
Visualization in Grid Computing Environments

Ken Brodlie1, David Duce2, Julian Gallop3, Musbah Sagar4, Jeremy Walton5 and Jason Wood6

1,6 School of Computing, University of Leeds, UK.
2,4 Department of Computing, Oxford Brookes University, UK.

3 CCLRC Rutherford Appleton Laboratory, UK.
5 The Numerical Algorithms Group Ltd, UK.

ABSTRACT
Grid computing provides a challenge for visualization system
designers. In this research, we evolve the dataflow concept to
allow parts of the visualization process to be executed remotely in
a secure and seamless manner. We see dataflow at three levels: an
abstract specification of the intent of the visualization; a binding
of these abstract modules to a specific software system; and then a
binding of software to processing and other resources. We
develop an XML application capable of describing visualization at
the three levels. To complement this, we have implemented an
extension to a popular visualization system, IRIS Explorer, which
allows modules in a dataflow pipeline to run on a set of Grid
resources. For computational steering applications, we have
developed a library that allows a visualization system front-end to
connect to a simulation running remotely on a Grid resource. We
demonstrate the work in two applications: the dispersion of a
pollutant under different wind conditions; and the solution of a
challenging numerical problem in elastohydrodynamic lubrication

CR Categories: I.6.7 [Simulation and Modelling]: Simulation
Support Systems-Environments I.3.m [Computer Graphics]:
Miscellaneous-Scientific Visualization

Keywords: grid computing, visualization systems, XML,
computational steering, visualization reference models.

1 INTRODUCTION
Grid computing is extending the horizons of computational
science, allowing aggregated computing resources to be harnessed
in the solution of major problems. Visualization plays a crucial
role in this activity: we shall fail to gain proper benefits from Grid
computing without an effective means of interpreting the results
from the large applications that can now be run. The challenge
for the visualization community is to be able to provide the
scientist with visualization systems that integrate seamlessly with

Grid computing. To the scientist it should be as easy as running
the visualization entirely on the desktop. More specifically, the
user needs interfaces that move away from the current approach in
visualization systems and allow connections to Grid-based
computational applications that (for instance) need to be
discovered. Furthermore, some visualization operations (such as
isosurface) become cumbersome to use on the desktop when the
dataset is very large and therefore allowing part of the
visualization system to operate on the Grid becomes attractive.
Moreover we need to express visualization applications in a way
that is independent of any proprietary system: scientists need to be
able to share visualizations, and record the process of generating a
visualization so that it can be reproduced by another scientist, at a
later date. Most e-science involves teams of people, and so it is
essential to provide support for collaborative working among team
members.

In this paper, we describe work in the gViz project (funded by
the UK e-Science programme), that has sought to revisit
visualization systems in the light of developments in Grid
computing. The paper begins with a brief review of visualization
systems, describing in particular the dataflow network approach
that has underpinned visualization system design for the past 15
years. Section 3 builds a new reference model for visualization in
Grid environments; this retains the modular dataflow paradigm,
but generalises and extends the original concept. We see dataflow
at different levels of abstraction: a conceptual level which
specifies the intent independently of any software or hardware
resources; and lower levels in which software and hardware
resources are specified. We think of this specification process as
a binding of resources (for example Grid-specific resources) to the
dataflow network. The following three sections describe specific
contributions of the gViz project within this reference model. In
section 4, we develop an XML application (and an associated
SVG-based visual editor) that expresses dataflow networks at the
different levels in the model in a way that is independent of the
choice of visualization system. In section 5, we demonstrate how
a particular visualization system, IRIS Explorer [17], can become
Grid-enabled: modules can execute on different Grid resources,
thus allowing the dataflow network to span the Grid. In section 6,
we address the issue of computational steering where we wish to
connect the visualization system to a separate simulation process,
running remotely on the Grid. We have developed a new toolkit,
the gViz steering library, which allows a link to be formed
between a front-end visualization system and a back-end
simulation. This allows a scientist to ‘log-in’ through the
visualization system to one of a number of running simulations,
view its current output and perhaps make some changes to control
parameters.

{1kwb|6jason}@comp.leeds.ac.uk
{2daduce|4msagar}@brookes.ac.uk
3J.R.Gallop@ral.ac.uk
5Jeremy.Walton@nag.co.uk

October 10-15, Austin, Texas, USA
IEEE Visualization 2004

0-7803-8788-0/04/$20.00 ©2004 IEEE

155

2 BACKGROUND AND RELATED WORK
The landmark NSF report ‘Visualization in Scientific Computing’
by McCormick et al [10] sparked the development of a number of
important visualization systems. Many of these were based on the
notion of dataflow whereby the overall visualization process is
broken down into smaller parts, or modules, which are connected
in a network. Data flows through this network, being transformed
finally into an image that is viewed by the scientist. Key
contributions were the AVS system described by Upson et al [16],
and the elegant reference model for dataflow visualization by
Haber and McNabb [9]. Figure 1 encapsulates this model as a
pipeline of data input, data selection, data transformation to
geometry, and geometry rendering. An important application of
visualization in computational science is to view data being
generated ‘on-line’ by a simulation process, rather than being read
in from file, and the model easily extends to cover this scenario
(also shown in Figure 1). Computational steering is enabled by
this model, as the scientist can alter parameters of the simulation
as it proceeds. The paper by Marshall et al [11] is a key
contribution in understanding the distinction between using
visualization for on-line computational steering, and for off-line
post-processing of data.

Figure 1: Dataflow pipeline

Dataflow visualization systems continue to be widely used by
the scientific community – AVS, IRIS Explorer, Khoros (now
VisiQuest) and IBM Open Visualization Data Explorer (Open
DX) all retain large user bases. SCIRun has also emerged as an
important system, with computational steering a particular
application. The dataflow model of Figure 1 was designed with a
single user in mind, but a simple extension allows the individual
pipelines of a group of users to be interconnected, so that data can
flow from one user to another. This idea is exploited in the
COVISA extension of IRIS Explorer described by Wood et al
[18]. The early dataflow systems provided a visual programming
environment in which to build networks, but subsequently the
toolkit approach in which the module API’s are exposed to the
programmer have become extremely popular as well, most
notably in the case of VTK.

The emergence of Grid computing requires us to revisit the
design of visualization systems. A vision of the future is provided
by Shalf and Bethel [14]: ‘the promise of Grid computing,
particularly Grid-enabled visualization, is a transparent,
interconnected fabric to link data sources, computing
(visualization) resources and users into widely distributed virtual
organisations’. Our view is that the dataflow approach remains
perfectly valid in this new era, and our aim in this paper is to carry
dataflow forward into Grid environments. In terms of conceptual
thinking, this encourages us to see a dataflow pipeline at different
levels of abstraction: a top level independent of resources and
lower levels where resources are progressively bound in; we
develop this further in the next section.

The relevance of dataflow to Grid-based visualization is
recognised by others. Charters et al [3] describe a vision of Grid
services interconnected by a network. Suzuki et al [15] describe
the use of AVS for remote post-processing of visualization data
within a Grid computing environment in Japan. Computational
steering is a major application of visualization in the Grid context,
and the work of Coveney and his RealityGrid project, using VTK
for visualization, is particularly significant [4]. The Cactus
project [2] has created a powerful problem solving environment,
and recently this has been extended to work with the Globus
toolkit, and in particular exploits the Globus MPICH libraries to
run simulations across distributed resources. Brodlie et al [1]
present an overall review of distributed and collaborative
visualization.

3 A LAYERED REFERENCE MODEL FOR VISUALIZATION
We see the visualization process as an ordered sequence of work
tasks where results from one work task are input to a subsequent
work task. This is commonly realised as a dataflow network – as
presented in the traditional reference model of Figure 1. This is
the starting point for our new reference model, which is described
in three layers: a conceptual layer (as in Figure 1) where the
network is defined in terms of abstract processes independent of
any software or physical resources with which it might eventually
be realised; a logical layer which binds in the software resources;
and a physical layer which binds in computing resources from a
Grid environment. These layers are illustrated in Figure 2.

Figure 2: Layered reference model

The conceptual layer specifies our intention of how numerical
data should be transformed to pictorial data. We can extend this
to collaboration, by associating dataflow networks with
individuals, and specifying interconnecting links between these
networks. The dataflow network is not static, but evolves over
time as the user explores different visualization strategies.

As the interest in developing ontologies for visualization grows,
one can envisage a set of modules with well understood
functionality forming the basis for this conceptual layer. If
semantic underpinnings are provided through appropriate
ontologies, it could be said that the conceptual layer is a formal
specification or formal model of the visualization to be performed.

In the next layer of the reference model, the logical layer, we
bind the conceptual model to a particular configuration of
software entities. The logical layer can be realised in different
ways. For example, each entity might be a module in a modular
visualization system, or a function from a procedure library – or
the logical network might contain a combination of the two. We
anticipate that in due course the transformation from conceptual
layer to logical layer could be handled by some automatic process.

Although the logical layer is expressed independently of any
compute resources, it does introduce constraints on the resources

156

required - for example, particular processor characteristics, quality
of service for network links, and requirements for co-location of
components to ensure performance and other criteria are met.
Resource constraints are not static and may evolve dynamically as
a session progresses – for example, new data sources might be
brought into play requiring computation to migrate to satisfy
performance criteria.

Finally, the physical layer interprets the logical specification in
terms of a particular Grid computing environment. The processes
are bound to specific compute resources – but again the binding is
not static, rather it evolves as the logical layer changes over time.
A resource broker could take the logical specification, the
resource requirements and the resource availability, and carry out
the transformation between logical and physical layers
automatically.

4 A LANGUAGE FOR DATAFLOW VISUALIZATION

4.1 Languages and Diagrams
At each layer of the reference model, we need a means of creating
instances of networks – either directly or by transformation from
an upper layer. This might be done visually using a diagrammatic
representation (an example of this at the physical layer would be
the visual dataflow network editor provided in a modular
visualization environment – this is at the physical layer since
software and compute resources are bound) or using a specially
defined language (again these typically exist already for the
physical layer). The diagrammatic representation is important for
human processing, the language representation for machine
processing.

Within the gViz project, we have explored the development of
both diagrammatic and language representations to describe
dataflow networks at each of the three layers. The approach has
been demonstrated for representations at the logical layer and we
will show how it can be extended to the conceptual and physical
layers.

4.2 skML
We have developed an XML application, skML, to capture a
description of the visualization application at the logical level.
We have drawn on a scripting language in IRIS Explorer (skm, an
extension of the Scheme language) in the design of this, but the
work has greater generality. IRIS Explorer is a convenient
vehicle for the work since, as we shall see later in the paper, we
have been able to implement an extension to support remote
visualization and computational steering in a Grid environment.

A fragment of a dataflow network will be called a map, and the
basic components of a map are modules and links. The dataflow
network is thus a directed graph whose nodes are modules and
edges are links. General-purpose XML applications for
representing graphs exist, for example XGMML (eXtensible
Graph Markup and Modeling Language) [19], but for our
purposes the full generality of such languages is not required but
we adopt a similar approach. Nodes in skML are represented by
module elements and edges by link elements, for example:

<?xml version="1.0"?>
<skml>
 <map id="map" style="left:0;top:0;
 color:#D4D4D4" >
 <link>
 <module name="ReadLat" style="left:20; top:170"

 out-port="Output">
 <param name="Filename">
 testVol.lat</param>
 </module>
 <module id="iso" name="IsosurfaceLat"
 style="left:220;top:120"
 in-port="Input">
 <param name="Threshold" min="0"
 max="27">1.8</param>
 </module>
 </link>
 <link>
 <module id="met" name="Metal"
 style="left:420;top:220;
 controlPanel:show(100,400,400,300)"
 out-port="Output">
 </module>
 <module name="Render"
 style="left:220;top:220" in-port="Input" />
 </link>
 <link>
 <module ref="met" in-port="Input" />
 <module ref="iso" out-port="Surface" />
 </link>
 </map>
</skml>

There are a number of points to note about this representation.
The attributes of the module element include name, id, ref,
style, in-port and out-port attributes and optional
content which is a set of param elements. There is a distinction
between the type of a module (e.g. ReadLat) and a specific
instance of a module of that type. The name attribute is used to
denote the type and id to uniquely identify a specific instance.
The ref attribute is used to refer to a module instance. The
position of a module within the visual editor’ s display space and
the position and size of the module’ s control panel on the display
when the module is launched are regarded as style and are
controlled through the style attribute as shown above. The
interpretation of the style attribute depends on the tools that are
being used to manipulate skML. The attribute is provided for use
by such tools and does not contribute to the meaning of the
network. The param element is used to represent a module’ s
initial parameter values.

We allow a skML document to contain more than one map.
This is useful at a number of levels. skML was designed with
collaborative visualization in mind. Since the id attribute is
unique within a skML document, it is possible to define links
between modules on different maps, allowing data to flow across
maps, as in the COVISA collaborative model described in §2. We
took the view that each user within a collaborative session has a
particular role, for example, a lecturer and a student. The former
might include generation and control of visualizations, while the
student might only be allowed to view visualizations created by
the lecturer. We could include in one skML document maps for
each of the permitted roles. The designer of a collaborative
visualization application can thus define in a general way the
different roles associated with the application and the maps
required for each. The map element may be decorated with a role
attribute to indicate the role with which the map is associated.
The role is a parameter to the transformation process that will
instantiate a map within a particular visualization system.

The name attribute of the module element is not really rich
enough to describe the type of a module. For example, how do
we know which visualization system the name is in? We

157

considered a number of approaches to this and eventually decided
to regard such information as metadata which can be attached to
the module element by an annotation expressed in the Resource
Description Framework (RDF) [12]. For example,

<rdf:RDF
 xmlns:rdf=
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://www.gviz.org/skML/">
 <rdf:Description about="iso">
 <v:Type>IRISExplorer</v:Type>
 </rdf:Description>
</rdf:RDF>

This RDF fragment is expressing the fact that the name of the
module element with id attribute iso is the name of a type of
IRIS Explorer module. The reason for choosing this approach is
that it offers a very extensible mechanism for describing modules.
In the spirit of the Semantic Web, the type at the conceptual level,
for example, might be a reference to an agreed ontology in which
the meaning of the module is given. At the physical level, the
module might be realised by a particular instance of a web service
and the annotation could point to a WSDL descriptor of that
service.

Constraints on resources may be described using RDF
annotations. An example is shown below.

<rdf:RDF xmlns:rdf=
 "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:v="http://www.gviz.org/skML/">
 <rdf:Description about="iso">
 <v:Type>IRISExplorer</v:Type >
 <v:PhysicalLocation rdf:resource=
 ”http://www.gviz.org/Mars101” />
 </rdf:Description>
</rdf:RDF>

Here we specify the physical location of a module as well as the
visualization system to which it belongs. The expression of
resource constraints requires a common vocabulary for describing
resources and a language for expressing constraints. It is not the
purpose of the gViz project to develop new resource description
vocabularies or constraint expression languages; instead, we posit
the existence of open standards in these areas from other work.
For experimental purposes we have used the GLUE (Grid
Laboratory Open Environment) schema and vocabulary [7]. This
schema provides a vocabulary for describing computing, storage
and network elements, although GLUE does not encompass
display capabilities, which are important for visualization
applications. The Composite Capability / Preference Profiles
CC/PP [5] vocabulary being developed by W3C goes some way
towards providing a vocabulary for display environments, but
more work is likely to be needed in this area.

For constraint specification a simple constraint language based
on Globus RSL [13] but expressed in XML has been used. It is
important to emphasise that we have looked at how descriptions
of resources, and constraints on resources, could be incorporated
in skML as RDF annotations. We have not been concerned with
establishing a precise model for resources, nor with the processes
by which resource constraints might be discharged. Our concern
has been more declarative: how could (a) the kinds of resource
constraints that a designer might wish to express, and (b) the
physical resources used to produce a particular visualization be
captured in a skML document.

4.3 Tools for Using skML
An IRIS Explorer module has been written that will take a skML
document and launch a selected map within the document. The
idea is that a skML document will represent the visualization
required within a collaborative session and each user may choose
from this skML document the IRIS Explorer map corresponding
to their role in the session, recognising that different roles may be
chosen as the session progresses. Functionality has also been
provided to generate skML documents from maps in the IRIS
Explorer map editor.

The linking between collaborators is created automatically. We
exploit the COVISA toolkit which is fully described in Wood et al
[18]. When two modules in different maps are connected by a
link, the appropriate COVISA ‘Share’ modules are
automatically invoked in order to carry data across from the
dataflow network of one user to that of another.

Figure 3: SVG map editor

A skML document at the conceptual level can in principle be
transformed automatically to corresponding documents at the
logical level for different software systems. Simple proof of
concept transformations have been developed for IRIS Explorer
and Open DX to illustrate the idea. In general, however, this is far
from straightforward as there are no guarantees that modules in
one visualization system have counterparts (either direct or
indirect) in another.

We have also defined an editor that allows dataflow networks to
be created and modified. The SVG Map Editor is written using
Scalable Vector Graphics (SVG) and JavaScript so that it runs in a
web browser. The visual interface is based on the IRIS Explorer
map editor, and is shown in Figure 3 (displaying the dataflow
network corresponding to the skML of §4.2).

5 GRID-ENABLED DATAFLOW VISUALIZATION SYSTEMS

5.1 Distributed dataflow
The ideas in the last section set the scene for dataflow that spans
Grid resources. Some modules may be allocated to run on the
desktop, other modules may be allocated to remote servers. This
will certainly be useful for simulation modules, but will be
important also for compute-intensive visualization functions, such
as isosurfacing of large datasets.

The early design of systems such as AVS and IRIS Explorer
allowed for distributed working of this nature, but were developed
before the era of Grid computing, with its emphasis on security,
authorisation, authentication and resource discovery. For
example, the internal mechanism in IRIS Explorer is based on the
deprecated rsh facility and has fallen into disuse.

158

5.2 Grid-enabled IRIS Explorer
We have developed a Grid-enabled version of IRIS Explorer, in
which Grid middleware is incorporated within the internals of
IRIS Explorer, allowing it to be run securely in a distributed
processing environment. The prime instance of IRIS Explorer
runs as before on the desktop, providing a library of modules and
a workspace in which these modules can be connected into a
dataflow pipeline. However the e-scientist can now call up a
secondary instance of IRIS Explorer, running on a remote Grid
resource. Authentication to allow this is handled either by the
ssh utility, or by the Globus Toolkit version 2. ssh
authorisation is handled via a user’ s key being transparently
authenticated through ssh-agent. Globus uses the user’ s
Globus certificate proxy initialised by the user.

The e-scientist is now provided with a second library of
routines, displayed on their desktop, from which they can select
modules for inclusion in the workspace as part of the processing
pipeline. These modules form part of the single visualization
application, but execute on the remote host.

5.3 Pollution Demonstrator
As a proof-of-concept demonstrator, we have built a Grid-enabled
IRIS Explorer application which visualizes the spread of pollution
from a chimney. This is intended to be representative of the sort
of problem where Grid computing can make a difference –
resources, both computational and human, need to be harnessed
immediately in order to predict the path of the pollutant as soon as
possible and determine evacuation strategies.

Figure 4: Grid-enabled IRIS Explorer

The Grid can help by providing off-the-shelf compute power to
allow scientists to simulate the event in faster than real time. A
domain expert can run their atmospheric gas dispersion model and
examine the results using visualization. However, as well as
computational resources, the scientist needs information from a
meteorologist about current weather conditions to steer the
simulation. Since time is short, rather than co-locating the
scientists, they must be able to collaboratively steer the simulation
and visualize the results. Since the decision to order an
evacuation will be taken by the local authorities, the visualized
data need to be presented in an easy-to-digest form. This requires
the visualization tools to be flexible enough to allow different
visualizations of the same data to occur, while still remaining
under collaborative control.

A screenshot of the user’ s desktop for the Grid-enabled IRIS
Explorer application is shon in Figure 4.

This shows the familiar dataflow network editor where the
application is composed. The two panels on the left are the
module sets available on two Grid resources – one the desktop,
the other a remote server. Modules executing on the remote
resource appear as normal in the dataflow network, with full user
interface control, and are labelled to show the resource on which
they are located. The wind direction widget (top left in the
network) is used to steer the simulation according to weather
predictions, and the simulation output is displayed in the context
of the terrain. In this application, it is useful to collocate the data
extraction part of the pipeline with the simulation, so that no
unnecessary data is transmitted between remote resource and the
desktop.

The screenshot of Figure 4 shows the building of the network
by a visualization programmer. For the end-user scientist this is
encapsulated as an application, with significant control settings
promoted to the user interface and wiring diagrams hidden.
Different user interfaces can be created for different role players
in a collaborative session, as discussed in § 4.2, and Figure 5
shows a collaborative session between an environmental scientist
and meteorologist. The scientist runs the simulation but shares
steering parameters and visualization with the meteorologist.

Figure 5: Collaboration between scientist and meteorologist end-
users

The dataflow network of Figure 4 was created directly using the
IRIS Explorer network editor. Alternatively we can create the
dataflow network using the SVG editor described in § 4.3 – as
indeed we demonstrate in Figure 6. The corresponding skML
document can then be read into IRIS Explorer using the skML
interpreter module, to generate the dataflow network of Figure 4.
The advantage of this approach is that we have a description of
the dataflow network that created the visualization, in a form that
is independent of any particular visualization system – important
when we wish to consider the issue of provenance.

It is important to note that this is only a proof-of-concept
demonstrator. The simulation is simplistic, and the terrain equally
so. But it is representative of a class of applications where Grid-
enabled visualization is important, namely, environmental
modelling in which maximum compute power is needed to deal
with a crisis scenario – and visual analysis by a group of
interested parties is vital to decision making. Flood control and
forest fire control are two similar applications.

159

Figure 6: SVG editor being used to create a skML version of the
pollution dataflow network

6 DE-COUPLING SIMULATION AND VISUALIZATION

6.1 The gViz Library
While skML allows us to describe the visualization process in a
generic way, it is realised at the physical layer through
visualization environments such as IRIS Explorer, AVS, and
VTK. These systems are designed to be self contained: in the
case of visualization environments, the visualization process is
performed by connecting together a set of system specific
modules (some of which may be user-created); in other cases the
provided visualization functions are compiled together and
executed as a single process. In the demonstrator described in
§5.3, the modules are able to run on one or more remote Grid
resources, but they are all still contained within the one system.
The simulation has been coded as a module within the IRIS
Explorer framework and is constrained by the limitations thereof.

All these systems implement the typical visualization scenario
of reading pre-computed data from files on a disk. Many offer the
possibility for user extensions to include extra functionality such
as numerical simulations. What is not provided is the ability to
easily attach these systems to instruments, numerical simulations
or other processes already running at other locations on the Grid.
This additional functionality would allow users to interact with
the process of dynamic data generation while being guided from
the visual feedback provided by the visualization process.

This has motivated our work to define a library, primarily for
computational steering, to allow connection between external
components and a front-end visualization system. The library is
in two parts: one part provides an API that the e-scientist can use
to instrument their simulation code; the other part provides an API
that allows matching capability to be integrated into the front-end
visualization system.

Our design aims include:

• Lack of intrusion: we want to impact as little as possible on
the simulation, so that integrating current simulation codes
with the library is as easy as possible.

• Minimise performance loss: we want to maximise the time
the simulation spends using the processor for computation by
allowing the library to handle external interactions.

• Breadth of scope: we want to support the steering of both
short and long-running simulations (support for long-running
implies an ability to connect and disconnect).

• Exploit service-oriented concepts: we want to be able to
view computational steering from a web services angle (thus
we aim to see simulations registering with a directory
service, depositing information about how to connect –

allowing e-scientists to locate running simulations, and
connect to them from a front-end application).

• Exploit existing visualization systems: we take the view
that we want to re-use existing visualization systems, which
are now quite mature, but do not want to prescribe any
particular system.

• Well specified protocol for communication between front
and back ends: we have defined a simple XML application
for this communication.

• Distinguish fixed and variable parameters: some
parameters must remain fixed for the duration of a simulation
to maintain integrity of the physics, or the numerical
approximation (some of these are output by the simulation
itself, such as current integration step-size and are of interest,
but in a ‘read-only’ sense); others are truly steerable (such as
frequency of output).

• Manage different rates of producer-consumer: the
simulation produces data that the front-end interface
consumes, but the rates will be different – therefore we need
to have a strategy that accommodates this. For example, if
the simulation generates data sets faster than the visualization
system can visualize them then we need to either: skip
intermediate data; or cache data between the simulation and
the visualization system; or request the simulation slows
down while the visualization system is attached.

• Support collaboration: we want to allow many
simultaneous front-end processes to be able to connect, and
we want the output to them to be synchronised.

We have completed a first implementation of this design as the
gViz library. It handles external communications in a way that
keeps interruption of the simulation to a minimum. It provides
threads to receive changes to steerable parameters and holds them
in a queue until requested by the simulation. It also provides
threads to serve current parameter values to connected clients and
threads to serve computed data.

Figure 7: Using gViz to steer and visualize data from a simulation
running on the grid

A second component of the library provides API routines for
clients to use to create connections to the simulation. These
connections are then used to send/receive parameter values in an
XML format, or to receive data. This then allows us to view our
visualization pipeline in a slightly different light. Rather than
having the simulation in the pipeline, we now have modules that
represent the control of the simulation and access to the
simulation data, but the simulation itself is a separate external
process (as shown in figure 7)

Communication between simulation and client codes can be
handled in a number of ways. The simulation writer determines

160

this by the method they choose when initialising the library. The
simplest method for use within secure environments is to use
standard Unix sockets. Alternatively, a web services interface is
provided using the gSOAP library [6]. Where access is to be
limited to specific users in potentially open environments, then an
interface based on Globus sockets is provided. This allows the
simulation writer to provide a list of authorised users and hence
create limited secure access. Again a web services interface is
provided with the gSOAP library but this time using the GSI
plugin to provide authentication. Beyond this, encryption can be
enabled to allow secure transmission of data.

In addition to the gViz library, there are two associated tools:
gVizDS and gVizProxy. Since the system is designed to allow
user interface applications such as visualization systems to
connect to already running processes like numerical simulations,
there needs to be a way to locate these processes. When
simulations are started they register themselves with a directory
service, gVizDS, which holds their connection details. On exit
they un-register. This allows visualization systems built using the
client component of the library to find the running simulations by
contacting one or more gVizDS servers. Once the location of the
required simulation is known, the visualization system can contact
it directly. gVizDS functionality is provided as a set of web
services accessed using SOAP.

Many Grid compute resources are comprised of clusters, and
typically the internal nodes of clusters are configured as private
networks. This makes it difficult for external processes to
communicate with processes running on internal nodes since their
IP addresses are valid only within the cluster. To form a “bridge”
between internal and external processes we use gVizProxy. It is
designed to run on a node in the cluster that can see both the
external network and the internal nodes, and it registers itself with
a copy of gVizDS running on the same node. When visualization
applications contact gVizDS to find running simulations, the
contact details for gVizProxy are returned, along with those for
simulations running on that cluster. The visualization application
can then connect to gVizProxy as though it were connecting to the
actual simulation, and gVizProxy passes data in and out of the
cluster between the simulation and the visualization system.
Additionally, if the simulation is using Globus to manage
authenticated access, then this can be delegated to gVizProxy.

6.2 Pollution Demonstrator with the gViz Library
The demonstrator described in §5.3 uses our extensions to place
modules on various Grid resources, selectively sending
data/geometry/images back to the desktop. The simulation that is
being steered is implemented as one of those modules and is
placed on the Grid under the control of the visualization system.
Exiting the visualization system terminates the simulation process.

In this section, we describe an enhanced version of the pollution
demonstrator, in which we use the gViz library to connect the
simulation to IRIS Explorer as front-end visualization system.
This enables us to launch the simulation code from the desktop,
attach to it using control modules in the visualization system for
steering and visualization, and then detach at any time leaving the
simulation free to continue. At a later time we can restart the
visualization system and re-connect to the simulation to monitor
its progress. We again exploit the work of § 5 in distributing IRIS
Explorer modules: in this version of the demonstrator the modules
that connect to the simulation’ s data service can be placed on the
same machine/cluster as the simulation. As before this allows us

to filter the data before transmission across the network. We also
have modules that connect to the parameter steering/viewing
services of the simulation so we can monitor its state and provide
new steering parameters if required. The architecture is shown
schematically in Figure 8: we see the steering running on the
desktop and linked through the gViz library to the simulation
running on the remote Grid resource; the visualization pipeline,
while designed on the desktop, executes entirely remotely as
shown, the data being read from the simulation using the gViz
library. The rendered image is then transmitted back to the
desktop for display. Thus we demonstrate both the gViz library of
§ 6.1, and the Grid-enabled IRIS Explorer of § 5.

Figure 8: Connecting simulations and visualization components on
the grid

Simulations that are already running are located through
gVizDS, the directory service. Simulations connect to gVizDS
through a web services interface, at startup, and then contact it
again to be removed on exit. A module has been written for IRIS
Explorer and is used by the demonstrator to locate already running
codes.

By using the COVISA collaborative working facilities of IRIS
Explorer, we allow teams of scientists to jointly work with the
visualization interface.

The gViz library has been designed to be independent of any
particular visualization system and although IRIS Explorer has
mainly been used as the front-end visualization system, we have
also used SCIRun, Matlab and VTK.

6.3 Lubrication Simulation with the gViz Library
One application at the University of Leeds that has been using this
work has been numerical modelling of lubrication. In ongoing
work with Shell Global Solutions state-of-the-art software for
simulations of elastohydrodynamic lubrication (EHL) has been
developed. This particularly challenging problem from
mechanical engineering occurs, for example, in journal bearings
and gears where, at the centre of the contact, the load exerted over
a very small area causes extremely high pressures resulting in
elastic deformation of the components and significant changes in
the lubricant properties in this area.

One of the main research areas in EHL is the modelling of real
surface roughness. In these cases, the microscale roughness
patterns on the components are simulated rolling through the
contact. To accurately resolve these features it is necessary to use
very high mesh resolutions and hence parallel computing
techniques. It has been shown how such techniques can be
combined with a PSE (Problem Solving Environment) for real-
time visualization of these parallel simulations [8]. This has now
been extended into fully independent Grid applications through

161

the use of the gViz library. This allows the launching of the
parallel EHL code as well as interaction with the fluid, physical
and numerical parameters of the simulation while it executes. It
also allows changes to the roughness patterns to be made, and
automatically receives data for visualization as it is produced. A
screenshot illustrating the ECLIPSE PSE is shown in Figure 9.

Figure 9: ECLIPSE PSE

7 CONCLUSIONS AND FUTURE WORK
This paper has explored how dataflow visualization can evolve
into the era of Grid computing. We have split the traditional
reference model into layers of increasing specification in terms of
software and hardware resources, with an XML language
representation for dataflow at the different levels. This has driven
a Grid-enabled extension of an existing dataflow visualization
system, IRIS Explorer. For challenging computational steering
applications, we have developed a library allowing connection of
remote simulations with front-end visualization systems. This
allows a scientist to monitor a range of running simulations, with
the desktop acting as a control deck from which operations are
managed.

We see our work as a contribution to evolving concepts and
software for visualization in Grid environments. It has wide
applicability. The skML work is based on standard Web
technologies, and offers a system-independent description of a
dataflow network. The gViz library will be available as open
source, and its generality has been demonstrated through use with
IRIS Explorer, Matlab and VTK.

Our research is now turning to the transition between the layers
in the reference model. Can we allow the user to work at the
conceptual layer, designing the visualization intent through a Grid
portal, and have the allocation of software and hardware resources
determined by a brokering agent?

ACKNOWLEDGEMENTS
This work was carried out within the gViz project funded under
the UK e-Science Core Programme and we gratefully
acknowledge their support. The technical development work
reported here was principally carried out by Jason Wood
(University of Leeds) and Musbah Sagar (Oxford Brookes
University), under guidance of Ken Brodlie and David Duce
respectively. Chris Goodyer and Mark Walkley (University of
Leeds) created the simulation software. Ying Li and James
Handley (University of Leeds) created the VTK and Matlab
interfaces. Other key members of the project team include Mike
Giles and David Gavaghan (University of Oxford); Steve Hague
(NAG Ltd); Mike Rudyard (Streamline Computing Ltd); and

Brian Collins, Alan Knox and John Illingworth (IBM UK Ltd).
We are also grateful to Arun Holden (University of Leeds) and
Richard Clayton (University of Sheffield).

REFERENCES
[1] Brodlie, K.W., Duce, D.A., Gallop, J.R., Walton, J.P.R.B. and

Wood, J.D. 2004. Distributed and Collaborative Visualization,
Computer Graphics Forum 23, 2, 223-251.

[2] Cactus 2004. http://www.cactuscode.org.

[3] Charters, S., Holliman, N.S. and Munro, M. 2003. Visualization in
e-Demand: A Grid Service Architecture for Stereoscopic
Visualization, Proceedings of UK e-Science Second All Hands
Meeting.

[4] Chin, J., Harting, J., Jha, S., Coveney, P.V., Porter, A.R. and Pickles,
S.M. 2003. Steering in Computational Science: Mesoscale
Modelling and Simulation, Contemporary Physics 44, 417-434.

[5] CC/PP 2004.
http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/

[6] van Engelen, R., Gupta, G. and Pant, S. 2003. Developing Web
Services for C and C++, IEEE Internet Computing 7, 3, 53-61.

[7] GLUE 2004. http://www.globus.org/mds/glueschemalink.html

[8] Goodyer, C.E., Wood, J.D. and Berzins, M. 2002. A Parallel Grid
based PSE for EHL Problems. In: Applied Parallel Computing
Advanced Scientific Computing 6th International Conference,
PARA 2002, Fagerholm, J., Haataja, J., Järvinen J., Lyly, M.,
Råback, P. and Savolainen, V., Eds, Springer Verlag, 521-530.

[9] Haber, R.B. and McNabb, D.A. 1990. Visualization Idioms: A
Conceptual Model for Scientific Visualization Systems. In:
Visualization In Scientific Computing, Shriver, B., Neilson, G.M.,
and Rosenblum, L.J., Eds., IEEE Computer Society Press, 74-93.

[10] McCormick, B.H., DeFanti, T.A. and Brown, M.D. 1987.
Visualization in Scientific Computing, Computer Graphics 21, 6.

[11] Marshall, R., Kempf, J., Dyer, S. and Yen, C. 1990. Visualization
Methods and Simulation Steering for a 3D Turbulence Model for
Lake Erie, ACM SIGGRAPH Computer Graphics, 24, 2, 89-97.

[12] RDF 2004. http://www.w3.org/RDF/

[13] RSL 2004. The Globus Resource Specification Language (RSL).
http://www.globus.org/gram/rsl_spec1.html

[14] Shalf, J. and Bethel, E.W. 2003. The Grid and Future Visualization
System Architectures, IEEE Computer Graphics and Applications
23, 2, 6-9.

[15] Suzuki, Y., Sai, K., Matsumoto, N. and Hazama, O. 2003.
Visualization Systems on the Information-Technology-Based
Laboratory, IEEE Computer Graphics and Applications 23, 2,32-39.

[16] Upson, C., Faulhaber, T., Kamins, D., Schlegel, D., Laidlaw, D.,
Vroom, J., Gurwitz, R. and van Dam, A. 1989. The Application
Visualization System: a Computational Environment for Scientific
Visualization, IEEE Computer Graphics and Applications 9, 4, 30-
42.

[17] Walton, J.P.R.B. 2004. NAG's IRIS Explorer. In: Visualization
Handbook, Johnson, C.R. and Hansen, C.D., Eds., Academic Press
(in press). Available at
http://www.nag.co.uk/doc/TechRep/Pdf/tr2_03.pdf.

[18] Wood, J.D., Wright, H., and Brodlie, K.W. 1997. Collaborative
Visualization. In: Proceedings of IEEE Visualization '97, Yagel, R.,
and Hagen, H., Eds., 253-259.

[19] XGMML 2004. http://www.cs.rpi.edu/~puninj/XGMML/

162

