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Visualization and modeling 
of inhibition of IL‑1β 
and TNF‑α mRNA transcription 
at the single‑cell level
Daniel Kalb1,4, Huy D. Vo2,4, Samantha Adikari3, Elizabeth Hong‑Geller3, Brian Munsky2* & 
James Werner1*

IL‑1β and TNF‑α are canonical immune response mediators that play key regulatory roles in a wide 
range of inflammatory responses to both chronic and acute conditions. Here we employ an automated 
microscopy platform for the analysis of messenger RNA (mRNA) expression of IL‑1β and TNF‑α at the 
single‑cell level. The amount of IL‑1β and TNF‑α mRNA expressed in a human monocytic leukemia 
cell line (THP‑1) is visualized and counted using single‑molecule fluorescent in‑situ hybridization 
(smFISH) following exposure of the cells to lipopolysaccharide (LPS), an outer‑membrane component 
of Gram‑negative bacteria. We show that the small molecule inhibitors MG132 (a 26S proteasome 
inhibitor used to block NF‑κB signaling) and U0126 (a MAPK Kinase inhibitor used to block CCAAT‑
enhancer‑binding proteins C/EBP) successfully block IL‑1β and TNF‑α mRNA expression. Based 
upon this single‑cell mRNA expression data, we screened 36 different mathematical models of 
gene expression, and found two similar models that capture the effects by which the drugs U0126 
and MG132 affect the rates at which the genes transition into highly activated states. When their 
parameters were informed by the action of each drug independently, both models were able to predict 
the effects of the combined drug treatment. From our data and models, we postulate that IL‑1β is 
activated by both NF‑κB and C/EBP, while TNF‑α is predominantly activated by NF‑κB. Our combined 
single‑cell experimental and modeling efforts show the interconnection between these two genes and 
demonstrates how the single‑cell responses, including the distribution shapes, mean expression, and 
kinetics of gene expression, change with inhibition.

In�ammation is a complex biological process that enables the host immune system to counteract potential bio-
threats. In the in�ammatory response, select host receptors react to detrimental stimuli (e.g., pathogens, allergens, 
toxins, or damaged host cells), which activate various intracellular signaling pathways to secrete cytokines that 
trigger active recruitment of immune cells to the site of insult/infection1. While in�ammation is usually bene�cial 
to the host organism when �ghting an infection, there is also a wide range of both chronic and acute conditions 
where remediation of in�ammation is necessary for host recovery. For example, in certain viral infections, over-
expression of in�ammatory cytokines throughout the course of disease progression can lead to a potentially 
fatal cytokine storm that may be more harmful to the host than the underlying  infection2. In addition to acute 
conditions, chronic in�ammatory conditions, including rheumatoid arthritis,  diabetes3, or persistent pain, can 
be caused by high concentrations of pro-in�ammatory cytokines, such as Interleukin 1β (IL-1β) and Tumor 
Necrosis Factor α (TNF-α).

�ere are several drugs and medications used to limit or dampen the in�ammatory response. �e best known 
of these, non-steroidal anti-in�ammatory drugs (NSAIDs), work by inhibiting the activity of cyclooxygenase 
enzymes (COX-1 and COX-2), which are important for the synthesis of key biological mediators and blood 
clotting  agents4. Other drugs may act to inhibit key proteins involved in immune response signaling, such as 
kinase inhibitors or proteasome inhibitors. For kinase and proteasome inhibitors, these compounds are generally 
discovered �rst through binding assays, then studied in vitro by activity  assays5–8. Cellular assays that monitor the 
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e�ects of drugs in a more complicated environment generally follow such in vitro  studies9. In a cellular assay, the 
e�ects of a drug can be studied by monitoring the level of inhibition of the target of interest, or may be studied 
by monitoring changes in a downstream signaling pathway. �e role drugs play in dampening mRNA expression 
can be measured by quantitative PCR of the  mRNA10, through DNA  microarrays11, or by RNA  sequencing12. 
While informative, most of these methods explore the response of large, ensemble populations of cells.

In contrast to traditional measurements of gene expression collected as bulk averages from large num-
bers of individual cells, single-cell techniques have revealed surprisingly rich levels of heterogeneity of gene 
 expression13–16. When coupled with appropriate models, these distributions of single-cell gene expression can 
reveal fundamental information on expression kinetics and gene regulatory mechanisms, which is otherwise 
lost in the bulk  measurements17,18. Methods to measure gene expression in single cells generally rely on either 
ampli�cation or imaging techniques. �ere are tradeo�s between the two techniques. Ampli�cation-based meth-
ods, such as sequencing and PCR, provide high gene depth (tens-to-hundreds of genes can be analyzed) but 
can be expensive, generally analyze a small number of individual cells, and obscures spatial  information19–23. 
Imaging methods generally utilize �uorescent oligonucleotide probes complementary to the RNA sequences of 
interest and include techniques such as single-molecule �uorescence in situ hybridization (smFISH)16,24,25 and 
multiplexed barcode labeling  methods26–28. �ough fewer genes can be analyzed at one time, smFISH is relatively 
low cost, yields single-molecule resolution without the need for nucleic acid ampli�cation, can readily measure 
several hundreds to thousands of individual cells, and directly visualizes the spatial location of each RNA copy.

�ere have been several studies that exploit single-cell methods in conjunction with single-cell modeling to 
study host in�ammatory responses. For example, �uorescence �ow cytometry was used to study the population 
switching between e�ector and regulatory T cells and to develop a computational model describing this dynamic 
 behavior29. Application of single-cell RNA sequencing methods led to discovery of bimodal expression patterns 
and splicing in mouse immune  cells30. Another study integrated live cell imaging and mathematical modeling to 
understand the ‘analog’ NF-κB response of cell populations under ‘digital’ single-cell signal  activation31. Addition-
ally, a model of JAK1-STAT3 signaling was constructed following cell treatment by a JAK inhibitor with validation 
by wide �eld �uorescence  microscopy32. In order to visualize single-cell immune responses, our lab previously 
used smFISH to monitor the single-cell mRNA expression of two cytokines, IL-1β and TNF-α, in a human 
monocytic leukemia cell line, THP-1, in response to lipopolysaccharide (LPS), a primary component of cell walls 
in Gram negative  bacteria33. �is work found a broad cell-to-cell heterogeneity in immune cell response to LPS.

Here, we exploit single-cell imaging and modeling methods to visualize and understand the broad distribution 
of mRNA responses to LPS stimulation in THP-1 immune cells. Moreover, these models were used to describe 
the e�ects of speci�c in�ammatory inhibitors on the host immune response. �e drugs employed, MG132, a 
26S proteasome inhibitor used to block NF-κβ  signaling8, and U0126, a MAPK kinase inhibitor known to block 
CCAAT-enhancer-binding proteins C/EBP34, were selected for their di�ering roles in dampening the in�am-
matory response mediated by two key in�ammatory cytokines: IL-1β and TNF-α. Our results show that MG132 
inhibits both IL-1β and TNF-α mRNA expression, while U0126 primarily inhibits IL-1β expression. Models 
derived for the action of each drug independently can also accurately predict the behavior of the drug e�ects 
when applied in tandem. �ese results and models support the current biological understanding that IL-1β 
expression is activated by both NF-κB and C/EBP signaling pathways while TNF-α is predominantly activated by 
NF-κB. Notably, we observe that models developed to describe the e�ect single drugs can accurately predict the 
e�ect of drug combinations, paving the way for predictive computational analyses of combination drug therapies.

Methods
Microscopy and image analysis. A fully automated microscopy and image analysis routine was used 
to count and measure single-mRNA molecules as previously  described33. In brief, a conventional wide-�eld 
microscope (Olympus IX71), arc lamp (Olympus U-RFL-T), high NA objective (Olympus 1.49 NA, 100X), 2D 
stage (�orlabs BSC102), Z sectioning piezo (Physik Instrumente, PI-721.20) and cMOS camera (Hamamatsu 
orca-�ash 4.0) are used to image single-cell mRNA content. Following image acquisition, a custom MATLAB 
script is used to: 1) automatically �nd and segment each individual cell based upon the bright-�eld cell image, 
the nuclear stain (DAPI), and the smFISH channel, 2) �lter and threshold using a Laplacian-of-Gaussian �lter 
(LOG) to �nd the single-mRNA copies, 3) �t all of the mRNA ‘spots’ to a 2D Gaussian using a GPU-accelerated 
algorithm, and 4) assign and count all single mRNA copies within each cell. Single-cell distributions are charac-
terized by both their shapes and their mean values.

Cell culture. Human monocytic leukemia cells (THP-1, ATCC) were cultured in a humidi�ed incubator 
with 5%  CO2 at 37 °C in R10% medium: RPMI-1640 Medium (with glutamine, no phenol red, Gibco) supple-
mented with 10% fetal bovine serum (FBS, ATCC). Cells were passaged every 5–7 days and used for experiments 
from age 60–120 days.

Slide preparation. Chambered cover-glass slides (#1.0 borosilicate glass, 8 wells, Lab-Tek) were coated 
with a sterile bovine �bronectin solution (1 μg/well, Sigma, diluted in PBS, Gibco) overnight at 4 °C.  105 THP-1 
cells/well were seeded onto �bronectin-coated slides for di�erentiation with R10% medium containing 100 nM 
PMA (phorbol 12-myristate 13-acetate, Sigma) for 48 h at 37 °C. A�er di�erentiation, cells were serum-starved 
in serum-free RPMI-1640 Medium (no FBS) for 2 h at 37 °C. Cells were pre-treated with inhibitors (MG132, 
or U0126, or both) for 1 h at 37 °C (10 μM each in serum-free RPMI-1640 medium, 200μL/well). Untreated 
wells were kept in serum-free RPMI-1640 medium for 1 h at 37 °C. Cells were then stimulated with a cocktail 
of 500 μg/mL lipopolysaccharide (LPS, isolated from E. coli O55:B5, Sigma) and 10 μM inhibitors (MG132, or 
U0126, or both) in R10% medium (200μL/well) for 30 min, 1 h, 2 h, or 4 h at 37 °C. Cells were washed in PBS and 
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�xed in paraformaldehyde (4% solution in PBS (v/v), Alfa Aesar) for 15 min at room temperature. Unstimulated 
cells were washed and �xed at t = 0 h immediately a�er 1 h inhibitor pre-treatment. A�er �xation, cells were 
washed twice in PBS, then permeabilized in 70% ethanol in RNase-free distilled water (v/v) (�ermoFisher) for 
at least 1 h (or up to 24 h) at 4 °C. Cells were then washed in RNA FISH Wash Bu�er A (Stellaris) for 20 min at 
room temperature before RNA smFISH staining for mRNA.

smFISH staining for mRNA. Cells were stained with custom-designed RNA FISH probes (Stellaris) for 
IL-1β and TNF-α mRNA. Probes were diluted to 100 nM each in RNA FISH Hybridization Bu�er (Stellaris) con-
taining 10% formamide (v/v) (�ermoFisher), then incubated on the �xed and permeabilized cells using 100μL/
well for 4 h at 37 °C. Staining conditions were made in duplicate on each slide. Following probe hybridization, 
cells were washed three times in RNA FISH Wash Bu�er A for 30 min each time at 37 °C, stained for 20 min 
at 37 °C with 100 ng/mL DAPI solution (Life Technologies) in RNA FISH Wash Bu�er A for 20 min at 37 °C, 
and washed in RNA FISH Wash Bu�er B (Stellaris) for 20 min at room temperature. Cells were washed once in 
PBS and stored in 200μL/well SlowFade Gold Anti-Fade Mountant (Life Technologies) diluted 4 × in PBS for up 
to 7 days at 4 °C. Unless otherwise speci�ed, all steps were performed at room temperature, incubations were 
performed using 250μL/well, and washes were performed using 500μL/well.

Stochastic reaction networks for modeling gene expression dynamics. �e time-varying dis-
tributions of mRNA copy numbers observed from smFISH experiments are modeled in the framework of the 
chemical master equation (CME)35,36. �is analysis proposes a continuous-time Markov chain in which each 
discrete state corresponds to a vector of integers that represents the copy number for each chemical species. In 
particular, we propose and compare di�erent gene activation mechanisms with either two or three gene states 
and di�erent ways in which the signal a�ects the gene activation/deactivation rates (see SI for details).

�e probabilistic rate of a reaction event is determined through the propensity functions. �e time-dependent 
probability vector p(t) over all states is the solution of the system of linear di�erential equations ddt p(t) = A(t)p(t) , 
where A(t) is the transition rate matrix of the Markov chain. �e CME was solved using the Finite State Projec-
tion (FSP) approach for marginal  distributions37. All analysis codes are available at https:// github. com/ Munsk 
yGroup/ Kalb_ Vo_ 2021.

Conditionally independent models for simultaneous expression of multiple genes and in vari‑
able environmental conditions. �e stochastic reaction network model above allows us to model the 
time-varying mRNA distribution for a single gene in a single experimental condition. However, our data comes 
with multiple genes and inhibitor treatment conditions, which necessitates a model to explain the joint mRNA 
count distribution of both IL-1β and TNF-α simultaneously. To do so, we make the assumption that the random 
variables describing IL-1β and TNF-α mRNA counts are conditionally independent, given a shared dependence 
on the same upstream time-varying NF-κB dynamics. �ese downstream gene expression variables are other-
wise independent from each other, and can then be described by separated reaction networks that are coupled 
only by time, speci�c experiment condition, and the choice of parameters for the NF-κB reaction rates and the 
inhibitor e�ects. See SI for the precise mathematical description of this model.

Parameter fitting. �e full single-cell dataset consists of four independent biological replicates, each of 
which contains measurements of IL-1β and TNF-α mRNA copy numbers under four di�erent inhibitor condi-
tions (No inhibitor, with MG132, with U0126, and with both MG132 and U0126) and �ve measurement time 
points a�er LPS stimulation (0 min (untreated), 30 min, 1 h, 2 h, and 4 h). �e ‘training’ dataset on which our 
CME model was parameterized consists of measurements made under three conditions (No inhibitor, with 
MG132, and with U0126). Parameters were estimated by minimizing the weighted sum of Kullback–Leibler 
divergences from the marginal empirical distributions of single-cell observations to those predicted by the CME 
model, which is equivalent to the log-likelihood of the observed joint distributions given the conditionally-
independent model described in the previous section (See Sect. 3c in Supplementary Information). Evaluation 
of this likelihood requires the solutions of the CME, which were obtained using the Finite State Projection (FSP) 
 algorithm37. (See SI for more details).

Model evaluation and selection. We use a combination of statistical criteria to compare how well the 
di�erent proposed mechanisms �t the ‘training’ data. �ese include the �t log-likelihood and the Bayesian Infor-
mation Criteria (BIC, see Supplementary Information). In addition, we also compare the predictive performance 
of these alternative models using the log-likelihood of the dataset under the combined treatment that has both 
MG132 and U0126, which were not used for �tting the models.

Results
Inhibitor treatments reduce transcription levels of IL‑1β and TNF‑α in THP‑1 human mono‑
cytic leukemia cells. �e single-cell mRNA content of IL-1β and TNF-α in THP-1 cells were monitored 
over time a�er exposure to LPS and in response to two small molecule inhibitors MG132 and U0126, both alone 
and in combination. MG132 is a selective inhibitor of the NF-κB pathway, while U0126 inhibits the C/EBP 
pathway, part of the MAPK signaling  cascade8,38,39. Representative images of gene expression a�er LPS exposure 
in the presence and absence of small molecule inhibitors are shown in Figs. 1 and 2 for 1 and 2 h post exposure. 

https://github.com/MunskyGroup/Kalb_Vo_2021
https://github.com/MunskyGroup/Kalb_Vo_2021
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IL‑1β and TNF‑α transcriptional responses to inhibitor conditions can be explained and pre‑
dicted by signal‑activated, multiple‑state, stochastic bursting mechanisms. A class of several 
di�erent two-state and three-state gene expression models were hypothesized to capture the stochastic tran-
scriptional dynamics of the individual genes TNF-α and IL-1β (see Fig. 3 for the schematics of these models). 
�is class of model topologies has been used successfully in other works that examine MAPK-induced gene 
expression in single-cells40,41. Here we present the interpretation of model ‘3SA’ in Fig. 3 as an example (see 
Supplementary Information for the full list of reactions and parameters). In this model, each gene can exist in 
one of three transcriptional states: G0, G1, or G2. �e biological interpretation of these states depends upon the 
speci�c parameter values chosen for the state’s transcription rate. For example, when the transcription rate in 
G0 is set to zero, then that could be thought of as an ‘o� ’ state; when the transcription rate in G2 is large, then 
that can be thought of as an ‘on’ state; and when the transcription in G1 takes an intermediate value, it could be 
described as a ̀ ready’ or ̀ poised’ state. �e activation of each gene by C/EBP and NF-κB signals was modeled via 
time-dependent e�ects on gene-state transition rates. Speci�cally, for the model shown in Fig. 3, the switching 
rate from G0 to G1 was assumed to depend on the time-varying abundance of NF-κB, where NF-κB increases the 
rate at which an ‘o� ’ gene switches to ‘ready’. More precisely, the time-dependent deactivation rate is given by 
k01(t) = k01 + b01[NF-κB](t) , where k01 is the basal gene activation rate and [NF-κB](t) is the concentration of 
NF-κB, parametrized by a function of the form

Figure 1.  Representative images of IL-1β and TNF-α mRNA expression with and without inhibitors at 2 h LPS 
exposure. Images are LOG-�ltered to emphasize single mRNA copies that appear as small di�raction limited 
spots in images. Blue is DAPI-stained nuclei, whereas red spots are individual copies of IL-1β and green spots 
are individual copies of TNF-α. Each image is ~ 130 by 130 μm.

Figure 2.  Representative images of IL-1β and TNF-α mRNA expression with and without inhibitors at 2 h LPS 
exposure. Images are LOG-�ltered to emphasize single mRNA copies that appear as small di�raction limited 
spots in images. Blue is DAPI-stained nuclei, whereas red spots are individual copies of IL-1β and green spots 
are individual copies of TNF-α. Each image is ~ 130 by 130 μm.
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�is model of NF-κβ activation is in general agreement with the literature on NF-κβ nuclear  localization42. C/

EBP was assumed to exert a constant in�uence on the rate of switching from G0 to G1. �e expression dynamics 
of di�erent genes (IL-1β, TNF-α) in response to di�erent treatments (No inhibitors, with MG132, U0126, or 
both) were described by chemical master equations (CMEs) with the same reactions but di�erent kinetic rate 
parameters. �e e�ects of inhibitors, when present, were modeled as the reductions to the in�uence that C/EBP 
or NF-κβ exerted on gene activation.

We �rst attempt to independently �t the six gene expression models to the observed distributions of IL-1β 
and TNF-α, each individually under the inhibitor-free condition. Evaluating these �ts using the Bayesian Infor-
mation Criterion (BIC), we found that three of the di�erent three-state models outperform all variants of the 
two-state models for both genes. From this comparison, we select these three variants of the three-state models 
and then extend them to postulate nine di�erent model combinations (see Supplementary Fig. 3), and we �t each 
of these models simultaneously to the mRNA distributions of both genes across all �ve time points and three 
experimental conditions (the remaining 27 combinatorial models that could have been constructed using one or 
more of the discarded models from above are ignored at this stage, although the e�ect of choice will be evaluated 
later). Speci�cally, we use the experimental data collected under inhibitor-free, MG132, and U0126 treatments 
to calibrate the parameters of all models. �e full set of chemical reactions, as well as the �tted parameter values, 
are presented in the Supplementary Information. We then use the data under combined treatment (with both 
MG132 and U0126) as a testing dataset to see how well each of the �tted models predicts mRNA distributions 
under this experimental condition. �e two models that yield the largest sum of the �t log-likelihood (computed 
on the training dataset under no or single inhibitor treatment) and the test log-likelihood (computed on the 
testing dataset under combined inhibitor treatment) are selected and illustrated in Fig. 4. We con�rm that these 
two models continue to provide good �ts to the wildtype IL-1β and TNF-α expression data even when �tted 
simultaneously to both genes in all three conditions (Supplementary Fig. 4). Moreover, since the �nal models 
continue to outperform the three previously discarded single-gene models for both genes in the drug-free condi-
tion, we are assured that these �nal models must also outperform all 27 of the discarded two-gene combinatorial 
models to match the drug-free data.

In the two combinatorial models selected (Fig. 4), both mRNA species are transcribed via bursty mechanisms 
with three gene states. Both models suggest an identical gene expression mechanism for TNF-α, but provide 
di�erent explanations for the expression of IL-1β. Speci�cally, they di�er in how the e�ects of NF-κB signal on 
IL-1β gene activation are explained. �e �rst combinatorial model (CM1) postulates that the presence of NF-κB 
enhances the transition rate for IL-1β from G1 to G2 by an additive term proportional to NF-κβ concentration in 
the nucleus. On the other hand, the second combinatorial model (CM2) postulates that the same signal inhibits 
the deactivation rate of IL-1β for transiting from G1 to G0. In either case, the activity of NF-κB leads to a greater 
chance that the gene moves from the ‘o� ’ state and through the ‘ready’ state to reach the ‘on’ state.

[NF-κB](t) = e
−r1·t

(

1 − e
−r2·t

)

.

Figure 3.  Signal-activated two- and three-state gene expression models considered for �tting the observed 
mRNA distributions. (A): Schematic diagrams of the six mechanisms considered. �ese models di�er in the 
number of gene states and the mechanism by which NF-ĸB increases the probability of transcription, either by 
increasing the rate of gene activation or inhibiting the rate of gene deactivation. (B): Performance evaluation of 
these models in terms of the Bayesian Information Criterion (BIC) based on IL-1β expression data and TNF-α 
expression data without inhibitor.
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Figure 5 shows the single-cell mRNA distribution shapes of both IL-1β and TNF-α in response to LPS as 
well as the best combinatorial model �t to these data, and Supplementary Figs. 6 and 7 show expanded results 
for the �ts of both genes in all time points and conditions. For both genes, the data are indicative of ‘bursting’ 
gene expression, characterized by most cells exhibiting lower expression and a long ‘tail’ of relatively rare high-
expressing cells. �e distributions of mRNA copies per cell in the presence of the small-molecule inhibitors 
(Fig. 5(B–D) and (F–H)) retain their bursting shape (similar to the expression patterns seen with no LPS (Fig. 5A 
and E)). Based upon how the cell-to-cell mRNA distributions change in the presence of the drugs MG132 and 
U0126, we postulated that these drugs could modulate how NF-κB or C/EBP regulate gene expression. We note 
that kinetic parameters were determined from the measured mRNA distributions in the drug free and single-drug 
exposure time-course experiments (Table 1). �ese parameters then were used to predict the combined drug 
condition (without any additional �tting of the data), yielding a good approximation of the measured mRNA 
distributions (Fig. 5D,H and bottom rows of Supplementary Figs. 6 and 7). 

Measurement and analysis of mRNA expression suggests that MG132 inhibits both TNF‑α 
and IL‑1β, while U0126 inhibits only IL‑1β. Figure 6 shows the measured and model-predicted mean 
(Figs. 6A, B) and standard deviation (Fig. 6C, D) for mRNA expression versus time from 0 to 240 min post LPS 
exposure for both genes. In the absence of inhibitors, the cells show a rapid increase in both IL-1β and TNF-α 
mRNA content following introduction of LPS, with expression peaking at ~ 325 IL-1β mRNA copies per cell at 
2 h and at ~ 200 TNF-α mRNA copies per cell at 1 h. In the presence of inhibitors, we see that IL-1β expression 
is inhibited by both U0126 and MG132, but with di�erent kinetic trajectories. MG132 treatment dampens IL-1β 
expression with maximum expression at ~ 140 mRNA copies per cell at 1 h. In contrast, U0126 strongly inhibits 
IL-1β expression at early time points (0–30 min), but is less e�ective at later time points, with maximal expres-
sion at ~ 200 mRNA copies per cell a�er 120 min. �e combination of the two inhibitors results in low expression 
of IL-1β across all time points, with < 50 mRNA copies per cell. For TNF-α, MG132 markedly reduces expression 
from ~ 200 mRNA copies per cell to < 50 mRNA copies per cell at 60 min. Interestingly, U0126 shows very little 
inhibition of TNF-α when used alone. Addition of both inhibitors led to low expression of TNF-α, similar to 
MG132 treatment alone. In the rest of this section, we will provide a more detailed explanation of these observa-
tions based on the model �ts.

The selected three‑state gene expression models provide descriptive explanations for the 
activation dynamics of IL‑1β and TNF‑α under LPS stimulation. �e two best-�t models allow us 
to propose several mechanisms for signal-activated expression of IL-1β and TNF-α, as well as how these mecha-
nisms are a�ected by the small-molecule inhibitors MG132 and U0126. �e inferred dynamics of NF-κβ con-
centration, which are not directly observed from data, is qualitatively similar between two models (Fig. 7A). For 
TNF-α, both models yield similar �tted parameters that lead to identical interpretation. In the absence of LPS, 
the deactivation rate k10 for TNF-α is about 385 times higher than the activation rate k01 for model CM1 (similar 
comparison for CM2). As a consequence, the gene spends most of its time in the basal state that has a very low 
basal mRNA production rate (~  10−5 molecules per second). Under LPS stimulation, NF-κβ concentration in the 
nucleus quickly increases to its maximal value in about 15 min, with the downstream e�ects of increasing the 
fractions of cells in the active states (Fig. 7C and E). As a consequence, there is a temporary increase in the mean 
mRNA production rate (Fig. 7G), which explains the increased width of the distribution of TNF-α mRNA copy 
numbers observed. �e signal starts decaying shortly a�er reaching its peak at around 15 min, resulting in less 
mRNA being produced and the mean TNF-α copy number slowly decreases (Fig. 6B).

Figure 4.  Two combinations of three-state gene expression models to simultaneously �t and predict the mRNA 
distributions transcribed from both IL-1β and TNF-α. �ese models are selected from a set of nine di�erent 
combinations that can potentially explain the observed mRNA distributions in the experiment. In the �rst 
combinatorial model (CM1), NF-κβ enhances the transition rate from  G1 to  G2 for the gene IL-1β. In the second 
model (CM2), NF-κβ inhibits the deactivation rate for IL-1β to switch from  G1 to  G0.
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For IL-1β, both models produce similar mRNA copy number distributions at the time points where experi-
mental measurements were taken across experimental conditions (Supplementary Fig. 6). In addition, parameter 
�ts for both models suggest that mRNA transcription rates are low when IL-1β is in the states G0 and G1 (of 
the order of  10−4 and  10−5 respectively in model CM1, and 5 ×  10−5 and  10−6 respectively in model CM2), while 
the transcription rate at state G2 is high (both models �t to approximately one molecule per second). �ese �ts 
allow us to interpret for IL-1β the state G1 as an intermediate “permissive” state from which the gene can become 
fully active at G2. Prior to LPS stimulation, the rate at which IL-1β switches to the fully active state G2 from the 
intermediate state G1 is about 212 times smaller than the reverse rate in model CM1 (and 15 times smaller in 
model CM2). As a consequence, IL-1β stays in the basal state for most cells, with model CM1 suggesting that a 
signi�cant fraction of the cells are in the intermediate state without switching over to the highly active state G2, 
whereas model CM2 suggests that the fractions of cells in G1 and G2 are both low (Fig. 7B, D). As a consequence, 
IL-1β stays in the basal states for most cells. Upon LPS induction, however, the increased NF-κB concentration 
either has a positive e�ect on the rate for switching from G1 to G2 (model CM1), or an inhibitory e�ect on the 
deactivation rate from G1 to G0. �is either allows for more cells already in the intermediate state G1 to switch to 
the active state G2 (model CM1), or for a signi�cant increase in the fraction of cells in state G1 that consequently 

Figure 5.  Distributions for single-cell mRNA content. (A-D) Probability distribution (data represented as 
bars, model �ts/predictions as solid lines) for number of IL-1β copies per cell with: (A) 2 h LPS exposure with 
no inhibitor treatment, (B) 2 h LPS exposure with MG132, (C) 2 h LPS exposure with U0126, and (D) 2 h LPS 
exposure with U0126 and MG132 combined. (E–H) same as (A-D), but for TNF-α. For reference, each panel 
shows the corresponding mRNA distribution at 2 h LPS exposure with no inhibitor treatment (data in grey, 
model in black). A-C and E–H show the model �ts to data with no inhibitors or a single inhibitor, and D,H show 
the validation of model predictions for the two inhibitor combination.
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switch to G2 (model CM2) (Fig. 7B). Either way, IL-1β has markedly higher probability to be in the fully activated 
state G2 (Fig. 7D), leading to an increase in the mean IL-1β mRNA transcription rate. �is increased production 
is sustained for a relatively short time but achieves a high maximal value in model CM1, while it is sustained 
for longer but with a lower maximum in CM2. Despite these di�erences for the intermediate, unobserved, 
components, both models yield �ts for IL-1β degradation rates whose relative di�erences are below ten percent 
( 5.67 × 10

−5 molecules/s in CM1 and 5.27 × 10
−5 molecules/s in CM2). �e longer half-life of IL-1β compared 

to TNF-α also explains why mean IL-1β mRNA levels remain higher than TNF-α despite both genes reverting 
to their basal levels as NF-κB fades away at about 100 min.

The selected models suggest that NF‑κβ activates both TNF‑α and IL‑1β, while C/EBP has no 
major influence on TNF‑α transcriptional activity. In addition to providing explanations for IL-1β 
and TNF-α transcriptional dynamics under LPS, our exhaustive search for the reaction network parameters 
(Table 1) also leads to a quantitative understanding of the e�ects of the small-molecule inhibitors MG132 and 
U0126 on these genes. In the presence of the inhibitor MG132, the activation e�ect of NF-κβ is substantially 
reduced for both genes (for model CM1, the ratio b01/b

MG
01

 is about 2.9 for TNF-α and b12/b
MG
12

 is about 3.4 for 
IL-1β; for model CM2, the ratio b01/b

MG
01

 is about 2.9 for TNF-α and b10/b
MG
10

 is about 9.7 for IL-1β), leading 
to smaller fractions of cells in the active states and consequently lower overall TNF-α mRNA production. �e 
inhibitor U0126 decreases the activation rate k01 of IL-1β by 2.18 fold in CM1 and fourfold in CM2, leading to 
overall reduction in IL-1β transcription. On the other hand, the addition of U0126 only reduces the rate k01 from 
1.21 × 10

−4 to 1.00 × 10
−4 in model CM1 and from 1.17 × 10

−4 to 1.00 × 10
−4 in model CM2. Since U0126 is 

known to inhibit C/EBP, this suggests that C/EBP does not have a major in�uence on TNF-α.

Discussion
Single-cell measurements allow for a more complete description and characterization of gene expression kinet-
ics and regulatory mechanisms. Applying single-cell measurement techniques, we have demonstrated that gene 
transcription heterogeneity of two key immune response genes, IL-1β and TNF-α, occurs to a surprising extent 
within a seemingly uniform cell population following an immune assault. Such measurements of cell-to-cell 
distribution can be more informative than average values obtained from bulk measurements. For example, 
cells in the tail of the distribution may ultimately dictate the fate of disease progression rather than the aver-
age response, such as in the case of highly stimulated cells that lead to a cytokine storm. �is is analogous to 
understanding how certain individuals (such as super-spreaders) may dictate the pathway of an epidemic more 
than basic reproduction number  (R0)  values43. Here we show that IL-1β and TNF-α genes, while upregulated 
upon bacterial LPS exposure, can be suppressed at the transcriptional level by the inhibitors MG132 and U0126. 
Interestingly, each of these inhibitors has a di�erent kinetic e�ect. U0126 inhibits early IL-1β expression, while 
MG132 causes a delayed inhibition pattern, suggesting that C/EBP signaling occurs prior to NF- κB activity, in 

Table 1.  Fitted parameters for the two best performing combined multi-gene, multi-condition gene 
expression models. �ese are obtained by �tting the model-predicted distributions of RNA copy number to 
data collected under three inhibitor conditions (no inhibitors, MG132, and U0126).

Parameter

CM1 CM2

InterpretationIL-1β TNF-α IL-1β TNF-α

r1 9.01e−04 1.03e−03
Parameters for NF-κβ dynamics  (second−1)

r2 3.05e−04 4.39e−04

k01 3.89e−02 1.21e−04 4.77e−03 1.17e−04 LPS-free transition rate G0 to G1  (second−1)

b01 NA 2.27e−02 NA 2.09e−02
Multiplicative factor for NF-κβ induced increase in gene activation rate 
 (second−1)

k10 7.62e−03 4.67e−02 7.66e−02 5.48e−02 LPS-free gene deactivation rate G1 to G0  (second−1)

b10 NA NA 6.60e + 00 NA
Multiplicative factor for NF-κβ induced decrease in gene deactivation (G1 
to G0 rate  (second−1)

k12 3.93e−05 8.19e−03 5.50e−04 9.41e−03 LPS-free transition rate G1 to G2  (second−1)

b12 9.60e−03 NA NA NA
Multiplicative factor for NF-κβ induced increase in transition rate G1 to G2 
 (second−1)

k21 8.37e−03 3.98e−03 8.79e−03 4.03e−03
Transition rate from highly activated state to moderately activated state (G2 
to G1)  (second−1)

α
0

1.09e−04 3.61e−05 5.29e−05 2.60e−05 Basal transcription rate when gene is at basal state  G0 (molecule/second)

α
1

1.64e−05 6.24e−01 1.00e−06 7.07e−01 Transcription rate when gene is at G1 (molecule/second)

α
2

9.99e−01 5.39e−01 1.00e + 00 5.41e−01 Transcription rate when gene is at G2 (molecule/second)

δ 5.67e−05 2.29e−04 5.27e−05 2.16e−04 mRNA degradation rate (molecule/second)

b
MG
01

NA 7.80e−03 NA 7.18e−03 MG-modulated value of b01  (second−1)

b
MG
10

NA NA 6.80e−01 NA MG-modulated value of b10  (second−1)

b
MG
12

2.83e−03 NA NA NA MG-modulated value of b12  (second−1)

k
U0126
01

2.22e−03 1.00e−04 2.22e−03 1.00e−04 U0126-modulated value of k01  (second−1)
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response to LPS (see Fig. 6). Additionally, we show that TNF-α is predominantly and rapidly inhibited by MG132 
treatment, suggesting that NF-κB is the primary upstream regulator of TNF-α expression in response to LPS.

To describe these results, we considered 36 potential stochastic models to reproduce IL-1β and TNF-α activity, 
and we found that the time-course of the cell-to-cell distributions of transcript copy numbers for both Il-1β and 
TNF-α could be adequately captured by two stochastic models, each having three states for gene transcription. 
Moreover, the e�ects of anti-in�ammatory drugs MG132 and U0126 on the mRNA copy numbers of these two 
genes could be captured with both three state models. While the kinetic models were �t to data for each drug 
acting independently, both models were able to predict the data well for the combined drug treatment. �e 
�nal two models selected identical mechanisms and dynamics for the regulation of TNF-α activity, but di�erent 
mechanisms for the control IL-1β. Interestingly, although both models make indistinguishable predictions for the 
distributions of mature IL-1β mRNA in all conditions and time points measured for this study (Supplementary 
Figure S6 and S7), the two models make qualitatively and quantitatively di�erent predictions for other, as yet 
untested experimental conditions. Speci�cally, the two models di�er in their predictions for the instantaneous 
transcription rate at early times, where model CM1 predicts a short period of high transcription activity and 
model CM2 predicts a sustained period of moderate strength activity (Fig. 7F). Furthermore, the two models also 
di�er how the instantaneous transcription rate would be a�ected by MG132 treatment. In principle, our analyses 
suggest that these two models could be resolved using intron smFISH labeling to measure nascent transcription 
activity to quantify instantaneous transcription rates in shorter time scale experiments (e.g., 40 to 80 min). �ese 
experiments are beyond the scope of the current study and are le� for future investigation.

Figure 6.  Mean and standard deviation of mRNA copy numbers per cell with and without inhibitors over 
4 h of LPS exposure (timepoints 0 min, 30 min, 1 h, 2 h, and 4 h) estimated from four independent biological 
replicates per inhibitor condition (markers) and model �ts based on the combinatorial model CM1 (solid and 
dashed lines). (A)&(B): mean mRNA copy numbers per cell for IL-1β and TNF-α. (C)&(D): standard deviations 
of mRNA copy numbers per cell for IL-1β and TNF-α. See Supporting Information (Sect. 1b) for details on our 
computation of these model-predicted statistics.
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Our results suggest that the integration of single-cell measurements and predictive kinetic modeling can 
lead to improved mechanistic understanding that could eventually lead to more e�ective combination thera-
pies against chronic and acute in�ammatory diseases. We note that while there are possible ways to extend the 
model proposed in this study to describe the joint expression of both IL-1β and TNF-α, the large state space 
required to analyze the joint expression of more than two mRNA species, coupled with the complexity of inte-
grating time-varying kinase signals, poses a prohibitive challenge for current computational tools. Advances in 
high performance FSP-based inference methods (e.g.,44) may potentially allow us to tackle the joint modeling 
approach in future work. Overall, this study emphasizes the need for further use of single-cell measurements 
to understand gene responses in order to identify outlier cells and capture full  distributions45. Single-cell gene 
expression measurements combined with the appropriate model could provide otherwise overlooked insights 
into the kinetics, spatial distribution, and regulatory mechanisms of any number of genes.

Figure 7.  Model-predicted downstream in�uence of NF-κB using the best two models. (A): Signal strength 
of NF-κB in the nucleus in arbitrary units (AU). (B-C): �e time-varying probability of IL-1β and TNF-α to 
occupy the intermediate gene state  (G1). (D-E): �e time-varying probability of IL-1β and TNF-α to occupy 
the �nal gene state  (G2). (F-G): �e time-varying mean transcription rates for IL-1β and TNF-α, under four 
di�erent inhibitor conditions (No inhibitors, MG132, U0126, both MG132 and U0126).
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