorithms, including interpretability
and visualizability of their models.
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