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Abstract

Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties

of materials at the nanoscale. While the potential technological, diagnostic or therapeutic

applications are promising there is a growing body of evidence that the special technological

features of nanoparticulate material are associated with biological effects formerly not attributed

to the same materials at a larger particle scale. Therefore, studies that address the potential hazards

of nanoparticles on biological systems including human health are required. Due to its large surface

area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great

challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles

within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be

identified unambiguously using microscopic methods it is desirable to quantify the particle

distribution within a cell, an organ or the whole organism. Transmission electron microscopy

provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural

changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells

and to investigate the 3D nature of nanoparticle-lung interactions.

This article provides information on the applicability, advantages and disadvantages of electron

microscopic preparation techniques and several advanced transmission electron microscopic

methods including conventional, immuno and energy-filtered electron microscopy as well as

electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and

technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight

possibilities to combine light and electron microscopic techniques in a correlative approach. Finally,

we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of

nanoparticles in tissues and cells.

This comprehensive article aims to provide a basis for scientists in nanoparticle research to

integrate electron microscopic analyses into their study design and to select the appropriate

microscopic strategy.
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1. Introduction
Each day a human inhales and exhales more than 10,000
litres of air. With an epithelial surface area of approxi-
mately 140 m2 [1], the internal surface of the human
lungs is destined to interact with an enormous number of
airborne particles with each breath. After inhalation parti-
cles encounter several protective structural and functional
barriers of the respiratory tract which include the sur-
factant film [2-4], the aqueous lining layer with the muco-
ciliary escalator [5], airway and alveolar macrophages [6-
8], the epithelium with the underlying basement mem-
brane [9,10], and dendritic cells residing in or underneath
the epithelial layer [11].

Particles can be classified according to their size which
predominantly defines to which compartments of the
lungs they gain access [12]. In recent years, particulate
matter at least in one dimension smaller than 100 nm has
become a focus of pulmonary particle research [13-19].
For the purpose of this review, particles < 100 nm at least
in one dimension will be referred to as nanoparticles (NP)
although the authors are aware that several practical sub-
classifications of particles exist [20], e.g. with respect to
their shape (tubes, rods etc.) or their origin (combustion-
derived nano-sized particles are usually referred to as
ultrafine particles to distinguish them from synthetic NP).
The growing interest in NP has several obvious reasons.
First of all, there is epidemiological evidence that the
nano-sized fraction of particles associated with air pollu-
tion is a major contributor to adverse health effects attrib-
uted to air pollution [21,22]. Additionally, a growing
number of experimental studies have focussed on the
enhanced toxicological potential of synthetic NP in con-
trast to larger sized particles of the same material [23,24].
While the progress of nanotechnology basically relies on
the fact that NP may have different physicochemical prop-
erties than larger sized particles of the same material, it
has been recognized that these different features may also
be accompanied by a different biological reaction of the
cells of the respiratory tract upon exposure [25,26].
Although this fact clearly poses a challenge to researchers
involved in pulmonary toxicology, it is also of particular
interest for respiratory medicine since inhaled NP may
offer an innovative approach for an improved medical
treatment [27].

Where then is the justification to employ different trans-
mission electron microscopic (TEM) tools for the analysis
of the interaction of NP with cells of the respiratory sys-
tem? First of all, it is of principal interest to investigate
whether the morphology of the tissues and cells of interest
changes following NP exposure. Usually, conventional
light and electron microscopic methods will suffice to
address these questions. Second, however, the localiza-
tion and distribution of particles within tissues and cells

needs to be studied to understand how and why NP cause
cellular responses and whether a targeted particle has
reached its target cell compartment [28,29]. Unfortu-
nately, NP may not always be distinguishable from cellu-
lar organelles by conventional TEM which evokes the
requirement of analytical microscopic methods such as
energy filtered TEM (EFTEM) [16,30]. On the other hand,
when the entering mechanisms of particles into cells are
under investigation it may be necessary to distinguish
between cellular compartments that cannot be identified
by their morphological appearance alone (e.g. early and
late endosomes). Immunogold labeling of the compart-
ments may help to overcome these limitations. Since all
structures including NP present as a two-dimensional pro-
file on a tissue section, a high resolution 3D microscopic
approach by electron tomography is desirable to study the
interaction of NP with cellular organelles as well as their
3D shape and size after contact with the cells [31]. Impor-
tantly, it will be necessary to analyze the morphological
alterations of the lung (e.g. investigate potential emphy-
sema development upon long-term NP exposure) and the
distribution characteristics of NP in pulmonary tissues
and cells in appropriate quantitative terms for which ster-
eology offers a great number of unbiased and efficient
methods [32-34].

Though the importance of TEM analyses in NP research is
unquestionable the use of advanced imaging techniques
and appropriate quantification is still rare. We are con-
vinced that this may partly result from the unawareness of
the pitfalls when applying conventional TEM to NP
research and the possibilities to overcome these problems.
Despite the great efforts to standardize and optimize the
generation and exposure systems of NP [35] the appropri-
ate application of microscopic techniques requires opti-
mization. Therefore, this review aims to provide a
comprehensive overview of advanced TEM techniques
and a critical appraisal of their potentials and limitations
in order to stimulate the implementation of more
advanced and quantitative TEM methods for NP-related
research in the respiratory tract.

2. Focus A: Transmission electron microscopic 
methods
2.1. Fixation and embedding

A prerequisite for transmission electron microscopy is that
all material entering the microscope has to be fixed in one
way or another. Fixation of cells and tissues aims to pre-
serve the specimens as close to the living state as possible.
As further outlined, different electron microscopic tech-
niques as well as specific questions of a particular study
significantly influence the choice of the fixation and
embedding method. Currently, there are two major
approaches to fix biological samples, viz. chemical or
physical fixation. For the lung as an entire organ, there is
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no routine alternative approach to chemical fixation to
date but for restricted tissue samples, such as larger air-
ways or cell cultures, physical fixation offers an excellent
alternative. The following paragraphs as well as Figure 1
provide an overview on different possible methods, their
impact for the different TEM techniques and relevant ref-
erences. Nevertheless, one will have to evaluate the useful-
ness of a specific protocol for each particular study. For
this reason, Weibel et al. [36] have introduced a number
of very instructive external and internal standards. In Fig-
ure 2, we provide a chemically and a physically fixed spec-
imen for comparison between both methods.

2.1.1. Chemical fixation

Two basic routes exist for the delivery of chemical fixative
to the lung: instillation via the airways [1,37] and per-
fusion through the vasculature [38,39]. Instillation fixa-
tion via a cannula introduced into the trachea is a
straightforward method to fix the lungs, however, it dis-
turbs the surface lining ultrastructure of airway or alveoli
including mucus, surfactant, macrophages and foreign
material as NP. The lungs need to be collapsed prior to
instillation of the fixative at a pressure of approximately

20–25 cm of water. Afterwards the trachea is clamped to
prevent fluid outflow, the lung is removed from the chest
cavity and stored in cold fixative, e.g. for at least 24 hours
[40]. These procedures guarantee that the lungs are fixed
at around two thirds to three fourths of total lung capacity
[41].

Vascular perfusion fixation via a cannula/catheter intro-
duced into the pulmonary trunk fixes the lungs very
quickly and thoroughly [42], but its performance is far
more complex and demanding than instillation [43]. Air
and perfusate inflow pressures need to be in a correct rela-
tion to each other, controlled and possibly adjusted
throughout the fixation procedure in order to obtain the
tissue of the whole lung properly fixed. This is in itself
technically demanding. Particular attention must be paid
to the question of which effective perfusion pressure
should be used. Since the intrapulmonary pressure can be
adjusted the lung can be fixed at a nearly arbitrary fraction
of total lung capacity with excellent results at approxi-
mately 60% of total lung capacity. A detailed instruction
and discussion of both methods is provided by Gil [39]
and Gehr et al. [41].

Survey on several transmission electron microscopy strategiesFigure 1
Survey on several transmission electron microscopy strategies. The figure provides help to chose a specific strategy 
for TEM preparation based on the scientific purpose of the study. It shows the crucial decisions in specimen preparation from 
the fixation level to the investigation at the TEM. Abbreviations: GA = glutaraldehyde; PFA = paraformaldehyde; CTEM = con-
ventional TEM; EFTEM = energy-filtered TEM; ET = electron tomography.
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First, the preferred method of fixation for NP research
depends on the actual scientific question. If the uptake of
particles by alveolar macrophages or their interaction with
surfactant is the subject of interest one will have to use
vascular perfusion fixation. However, if the translocation
of NP to the blood circulation is investigated it will be
desirable not to wash out all the blood from the pulmo-
nary circulation and one would therefore prefer to use
instillation fixation. Second, however, the choice of the
fixation method is also influenced by the experience and
skills of a laboratory. If one is not familiar with the differ-
ent aspects of vascular perfusion fixation and their inter-
pretation this technique may lead to false conclusions
because the relationship between the airway and vascular
pressures determines the structural appearance of the
parenchyma [43].

Fixation of lung samples by immersion in the fixative is by
far the least preferable technique because the lung tissue is

collapsed and artefactual changes occur, which can not be
controlled for [44]. It should therefore only be applied
when neither perfusion nor instillation fixation can be
used (human biopsy material or specimens sampled from
one individual over a sequence of time). In cell cultures,
immersion fixation is the method of choice.

The fixative consists of a fixing agent in a suitable vehicle
[45]. The most widely used fixatives contain paraformal-
dehyde (PFA) and glutaraldehyde (GA) often combined
with a post-fixative, mostly molecules including heavy
atoms such as uranium or osmium [44,46]. PFA is a
higher polymer of formaldehyde and is sold as a white
powder. Formaldehyde solutions made of PFA do not
contain methanol in contrast to the 10% formalin solu-
tions frequently used in light microscopy [47]. There is a
large number of protocols using either PFA or GA individ-
ually or a combination of PFA and GA, in varying concen-
trations and with different buffers. Often, the choice of

Chemical and physical fixation of the lungFigure 2
Chemical and physical fixation of the lung. Alveolar epithelial type II cells were studied by cTEM either after chemical (A 
and B) or after physical (C and D) fixation. The overview in A shows a well-preserved type II cell from a newborn rat lung fixed 
by instillation of 1.5% GA, 1.5% PFA in Hepes buffer and processed according to Table 1. Lamellar bodies (LB), nucleus (Nu) 
and mitochondria (Mt) are well preserved. At a higher magnification, details of the endoplasmic reticulum (ER) as well as an ER 
related multivesicular transport vesicle (MvTV) can be visualized. The overview in C shows a well-preserved type II cell from 
an adult rat lung. A small piece of tissue was cut from the whole lung, put in a syringe with 1-hexadecene and air was extracted 
from the tissue block by negative pressure. Afterwards, the specimen was high-pressure frozen (Leica EMPact 2.0, Leica, 
Vienna, Austria), freeze-substituted with acetone containing 1% osmium tetroxide (AFS 2.0, Leica, Vienna, Austria) and embed-
ded in epoxy resin. Most likely due to the lack of uranyl acetate during freeze-substitution the lamellar bodies are not well pre-
served, with almost complete loss of the surfactant material, only the limiting membrane can be seen. However, the 
ultrastructure of other organelles like multivesicular bodies (MvB) is highly increased (D) due to the excellent preservation of 
the membrane structures (Me). Since this is the first description of high-pressure frozen lung tissue, systematic studies are 
needed to determine the ideal processing both for conventional and immuno TEM. Bars = 1 μm (A, C), 250 nm (B, D).
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the fixation solution is not based on scientific reasons but
on lab traditions. Detailed reviews of the literature on this
topic are available [48-50]. The choice of the fixative as
well as the further processing of the samples will depend
on the actual purpose of the study because chemical fixa-
tion always means a compromise between preservation of
cellular ultrastructure and maintenance of antigenicity.
High concentrations of GA as well as osmium containing
post-fixatives often delete the antigenicity and make sam-
ples unfeasible for immuno TEM studies [48] whereas
very low GA concentrations as well as the lack of exposure
to uranyl salts fail to sufficiently preserve pulmonary
ultrastructure [51]. In Table 1, we recommend two proto-
cols for chemical fixation and embedding for conven-
tional and immuno TEM of the lung routinely used in our
lab though we are aware that many other suitable proto-
cols may exist.

2.1.2. Physical fixation

Physical fixation is often referred to as physical immobili-
zation, cryo-immobilization or cryofixation. The purpose
is to solidify the water in the sample, thereby arresting the
biological machinery. However, the formation of ice crys-
tals induces severe damage to the cell [52]. Cryo-immobi-
lization has a long-standing history in light microscopy
since segregation artefacts, induced by ice crystals reside in
a size range of about 100 nm, well below the resolution
limit of light microscopic techniques.

In order to be useful for TEM studies, these segregation
artefacts need to be prevented, or reduced below the reso-
lution limit of the TEM. This can be achieved by vitrifica-
tion: a phase transition of liquid water to the vitrified
state, which is an amorphous (i.e. lacking crystalline struc-
tures), solid state of water [53-57]. Such a state of water
can only be achieved by extremely fast extraction of heat
from the sample surface [58]. As water is a poor thermal
conductor and the most abundant molecule in most bio-
logical samples, sufficient heat can be eliminated only
from small samples [59]. In fact, after plunging the aver-
age biological sample in a cryogen (e.g. liquid nitrogen),
a superficial layer of about 10–20 μm is vitrified but the
ultrastructure of deeper structures will be damaged by ice

crystal growth [60]. Therefore, applications involving
small particles (e.g. viruses or protein complexes) or sin-
gle cells were particularly attracted by this technique [61-
63].

It has been recognized that high pressure (roughly 200
MPa) influences the physics of water in a way cryoprotect-
ants do [64] which led to the development of high pres-
sure freezing (HPF) procedures [58,65,66]. Application of
200 MPa pressure during the cooling process increases the
depth of vitrification ten-fold [50,67,68], thereby making
physical immobilization available up to 200 μm and suit-
able for larger biological objects, such as tissues [69-72]
and even entire multicellular organisms [73]. The impact
of 200 MPa on the survival rate of cellular organisms was
shown to be minimal [65,74] but not absent [75,76].

The vitrification of the water in the sample results in a
highly increased preservation of the fine structure and an
improved retention of the structural components com-
pared to chemical fixation [61,66,77-79] and is therefore
often superior for antigenicity studies at the TEM level
[80-82].

After successful vitrification, a variety of follow-up proce-
dures are available (Figure 1). The fully hydrated speci-
men can be cryosectioned and investigated under a
cryoTEM [56,69,83]. As no dehydration step takes place,
this approach will give the closest impression of the native
biology of the sample. The topology of the sample can be
studied by freeze fracturing methods [84,85].

Alternatively, the water can be removed from the sample
either by freeze drying [86,87] or by the much more
widely used technique of freeze substitution [88]. Dehy-
dration of the sample implies that the threat of ice crystal
damage does not longer exist. Low temperature embed-
ding became available after the development of resins
with a low enough viscosity to allow infiltration and
polymerization at temperatures below 0°C [82,89,90].
However, since the sample can be returned to room tem-
perature conditions, the techniques established for chem-
ically fixed samples apply as well.

Table 1: Two protocols for conventional and immuno TEM preparations routinely used in our lab.

cTEM Immuno TEM

Fixative 1.5% GA, 1.5% PFA in 0.15 M Hepes buffer 0.1% GA, 4% PFA in 0.2 M Hepes buffer

Postfixative 1% osmium tetroxide in sodium cacodylate buffer ---

En-bloc staining Half-saturated aqueous uranyl acetate 0.5% uranyl acetate in methanol (at -90°C)

Dehydration Ascending acetone series Methanol (at -90°C)

Embedding medium Araldite (at 60°C) Lowicryl HM 20 (at -45°C under UV light)

Note. In this table two different protocols of specimen preparation for cTEM and immuno TEM, respectively, are given. Detailed descriptions of the 
protocols are given in Fehrenbach and Ochs [51]. Abbreviations: GA = glutaraldehyde, PFA = paraformaldehyde.
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We here for the first time present evidence that lung tissue
can be fixed by HPF (Figure 2). However, as air-filled
spaces in the lung cannot withstand the pressure induced
(about 200 MPa) an approach is required in which the air-
ways must be filled with an inert, uncompressible fluid,
e.g. perfluocarbon, prior to freezing.

2.2. Conventional TEM

Conventional TEM in NP research is frequently used to
characterize particle structure [18,91-93], to demonstrate
the intracellular localization of NP [28,94-96] and less fre-
quently to assess the morphology of tissue or cell samples
[28,96]. Its popularity is partly explained by the high res-
olution and because it is established in many laboratories.
However, particles that are shown in TEM figures are often
agglomerated structures with diameters of far more than
100 nm. For this reason, too low magnifications are used,
which do not allow the identification of particles in the
range of 10–20 nm or even less. Furthermore, it is often
ignored that NP can sometimes be indistinguishable from
cellular structures in the same size range. For example,
electron dense particles (e.g. titanium dioxide) may have
similarity with glycogen granules, mitochondrial matrix
granules or ribosomes whereas electron lucent particles
(e.g. polystyrene) may be confused with spherical vesicu-
lar structures [97]. Therefore, there is a potential risk that
a technical bias is present either due to the fact that cellu-
lar structures are mistaken for NP or vice versa. Using only
conventional TEM this bias cannot be overcome (Figure
3).

Despite its wide use in NP research, conventional TEM as
a sole tool for the qualitative or quantitative evaluation of
the cellular localization of NP needs to be carefully evalu-
ated from case to case. With few exceptions (e.g. colloidal
gold particles), it needs to be accompanied by methods
that increase the identification of every NP, independent
of its size, shape or electron transmissibility. Nevertheless,
the application of conventional TEM is justified by its suit-
ability to detect potential effects of NP on cellular
ultrastructure and to characterize NP structure.

2.3. Immuno TEM

Once a specimen has undergone all fixation and embed-
ding procedures, it has maintained its antigenicity, and
preserved its ultrastructure, immuno TEM offers some
useful applications for NP research: visualization, co-
localization and quantification of NP and antigens [98-
101]. However, the authors are not aware of any study
related to NP that used immunocytochemistry and TEM.
The purpose of immunogold labeling is to localize pools
of proteins and lipids or to identify structures that cannot
be clearly identified or cannot be seen at all at high reso-
lution. For example, a primary antibody binding to the
antigen of interest is visualized by a secondary antibody
carrying a colloidal gold particle of defined size. This gold
particle is visible under the TEM due to its electron den-
sity. In contrast to light microscopy, this method allows to
determine the localization of antigens in association with
subcellular structures at the nano-meter range.

Conventional TEM of polystyrene nanoparticlesFigure 3
Conventional TEM of polystyrene nanoparticles. This figure demonstrates the impossibility to distinguish between NP 
and cellular structures by conventional TEM unambiguously. In A, five polystyrene NP (NP!) with a mean diameter of 78 nm are 
observed next to an A549 cell. Once taken up by the cells, they may have an appearance as shown in B. It is very likely that the 
spherical structures in B (NP?) are not NP but vesicular structures like caveolae. CC = Clathrin coated vesicle; PM = Plasma 
membrane; AJ = Adherens junction. Chemical fixation, Epon embedding, 40–70 nm sections. Bar = 1 μm (A and B are at iden-
tical magnification).
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If NP could be made visual by immunogold labeling their
identification would be straightforward and unambigu-
ous. The binding specificity could then be cross-checked
by the co-localization of the particle (which cannot be
performed with immunogold labeling of proteins). Once
particles are undoubtedly detectable by TEM, it is possible
to determine their exact localization within cellular
organelles and to quantitatively assess their tissue or cel-
lular distribution in an unbiased way (see below, stereol-
ogy). This approach requires that the particles have a
surface coating which can be recognized by a specific anti-
body. As the surface coating is likely to influence the bio-
logical effects of the NP, this approach for NP detection
might not be advantageous in toxicological studies. How-
ever, particles targeted to specific tissues, cells or
organelles are designed with a specific coating that guides
them their way. In these cases, immunogold labeling for
detection may be feasible and very useful.

If coated NP are labeled by immunogold particles it may
be interesting to determine their exact localization. For
example, early and late endosomes as well as lysosomes
cannot be distinguished from each other by their mor-
phology alone. The double-labeling technique (e.g. using
5 nm golds for the NP and 15 nm golds for the organelle)
may represent an interesting approach to perform co-
localization studies. In those cases where NP can be iden-
tified by EFTEM (see below) immunogold labeling of
organelles or cytoskeletal proteins offers a detailed analy-
sis of how NP are associated with cellular proteins.
Finally, exposure of cells to NP may result in alterations of
the cellular distribution of a particular antigen [102]
which can be studied by quantitative immuno TEM [103].
An example of sufficient immunogold labeling for an
organelle suspicious of being involved in active cellular
NP uptake is shown in Figure 4.

2.4. Energy filtered TEM

As shown above, the major problem in the investigation
of interactions between NP and the lung is the fact that it
is often not possible to distinguish unambiguously
between cellular structures and NP, a fact that is often
neglected or even unrecognized. Energy filtered TEM com-
bines the high resolution of the TEM with the analytical
capabilities of electron energy loss spectroscopy and imag-
ing [104]. This allows the analysis and visualization of the
spatial distribution of the elemental composition of a par-
ticular structure. During transmission of the beam, inelas-
tic scattering events between beam electrons and the
specimen occur, resulting in a specific loss of energy of the
electrons in the beam. In such a way, the atoms in the
sample leave their fingerprint in the transmitted electron
beam. By analysing the energy spectra of the transmitted
electrons, the elemental composition of the atoms in the
specimen can be retrieved. However, EFTEM requires the

use of sections with a thickness of about 30 nm in order
to avoid multiple scattering [105].

NP often contain elements such as titanium, zinc or cad-
mium with no or low abundance in biological systems.
This differential atomic composition allows for the distin-
guishing potential of elemental mapping, and therefore of
the NP. If lungs or cell cultures are exposed to an aerosol
containing NP of a known composition, it is possible to
test whether and which cells or organelles contain the ele-
ments the NP are composed of.

EFTEM is an advanced imaging technique that requires
substantial technical know-how and a suitable micro-

Immuno TEM of rat lung labeled for caveolin-1Figure 4
Immuno TEM of rat lung labeled for caveolin-1. Cave-
olae are cholesterol-rich regions of the plasma membrane 
involved in endocytosis. One of the constituting proteins of 
caveolae is caveolin-1 which was labeled here using newborn 
rat lung tissue fixed by instillation of 4% PFA, 0.1% GA in 0.2 
M Hepes buffer. After freeze-substitution and embedding in 
acrylic resin (Table 1), ultrathin sections (40–70 nm) were 
cut and mounted on formvar-coated Ni mesh grids. Immuno-
gold labeling was performed according to standard protocols 
[99]. The primary antibody was a rabbit anti-caveolin-1 anti-
body (BD Biosciences, Pharmingen, Germany) diluted 1:50. 
The secondary antibody was a goat-anti-rabbit antibody cou-
pled to 10 nm gold particles (British Biocell, Cardiff, United 
Kingdom). A strong signal is found for caveolae in capillary 
endothelium and alveolar epithelium. Unspecific background 
labeling was weak (note the gold particle in the interstitium) 
but not completely absent. Immunogold labeling requires 
good knowledge about the biology of the target antigen and 
the specificity of the antibody. Before going to the TEM level, 
one is well advised to perform pilot light microscopic experi-
ments. CL = Capillary lumen; EC = Endothelial cell; IC = 
Interstitial cell; AEI = Alveolar epithelial type I cell; AL = 
Alveolar lumen. Bar = 1 μm.
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scope, which explains why it is not widely established in
life sciences. If the elemental composition of the particles
is not known beforehand, the analysis by electron energy
loss spectroscopy may turn out cumbersome and frustrat-
ing. Furthermore, analysing NP within biological prepara-
tions using EFTEM may also be frustrating if the NP
consists of elements that occur in large amounts in biolog-
ical systems as well although recent progress in the EFTEM
technique might improve this situation [106]. Electron
spectroscopy images should always be accompanied by
electron energy loss spectra of the region of interest and a
negative control region (e.g. pure embedding media).

So far, the use of EFTEM in pulmonary research is limited
to a few studies, e.g. analysing plasma membrane integrity
by lanthanide tracers [107] or phosphorous spreading in
alveolar type II cells during ischemia [108,109]. Research
involving the intracellular localization of NP at high reso-
lution should adopt more frequently the use of this meth-
odology. Although the authors are aware that EFTEM
requires a great deal of resources (highly trained person-
nel and infrastructure) the effort seems justified by the fact
that there is no real alternative, especially if particles are
subject to quantification of their distribution.

Fortunately, EFTEM has witnessed a more frequent use in
recent years for the study of NP localization in vitro
[16,95], in vivo [14,30,110,111] and in sputum macro-
phages [112]. Yet, the majority of the ultrastructural stud-
ies still relies on only conventional TEM images without
additional proof of the particle identity. In Figure 5, we
provide an example of titanium dioxide NP visualized by
EFTEM.

2.5. Electron tomography (ET)

Understanding the interactions of NP with cellular struc-
tures, especially with complex membrane-bound
organelles requires information about the three-dimen-
sional (3D) arrangement of the morphological compo-
nents. Before the development of ET, high resolution 3D
reconstruction was based on a sequence of serial sections
[113-115], which was hampered by the fact that delicate
membranous structures would require the production of
sections as thin as 5–10 nm, which is not feasible due to
limitations in ultramicrotomy. Since in TEM the entire
thickness of the section is constantly in focus, the z-reso-
lution of 3D reconstructions from serial sections is limited
by the section thickness. In NP research, the use of serial
sections is even less sufficient because the diameter of the
particles under investigation is often smaller than 50–70
nm, the usual thickness of an ultrathin section.

The development of ET has made it possible to overcome
these problems: A rotational relationship between detec-
tor (camera) and object is created by tilting the section

inside the electron microscope at user defined increment
intervals, usually 1° or 2°. This gives rise to a tilt series: a
sequence of projections of the object, taken from different
angles [116]. Subsequently, the tilt series undergoes sev-
eral automated digital processing steps including align-
ment and backprojection [117] by which the object of
interest is reconstructed in its three dimensions. The result
is a stack of parallel slices, with an axial resolution (dis-
tance between two subsequent slices) in the range of 2 to
10 nm, i.e. several times thinner than the thinnest section
one could possibly generate physically. Additionally, vol-
ume and surface rendering software may be applied to
obtain an enhanced 3D impression [118]. In a process
known as segmentation [119], particular structures of
interest can be extracted, either automated or manually,
for further analysis and visualization. Importantly, the
segmentation process is influenced by the observer inter-
pretation of the ET slices and therefore the result of a selec-
tive cognitive process.

Due to the nature of the electron beam and the increasing
relative thickness of the section at increased tilting angles,
the section can only be inclined between about ±70°. The
remainder, between ±70° and ±90° (the so-called missing
wedge) cannot be recovered from the sample and will
result in artefact formation during digital reconstruction
[120].

For the moment, ET is not widely established for several
reasons. First, the electron microscope must be equipped
with a motorized goniometer and specialized software,
and such instrumentation is resourceful, which, in turn
currently limits their purchase to a number of central TEM
labs worldwide. Second, ET requires advanced experience
and know-how in electron microscopy, specimen prepa-
ration and interpretation of the TEM images. The princi-
ples and problems of ET are discussed in a number of
excellent reviews [121-124].

ET is only emerging to be part of the methodological rep-
ertoire in NP research and has already been applied on
nanomaterials [125] as well as initial studies on the inter-
actions of NP with biological structures [31,126].

Visualization by ET allows the analysis of NP shape, vol-
ume and surface in 3D. This greatly helps with the charac-
terization of NP and the discrimination between genuine
particles and agglomerated NP. Furthermore, ET is pro-
jected to become a useful tool to study contact sites
between NP and macromolecules in detail. Such insights
will potentially improve our understanding of NP entry
mechanisms into cells, processing by the cellular machin-
ery and where NP related toxicity originates. One exciting
topic also relates to the fact that ET extends the applica-
tion of a number of stereological tools (e.g. the optical
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disector, see below) to the electron microscopic level
[127]. Particularly, for stereological purposes using ET no
segmentation process is needed making the quantifica-
tion independent of the observer preference. Finally, it
needs to be emphasized that ET is independent of sample

processing: it can be carried out on materials embedded in
epoxy or methacrylate resins as well as cryosections and
fully hydrated cryosections and allows to be combined
with immuno TEM. Figure 6 provides an example of a 3D
reconstruction of a NP in its cellular environment.

Titanium detection by ESI and pEELSFigure 5
Titanium detection by ESI and pEELS. A and B show an energy loss imaging (ESI) series of the L3 orbital of Ti at 440 eV 
(background) and 464 eV (signal) in an erythrocyte culture. In C, the resulting difference is calculated, revealing the distribution 
of Ti in the sample. Not shown, but used in the three-window calculation of the Ti distribution is a second background window 
recorded at 390 eV. The occurrence of Ti is confirmed by parallel electron energy loss spectroscopy (pEELS), shown in the 
graph. The energy a beam electron looses when interacting with the sample is representative for the atom and orbital it is 
interacting with. The graph shows a peak intensity around 460 eV, indicative for the interaction with the L3 orbital of Ti (the 
background follows a negative exponential progression). The zeroloss overview and detail images show a dark particle near a 
red blood cell. With pEELS confirming the occurrence and ESI revealing the distribution, the particle can be appointed as con-
taining Ti. Bars = 1 μm (D), 250 nm (A to F except D). Titanium dioxide particles were incubated with erythrocytes and fixed 
and embedded conventionally. The section was placed on a Ni-grid. No supportive film and no staining were used. Zeroloss 
measuring of the relative thickness of the section at 10 different positions revealed a t/λ of 0.38 (+/- 0.04).
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3. Focus B: Correlative light and electron 
microscopy
In an ideal world, it would be possible to investigate the
interactions of cells with NP combining the benefits of
light microscopy, especially live cell microscopy, with the
high resolution of transmission electron microscopy.
However, in laser scanning microscopy the resolution is
limited to 200 nm and 500–900 nm in the lateral and
axial directions, respectively, although deconvolution
algorithms may increase the resolution 2–3 fold
[16,128,129]. On the other hand, with TEM only fixed
specimens can be analyzed. A combination of light and
electron microscopy gives the most complete and accurate
picture. Correlative light and electron microscopy is par-
ticularly useful for the interpretation of light microscopic
data because the low resolution often limits the conclu-

sions that can be drawn from light microscopic investiga-
tions alone [130]. To overcome the gap between light and
electron microscopy several approaches have been devel-
oped which might prove to be very helpful to correlate
light and electron microscopic observations in NP
research.

Two highly promising ways for correlative light and elec-
tron microscopy have been described in detail recently.
Using a linker molecule, the fluorescent signal recorded
by the optical system of the light microscope is converted
into a signal that can be picked up by the optical system
of the TEM. In a first approach, a biotinylated antibody
specifically directed against a particular antigen is applied
and visualized with a streptavidin labeled quantum dot
that contains fluorescent molecules at the surface and an

Electron tomography of a 250 nm thick sectionFigure 6
Electron tomography of a 250 nm thick section. A tilt series (three stills are shown in A, B and C) between +/- 60° with 
an increment of 1° provides the information for a volume reconstruction by weighted backprojection (D) of an in vitro grown 
alveolar epithelial cell (cell line A549), exposed to polystyrene NP prior to chemical fixation. The 2 nm thin slice (E, at a depth 
of 58 nm in the section) reveals a crisper and clearer depiction of the polystyrene NP than the 250 nm thick Epon section (F). 
Arbitrary digital slices can be made (G, position shown by the two arrowheads in D) in order to provide unquestionable recog-
nition of the NP. Bars = 250 nm in A-D, 50 nm in E-G. Software based 3D rendering offers a way for segmentation according 
to the interpretation of the user and allows full perspective freedom (H and I). Moreover, clipping planes can partially dissect 
the scene (J), segmented objects can be omitted (the membrane surrounding the NP in K) and specific quantitative information 
on rendered objects obtained. Blue: nanoparticle, shades of green: rough endoplasmic reticulum (RER), orange: plasma mem-
brane, transparent white: membrane surrounding the NP, red: ribosomes (Ri) on the RER. Me = membrane, NP = nanoparti-
cle, PM = plasma membrane.
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electron dense core (CdSe) which can unambiguously be
detected by EFTEM [131,132]. Nisman et al. [132] dem-
onstrated this method by localization studies of the
nuclear promyelocytic leukaemia protein in the nucleus
of cultured cells. Quantum dots can be quantified simi-
larly to immunogold particles but they are less distinct
than colloidal gold particles. A second approach has been
described by Griffin et al. [133] and makes use of a short
tetracysteine hairpin motif that can be integrated into a
large number of proteins. The cells can then be exposed to
a biarsenical fluorescent dye which is able to permeate
through cell membranes and spread a strong fluorescence
signal upon contact with the tetracysteine motif. If diami-
nobenzidine is added and strong illumination is applied,
the biarsenical group reacts with the diaminobenzidine, a
process known as photo-oxidation. The diaminobenzi-
dine reaction product is strongly osmiophilic and can eas-
ily be visualized by TEM. Gaietta et al. [134] have used this
method to visualize the gap junction protein connexin 43
in HeLa cells at light and electron microscopic level.

Direct ways denounce the use of linker molecules between
the two microscopic modes. The idea rests on the compar-
ison of images obtained by light and and electron micro-
scopy of the same region of interest. In the case of labeling
of specific probes, the signal is obtained by light micros-
copy (either a precipitation or a fluorescent signal) and
superimposed on the high resolution micrographs gener-
ated by TEM. One simple way is to use a low-temperature
embedded or frozen specimen and cut consecutive
ultrathin sections, which can be used for immunofluores-
cence imaging and immunogold labeling, respectively
[135,136]. This approach allows to visualize "almost the
same" region within a specimen, which, however, is not
sufficient for studying the "spot-like" interactions of NP
with cellular structures. It is therefore desirable to view
exactly the same structure of interest at light and electron
microscopic level. An interesting approach has been
described by Biel et al. [137]. Human skin samples were
fixed by HPF, labeled with fluorescent dyes during freeze-
substitution, and embedded in Epoxy resins. The entire
resin-embedded specimen was studied by confocal laser
scanning microscopy, a region of interest was chosen and
marked at the surface of the resin block and consequently
sectioned into ultrathin sections [138]. Alternatively, one
could take a live cell sample exposed to NP, fix it by HPF
and use it for further TEM imaging. Specific instrumenta-
tion, consumables and protocols were developed for this
purpose [83]. For the whole lung, one might think of
exposing the lung to NP (ideally by aerosol inhalation) to
study the subsequent interactions by real-time lung
microscopy [139] and fix the whole lung afterwards by
vascular perfusion for further TEM investigations.

A solution of striking simplicity has surfaced recently.
Based on the analysis of specific conjugated π-electrons,
fluorochromes can be detected by improved EFTEM
instrumentation. In this manner, Mhawi et al. [106] could
reveal the fluorescent signal of doxorubicin in human
breast cancer cells directly at the EM level without the
need for further detection systems.

The potential of correlative light and electron microscopic
approaches is enormous and their application in NP
research may greatly enhance our understanding of the
entering mechanisms, the intracellular trafficking and
their downstream beneficial or toxic properties. The com-
bination of the different advanced techniques described
above offers a methodological armamentarium suited to
answer many of the inherent questions currently dis-
cussed in NP research.

4. Focus C: Stereology
The significance of microscopic evaluations is directly
associated with the extent and representativeness of the
observations. Evaluation of the extent of a microscopic
finding requires the use of unbiased quantitative methods
which describe the structures in terms of number, length,
area or volume. The representativeness of the observa-
tions is critical because the actual material that enters the
microscopic stage is infinitesimally small in relation to
what it is thought to represent. Therefore, the aim is to
give every part of an organ or a cell culture an equal
chance of being selected for the analysis. Stereology offers
a wide range of unbiased methods that fulfil these require-
ments and are frequently used in pulmonary research, but
their use in NP research is rare. There are, however, three
basic scenarios that justify the use of stereology in NP
research: (1) First, it is necessary to estimate the morpho-
logical changes that occur upon exposure to NP, e.g. the
volume of fibrotic lesions in the lung or the number of
inflammatory cells. (2) Second, changes in protein locali-
zation due to NP exposure can be estimated by relating
immunogold particles to the relative volume of the
organelles which results in relative labeling indices. (3)
Third, the preferential distribution of NP within tissues or
cells needs to be estimated and evaluated using appropri-
ate statistical methods that are closely correlated to the
methods for quantification of immunogold labeling. All
of these methods require the use of sampling procedures
that need to be followed consequently from the whole
organ down to the microscopic test field under investiga-
tion. These methods include randomization of localiza-
tion by systematic uniform random sampling [140] or
fractionator sampling [141,142] and randomization of
orientation using the isector [143] or the orientator [144].
The basic principles for applying unbiased stereology to
lung research have been described in detail in some recent
review articles [32,33].
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Unfortunately, morphological changes associated with
NP exposures are usually reported by micrographs show-
ing "representative" lesions or are not investigated at all, a
consequence from the fact that most studies focus on
acute toxicity of NP rather than on chronic exposures.
However, it will be necessary to assess these changes both
in acute and chronic situations to evaluate the significance
of the reported toxicological responses for pulmonary
structural remodeling. To give some examples, stereology
offers tools to investigate the number of cells or alveoli
[145-147], the surface area of endocytosis-related cellular
membranes (e.g. caveolae) or the gas exchange region
[148], the volume of intracellular or intraalveolar sur-
factant components [149-151] and many more. For an
overview of these methods, the reader may refer to the
reviews of Ochs [32] and Weibel et al. [33].

The approaches to analyze immunogold or NP distribu-
tions using the comparison of observed and expected par-
ticle distributions in terms of indices (relative labelling
index, RLI, [103], relative deposition index, RDI, [34])
and with chi-squared analysis have made it possible to
distinguish between random and non-random particle
distributions. Since RLI and RDI rely on the same basic
principle they are only explained for the RDI and the
reader may refer to Mayhew et al. [103] for further infor-
mation on the RLI. The first step in the analysis of NP dis-
tribution within a certain tissue or cell is the definition of
compartments within the structure of interest. For the
lung, one may want to distinguish between airway lumen
and wall, alveoli, epithelium, interstitium or endothelium
of alveolar septa etc. For intracellular distributions differ-
ent cellular compartments may be distinguished for the
purpose of analysis. The second step is the gathering of a

sufficient number of test fields by systematic uniform ran-
dom sampling which serves to provide two sources of
information: 1) The observed number of NP associated
with each compartment can be estimated by counting the
NP. It needs to be mentioned at this point that the proba-
bility a NP is contained in an ultrathin section increases
with increasing particle size. If particles with a wide size
distribution are used this may lead to a size-dependent
bias due to oversampling of the larger sized particles. An
unbiased approach of counting particles independent of
their size is the use of disectors [145]. However, due to the
small size of NP in relation to the thickness of the section
it is usually not possible to employ physical disectors. The
optical disector using ET may offer an alternative but for
NP with a small size distribution and diameter it may be
justified to count the particle profiles keeping in mind the
chance of introducing a bias. 2) The relative volume of the
compartments can be estimated by counting the number
of points of a randomly superposed point grid hitting
each compartment. This gives rise to the observed number
of points. If the NP were distributed randomly within the
tissue or cell then the observed number of NP associated
with each compartment would be closely correlated with
compartment size. This means that the observed number
of points includes information about a hypothetical ran-
dom NP distribution. This can be calculated from the
numbers of observed particles and observed points and is
called the expected number of particles. The relationship
between the observed and expected number of particles
can be expressed in terms of an index, the RDI, obtained
by dividing the observed number by the expected number
of particles for each compartment. If the RDI > 1 for a
given compartment, it contains a greater number of NP
than would be expected from the compartment size. If

Table 2: Synthetic data set in which nanoparticles are non-randomly distributed in different pulmonary tissue compartments. The 

hypothetical data were generated to provide an example of particles mainly taken up by macrophages or retained inside the lumen of 

the alveolar ducts/alveoli.

Compartment NO P NE RDI X2 Fraction of total X2 [%]

Conductive airway (lumen) 5 150 61.86 0.08 52.26 2.76

Alveolus (lumen) 527 1125 463.94 1.14 8.57 0.45

Macrophages 50 3 1.24 48.76 1781.45 94.22

Epithelial cell 12 38 15.67 0.77 0.86 0.05

Interstitium 13 34 14.02 0.93 0.07 0.004

Endothelial cell 12 38 15.67 0.77 0.86 0.05

Residual 0 113 46.6 0 46.6 2.46

Total 619 1501 619 1 1890.67 100

Note. With 6 degrees of freedom (7-1 compartments × 2-1 groups) and a total chi-squared value 1890.67 the null-hypothesis of random particle 
distribution has to be rejected with p < 0.001. The alveolar macrophages are the only compartment that fulfils the criteria for preferential particle 
localization: RDI > 1 and the partial chi-squared contributes substantially (more than 10%) to the non-randomness of the distribution, i.e. the total 
chi-squared [34, 103]. However, although the nanoparticles are preferentially located in the macrophages it is interesting to note that they deposit 
mainly in the alveolar region and are not found in the lumen of the blood vessels which are contained in the compartment residual. Abbreviations: 
NO = Number of observed particles; NE = Number of expected particles; P = Number of observed points; RDI = Relative deposition index; X2 = 
Chi squared values.
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RDI < 1, a compartment contains less NP than would be
expected from compartment size. And if RDI = 1 a com-
partment contains as many NP as would be expected from
its size. The final step is to compare the observed and
expected NP distributions in a statistically valid way using
the chi-squared test. By using this test, we test the null-
hypothesis of random distribution: "The observed and
expected NP distributions are equal." For each compart-
ment a partial chi-squared value is obtained. The larger
the difference between the observed and expected number
of particles the greater the partial chi-squared value will be
and thus, the contribution of a compartment to the over-
all difference between observed and expected particle dis-
tribution as expressed by the sum of all partial chi-squared
values, the total chi-squared value. The total chi-squared
value indicates whether the null-hypothesis is rejected or
accepted. If it is rejected, we can identify the preferential
target of the NP when two criteria are met: RDI > 1 and the
partial chi-squared value accounts for a substantial pro-
portion of the total chi-squared value (say, 10% or more).
For worked examples on synthetic and real sets of data the
reader may refer to references [34,152] and to Table 2.
Furthermore, a detailed discussion of the preconditions
that have to be met is given in the original description
[34].

5. Concluding remarks
This review article has shown that advanced TEM technol-
ogy, ranging from specimen preparation to various analyt-
ical modes as well as to qualitative and quantitative
interpretations of the ultrastructural NP localization is
challenging and requires considerable resources and expe-
rience. Unawareness of the potentials and limitations of
the applicability of a particular method contains the risk
to lead to false conclusions. Therefore, the infrastructure
required for TEM is often centralized in EM core facilities.
If possible, one is well advised to ask for assistance at his/
her local EM core facility at the earliest stage of planning.
For example, with high-pressure freezing it is not possible
to perform a proper systematic uniform random sampling
as would be necessary for stereological purposes. On the
other hand, fixation with high glutaraldehyde fixations
might render a specimen unsuitable for immuno TEM
purposes. Thus, the choice of the strategy for TEM analysis
determines the mode of specimen fixation and sampling.

We have shown that advanced TEM holds great potential
for NP research: High-resolution visualization of NP in a
biological environment and quantitative evaluation of its
localization will greatly enhance our understanding of the
NP-cell interactions. Immunocytochemical TEM
approaches combined with stereology will help to deter-
mine the effects of NP down to the protein level. Tomo-
graphic TEM provides the opportunity to increase our
understanding of the three-dimensional interactions

between NP and structures of the respiratory tract. Correl-
ative light and electron microscopic approaches may com-
bine live cell observations following NP exposure with
subsequent detailed ultrastructral analyses.

We hope that this review contributes to a widespread
application of advanced TEM techniques in NP research of
the respiratory tract.
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