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The Tale of Little Big Iron and the Three Skinny Guys
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January 11, 2011

Abstract

Supercomputing Centers (SC’s) are unique resources
that aim to enable scientific knowledge discovery
through the use of large computational resources, the
Big Iron. Design, acquisition, installation, and manage-
ment of the Big Iron are activities that are carefully
planned and monitored. Since these Big Iron systems
produce a tsunami of data, it is natural to co-locate
visualization and analysis infrastructure as part of the
same facility. This infrastructure consists of hardware
(Little Iron) and staff (Skinny Guys). Our collective ex-
perience suggests that design, acquisition, installation,
and management of the Little Iron and Skinny Guys
does not receive the same level of treatment as that of
the Big Iron.

The main focus of this article is to explore different
aspects of planning, designing, fielding, and maintain-
ing the visualization and analysis infrastructure at su-
percomputing centers. Some of the questions we explore
in this article include: “How should the Little Iron be
sized to adequately support vis/analysis of data coming
off the big iron? What sort of capabilities does it need
to have?” Related questions concern the size of visual-
ization support staff: “How big should a visualization
program be (number of persons) and what should the
staff do?” and “How much of the visualization should
be provided as a support service, and how much should
applications scientists be expected to do on their own?”

1 Introduction

R. W. Hamming famously asserted: “The purpose of
computing is insight, not numbers!” Although few would
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disagree with this observation, supercomputers are de-
ployed in centers and organizations with a complex web
of motivations and goals. Conceivably, each of the hun-
dreds of people involved in these centers sees things
somewhat differently. Even if everyone truly believes
that the fundamental goal is “insight, not numbers,” ap-
propriately sizing the necessary visualization and analy-
sis infrastructure – the Little Iron and the Skinny Guys
– takes political will and planning that are often ab-
sent. The most famous case of this may be the Earth
Simulator, whose funding did not allow for an adequate
file system, forcing simulations to be halted for lack of
space to store the results. Similar instances of the same
lack of balance and focus on the Little Iron needed to
glean insight occurs daily at supercomputing centers ev-
erywhere.

Supercomputing Centers (SC) are the result of signif-
icant investments in resources with the aim of bringing
large-scale computational power to bear on challenging
scientific problems. Ultimately, the success of these cen-
ters is measured by the quality and quantity of science
they enable. Additional metrics may include the percent
of time the machines are available for users, the number
and distribution of jobs and job sizes (some centers fo-
cus on support for high-concurrency jobs), relative user
satisfaction as measured by surveys, and so forth. Some
SCs are “general purpose,” meaning they are intended
to provide resources for a diverse set of science appli-
cations. Others are more focused on specific types of
science (climate prediction, weapons simulation, etc.).

From a hardware perspective, SCs typically consist
of one or more primary computational platforms, the
“Big Iron,” which host the large computational simula-
tions. Many SCs include secondary platforms, which we
refer to here as “Little Iron.” These systems are often
used for post-processing activities like visual data explo-
ration and analysis. The staff at SCs typically reflect the
mission objectives for the center: personnel to perform
operations and system administration, user support, in-
stalling and maintaining software, and so forth.

We represent the visualization and analysis efforts at

1



Figure 1: Illustration courtesy Jo Wozniak, Texas Advanced Computer Center, University of Texas, Austin. This
image does not appear in the CG&A print version due to space limitations.

the Texas Advanced Computing Center, Oak Ridge Na-
tional Laboratory, the National Institute for Computa-
tional Sciences, Lawrence Berkeley National Laboratory,
and Lawrence Livermore National Laboratory. Our ex-
perience also covers other laboratories and computing
centers. Over the years, we encounter two questions over
and over again that are the subject of this article: (1)
How big should the Little Iron be at SCs? and (2) What
sort of staffing – how many Skinny Guys and their mis-
sion – is required to support an effective visual data
exploration and analysis program at an SC?

2 Sizing the Little Iron

The question of the appropriate size and makeup isn’t
unique to Little Iron; each new generation of Big Iron
requires scrutiny of this and many other issues. However,
Little and Big Iron have substantially different budgets
and workload demands.

2.1 Funding Little Iron

Determining how to fund the Little Iron is complicated
in and of itself but often falls into one of three broad
approaches. We can take a prescriptive approach dic-
tated by the relative size of the compute resource. We
can simply size the Little Iron by using the budget that
is left over after the compute resource is purchased. Or

we can perform a detailed workload assessment and size
the Little Iron accordingly. We discuss each of these ap-
proaches below and provide some historical perspective.

The prescriptive approach is dictated by the comput-
ing resource’s relative size; it uses a prescribed formula
to determine the Little Iron’s budget. For example, an
SC program might decide to spend 10% of the Big Iron
budget to purchase the Little Iron.

The leftovers approach simply applies whatever spare
change is lying around after paying for everything else.
It reflects what happens when SCs carefully plan the
Big Iron, then pay for the balance of the infrastructure
– file systems, onsite networking, the Little Iron, and so
on – out of operational expenses.

The planned suburbs approach first performs a care-
fully planned workload assessment. Then, by hook or
crook, it obtains the funding needed to acquire suffi-
cient Little Iron to meet most or all of the anticipated
needs.

It is administratively, very difficult to fund Little Iron.
Imagine a hypothetical conversation in a bar: Center A
staff member: “Our new machine is great. It’s ranked
X on the Top 500 list and delivers Y petaflops!” Center
B staff member: “Sure, but our machine is much better
balanced and has a great attached I/O and visualization
system. We get a lot more science done!” Even to vis
cognoscenti ears this sounds wimpy! “Machoflops” rule!

In general, one would like to choose the “suburbs”
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approach when planning for the Little Iron. It makes a
lot of real-world sense to first perform a detailed work-
load assessment, then buy the appropriate amount of
“horsepower” to meet those needs. However, funding
is often much more complex at large supercomputing
centers. The most practical approach is likely to be a
blend of all three. Although visualization and analysis
are absolutely essential to the scientific understanding
that makes a center successful, the resources that enable
such infrastructure are typically, but not always, consid-
ered late in the process. So the first cut at a budget may
likely be from the “leftovers.”

These issues played out in complex ways with
Lawrence Livermore’s purchase of the ASCI (Acceler-
ated Strategic Computing Initiative) White machine
at Lawrence Livermore. With far larger simulation
datasets than ever seen before, combined with a need
to understand weapons physics in 3D for the first time,
ASCI faced a massive data-understanding challenge. In
response, the VIEWS (Visual Interactive Environment
for Weapons Simulation) program was created and was
given around 9% of the total ASCI budget at the time
for visualization and data understanding infrastructure
(hardware and software), and for research and devel-
opment in this broad area. During acquisition of ASCI
White at Lawrence Livermore, the decision was made
to spend 10% of the machines’ cost on a visualization
cluster.

Although this was a consensus decision within ASCI,
implementation proved surprisingly challenging. First,
although ASCI White was a three-lab resource, there
was push back from the other two partner laborato-
ries. They felt that the Little Iron would be useful pri-
marily for interactive graphics at the local institution
and wouldn’t benefit the remote institutions. This con-
cern was mitigated when staff at those labs learned that
emerging visualization tools could effectively support re-
mote, interactive graphics.

The second issue involved the Little Iron’s struc-
ture. Although initial plans called for a visualization
server from a vendor, providing adequate bandwidth
from White to an external visualization server would
have been challenging. Moreover, the file semantics were
so tightly wrapped around White’s new file system that
there was no plausible way to move files to any other file
system. So, the only feasible approach was to allocate
10% of the nodes of White for interactive visualization
and data exploration.

The co-location of these nodes on the Big Iron caused
a political problem. The visualization nodes were idle
when scientists were not doing visualization, which de-
creased usage statistics. To address this problem, the
batch scheduler was modified to allow simulation jobs
to run on the visualization nodes, but at lower priority

and with the ability to preempt them at any time. (This
was, of course, a good choice, since it created additional
cycles for the center.)

2.2 Workload Assessment

By “workload assessment,” we mean determining the
types of applications and their loads that will run Little
Iron, along with typical use patterns. The objective is
to determine (through empirical data and some guess-
work) how big the Little Iron must be to meet most
workload needs. Six factors influence workload assess-
ment: the execution model, I/O requirements, in-core
versus out-of-core processing, interactive versus batch
use, throughput requirements, and GPUs.

Execution model: Two related issues explore the
workload’s execution characteristics. First, visualization
and analysis codes can run in either serial or parallel.
Serial codes, which include legacy custom applications
as well as numerous commercial products, use a sin-
gle processor for execution. Tackling larger problems
with serial codes will increase per-node memory require-
ments. In contrast, parallel codes can take advantage
of many processors and can often have lower absolute
per-node memory requirements while providing greater
overall problem size capacity by leveraging a larger, ag-
gregate distributed-memory footprint.

Second, the manner in which users run these jobs can
have an impact on the system design. If all user jobs are
run interactively, the overall machine utilization might
be greater, but with the potential for greater resource
contention. In contrast, serializing user jobs through a
batch queue will lower contention, but might impact a
user’s ability to quickly perform analysis.

I/O Requirements: Interactivity depends heavily
upon I/O bandwidth; the amount of I/O bandwidth
needed for any particular task is in turn a function of
the size of data you’ll visualize. However, the data’s
specifics – the data model and format, how it’s orga-
nized inside a file or files and how bytes are arranged
and laid out on storage – are all important. Simula-
tions with low-resolution meshes and many time slices
(e.g., many climate modeling codes) suggest a different
I/O subsystem design than those with high-resolution
meshes and fewer time slices (e.g., turbulence model-
ing codes). Furthermore, approaches that process the
data in a multi-resolution manner can reduce the I/O
requirements dramatically, even though the amount of
raw data remains large.

In-core vs. out-of-core: Data analysis and visu-
alization applications operate either in-core (reading
all data into memory before processing) or out-of-core
(reading and processing data one piece at a time). In-
core algorithms are much more prevalent, but place large
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memory footprint constraints on the Little Iron, be-
cause the machine must contain enough RAM to hold
the largest possible dataset. Out-of-core algorithms typi-
cally require a modest memory footprint, but out-of-core
implementations aren’t always available or possible for
all desired functionality.

Interactive vs. batch use: Utilization of the vi-
sualization resources isn’t comparable to utilization of
the HPC resources at SCs. The visualization resources
primarily, but not exclusively, serve as interactive vi-
sualization platforms. Because interactive visualization
requires the user to be online and interacting with the
application, you can’t expect the machine utilization to
be equivalent to that of applications run in batch mode.
For this reason, it is customary to backfill with batch
jobs that can make efficient use of the Little Iron re-
sources and minimize dead time.

Throughput requirements: Because visualization
is often done interactively, throughput requirements
need to be carefully considered as part of a balanced
system. One useful metric is “Time To First Image”
(TTFI): the time elapsed from requesting a visualiza-
tion to an image appearing on the screen. This metric,
which is relevant for high-throughput scenarios like vi-
sualization of time-varying data, depends on a variety
of factors, namely, how long it takes to:

• load data,
• apply visualization algorithms,
• render data into images, and
• place the image in front of the user (who could be

in a remote location).

An absolute frame rate would be useful for a use sce-
nario where multiple or repeated renderings of a sin-
gle dataset is the primary objective. In this latter case,
meeting some absolute frame rate for interactivity might
be important.

GPUs: Depending on the application needs, GPUs
may be a valuable part of the Little Iron. Workloads
that are heavily dependent upon rendering or composit-
ing may well benefit from having hardware-accelerated
frame buffers at their disposal. Additionally, modern
GPUs support general purpose programming languages
like CUDA and OpenCL, making them useful for accel-
erating numerically intensive computational jobs. With
the HPC community exploring the use of GPUs for HPC
applications, the Little Iron can serve a dual role as a
testbed for HPC application code development1

1Author’s note: between the time of our submission to CG&A
in early Fall 2010 and the January 2011 publication date, the
Tianhe-1A system at the National Supercomputing Centre in
Shenzhen, China, was announced as being number one on the
Top500 list (see www.top500.org). The Tianhe-1A system is com-
prised of NVIDIA GPU processors.

Asking the right questions. How does you deter-
mine the workload? Here, the question is, what kind of
problems do you expect the future machine to process?
Answering this question involves some speculation. One
approach some of us have used in the past is to conduct
workshops with users to directly ask them what they’re
doing now and what they expect to do in the future2.

Because users often don’t know what they want, it
is important to engineer the questions carefully: How
big are your datasets now? How big will they be in 3-5
years? How big are the computational grids (e.g., spatial
and temporal resolution) in your data files both now
and in the future, number of variables per grid cell, how
many time steps, and so forth.

Then, it is important to ask users about their science
problems, and how they envision going about solving it.
This line of questioning will reveal information about
how they expect to use the resources (interactive, batch)
as well as provide hints about what kind of visualization
they believe they’ll need to perform. Collectively, this
kind of information helps provide some “error bars” on
the anticipated capacity required to meet visualization
needs.

2.3 Technology Assessment: What Do
You Buy?

SCs tend to be early adopters of the latest and greatest
technology. Driven by Moore’s law and architectural ad-
vances, new technology can offer dramatic increases in
performance. Since the priority of SCs is productivity in
science and engineering, chasing the newest hardware is
natural. And while the newest hardware may be unbal-
anced or difficult to use, scientists have proven remark-
ably adept at exploiting new technologies in large-scale
computation.

Extrapolating this thought, one might expect that de-
ploying the latest and greatest technology in the Little
Iron is the right approach as well. Here, the situation
is, however, quite different – new technology has less
impact than you would expect. The reason is that, un-
like the large scale simulations running on the Big Iron,
the challenge in visualization and interactive data explo-
ration is throughput rather than total flops. Although
major technology shifts can indeed provide dramatically
greater capabilities in the Little Iron, it is only after
these shifts percolate through the software stack that
one sees their real benefits in visualization and data ex-
ploration.

2B. Hamann, E. W. Bethel, H. Simon, and J. Meza. The
NERSC Visualization Greenbook: Future Visualization Needs of
the DOE Computational Science Community Hosted at NERSC.
The International Journal of High Performance Computing Ap-
plications, 17(2):97–124, 2002.
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Typically, visualization systems consumer data gen-
erated elsewhere. Thus, great care must be put into
throughput and systems balance. Unlike the Big Iron,
where clever scientists and engineers can sometimes
overcome systems imbalances by judicious choices of
algorithms, there are few quick fixes for systems im-
balances in the Little Iron. Thus, spending dispropor-
tionately on memory without increasing bandwidth to
the file store would simply result in a system with a
high TTFI that struggles to provide interactivity. Simi-
lar interdependencies exist between CPUs, GPUs, mem-
ory size, storage, and networking. Technologies such as
GPUs, FPGAs, and hardware compositors hold great
promise for accelerating graphics, but it is only after
such technologies are integrated into a balanced system
that they become generally useful.

2.4 Does Separate Little Iron Have a Fu-
ture?

The hardware landscape changes constantly, and we
must ask if current and past approaches are scalable and
tractable. We must evaluate whether these approaches
need to evolve to reflect changes in workload needs and
machine architectures.

As we move from petascale computing to exascale,
the forces weighing against fielding separate visualiza-
tion platforms seem to be growing in strength. Unless
the exascale system uses a hardware design that is fun-
damentally incompatible with visualization (e.g., tiny
nodes based on embedded CPUs and very small amounts
of memory), it may be more reasonable to figure out
how to use a slice of the exascale supercomputer as an
interactive visualization resources cluster rather than to
lobby for a separate Little Iron machine. Using a slice
of the supercomputer as an interactive visualization re-
source has a number of intrinsic advantages:

• Little Irons are becoming more expensive to field
because they need a proportional amount of mem-
ory to the Big Iron, and memory is not getting
cheaper as quickly as FLOPs.

• The slice that is the Little Iron contributes to the
aggregate flop-count of the Big Iron rather than
being seen as a “parasitic” expense.

• Obtaining adequate I/O bandwidth to the Little
Iron slice is surely easier as it is on the same Big
Iron communication fabric.

• The Little Iron slice will automatically be of the
same vintage as the Big Iron, and will age (become
obsolete) at the same rate as the rest of the Big
Iron.

• A Little Iron slice will usually be much better suited
for visualization tasks that are closely coupled with

running simulation codes, tasks like in-situ visual-
ization, computational steering, and interactive de-
bugging.

Compelling arguments might exist for a separate Lit-
tle Iron resource to augment exascale-class machines.
One argument concerns the availability and support
for software applications. Commercial software vendors
also have limited budgets and staff and will focus their
energies on supporting platforms where it makes eco-
nomic sense. They likely won’t be eager to port their
application to a platform where there are only one or
two systems in existence. Related, relying on the “open
source community” to perform ports of packages to
these unique systems may not be as fruitful as expected:
in the open source world, the software itself may be free
but the people that do the work must still be compen-
sated for their effort. Another argument relates to how
SCs desire to maintain very high levels of Big Iron uti-
lization, but interactive visualization tends to produce
“bursty” loads on the resource.

Overall, the issue of whether or not there will continue
to be separate Little Iron resources is very much open:
the answer is it depends upon a number of factors. Each
SC must evaluate for itself which route to take given
their budget for hardware, software and staff; Big Iron
hardware/software choices, operational policies, evalua-
tion metrics, and science objectives.

3 Sizing the Staff: How Many
Skinny Guys?

One fundamental issue facing SCs that have a visu-
alization effort is determining how many visualization
staff/experts are needed to meet mission objectives. The
answer to this question stems from the mission of the
center: is it a “lights-out” operation that provides only
cycles? Or, does the SC envision providing expert help
to make effective use of the its resources?

In a recent advisory program review of an emerging
visualization program that is part of a well-known SC,
the review panel was given the a list of questions, one of
which was the following: “Do we have sufficient staffing
resources?” The program wanted to provide state-of-
the-art visual data exploration and analysis resources
to its science users, but had only one full-time staff per-
son. The reviewer’s response was “All these objectives
are worthwhile, but you have only one skinny guy to
do all this work. You need more staff if you want to
accomplish all these objectives.”

In our experience, the following are factors that could
be taken into account when determining appropriate
staffing levels for a visualization effort at a SC.
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Ongoing care and feeding of infrastructure:
This activity includes acquiring, installing, and main-
taining both hardware and software. Hardware includes
computational platforms, networking, file systems, and
so forth. Software includes visualization applications,
configuration for use on your particular parallel infras-
tructure, setting up and maintaining user documenta-
tion on the web, possibly doing live or pre-recorded tu-
torials, and so forth.

Typically, an SC has a group responsible for system
administration of platforms and these folks take on the
added responsibility for administering the Little Iron.
In some cases, there is a group at the SC whose respon-
sibility includes installing software on the SC platforms
(e.g., compilers, profiling tools, numerical libraries, and
applications). Often, those staff can also take on the rel-
atively small incremental amount of work for installing
some visualization software. On the other hand, some
visualization software, particularly parallel applications
with client/server modes of operation, can be tricky
to install and may require a complete recompile from
source. In our experience, these activities can consume
a non-trivial amount of time.

Consulting, helping users: In a “lights out” op-
eration, the only real user support you can expect is
help with forgotten passwords and similar operational
issues. In more advanced facilities, working with users
one-on-one is where there is real added value. One ac-
tivity common in many “full service” SCs is help for
users in scaling their codes. This activity will include
diagnosis of poor performance, consulting with using
advanced numerical solver libraries, and so forth. For
visualization, there is a parallel theme: how to use visu-
alization tools to create images, movies, and to perform
problem-specific work. A lights-out operation tacitly as-
sumes that the software works perfectly. However, if the
software breaks or must be adapted or optimized for
a particular machine or user problem, much more time
will be required than is typical for a lights-out operation.

Applied research and development: To deal with
software that doesn’t work perfectly or is missing a small
but crucial feature, some full service shops have staff
who perform applied R&D. Activities here could in-
clude extending existing tools, or developing new, cus-
tom ones.

In terms of extending applications, a good example
for visualization is the ongoing issue of data models and
formats. Most contemporary visualization applications
can load one of several different formats, often none of
these are compatible with the user’s data. In some cases,
a straightforward data conversion operation from the
user’s format to a supported formats will work. In other
cases, it is necessary to implement a data loader for the
visualization tools. Examples for when this type of work

is necessary is when data is so large it is impractical to
make copies, or the data is of such a form that there is
no suitable one-to-one conversion possible (e.g., multi-
grid problems in climate like cube-sphere or multiple
geodesic grids).

How Many Skinny Guys? There is no hard-and-
fast rule regarding how many Skinny Guys a visualiza-
tion operation needs. We’ve found that in-depth support
requires about one Skinny Guy for every three or four in-
depth projects per year. An entire Skinny Guy or two’s
worth of effort can go into installing complicated visu-
alization software, doing user documentation and train-
ing, and taking care of ongoing operational concerns,
depending up the number of applications and users.

Also, in our experience, these in-depth Skinny Guys
produce some of the most tangible impact for the SCs.
The SC’s role is to enable scientific progress, and the
most visible result of scientific progress is insight gleaned
through visualization. In many cases, a single image or
movie is the result of many hours worth of effort from
a small squadron of Skinny Guys working closely with
scientific stakeholders over a long period of time.

4 Conclusions and Future
Thoughts

The primary role of the SC is to enable scientific discov-
ery through use of large-scale computational resources.
Historically, SCs are comprised of large, Big Iron plat-
forms that generate vast amounts of data; visualization
and analysis are performed as post-processing activities
using Little Iron. Big Iron designs and budgets are care-
fully built around anticipated workload, which primarily
consists of computationally intensive codes. In contrast,
visualization and analysis workloads have different char-
acteristics: they are data intensive and thus need propor-
tionally more I/O and memory. The difference in work-
load, the demands of showing good utilization rates, and
other factors, have led to a bifurcated approach to pro-
viding a suitable resource pool to the scientific com-
munity. One drawback that is common across all our
experiences is that while Big Iron facilities are carefully
planned and funded, there is wide variance in dealing
with the issues of planning and funding the Little Iron.

Many current trends not readily foreseeable a decade
ago suggest we may need to modify our approach to
these Little Iron issues. The evolution beyond petas-
cale suggests a “perfect storm” of technical challenges.
These include a huge problem with I/O and the fact that
the cost of a suitably sized Little Iron system may be-
come prohibitively expensive should we continue along
the current trajectory. Some feel that using a slice of
the Big Iron for interactive visual data exploration and
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analysis may be a fruitful approach for a number of good
reasons. This approach, however, requires careful atten-
tion to a number of design and operational issues that
are typically outside the scope of usual Big Iron consid-
erations.

The success of SCs depend upon the amount and qual-
ity of science they generate. As visual data exploration
and analysis are an integral part of the scientific process,
we feel that adequate provision for suitable infrastruc-
ture is an essential ingredient to the future success of
these centers. Sizing and provisioning hardware is rel-
atively straightforward compared to sizing and provi-
sioning the visualization experts who enable the scien-
tific discoveries. The most visible result of science – the
discoveries – are the product of collaborative work of
computational and visualization scientists. The Skinny
Guys do more than install software and make images for
users. They consult with user teams to help them solve
difficult issues that include data models/formats, they
extend visualization systems to have new capabilities to
meet specific science needs. Ultimately, it is these Skinny
Guys that enable the visual and analysis scientific data
understanding by which these centers are judged.
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