

 University of Groningen

Visualization of Areas of Interest in Component-Based System Architectures
Byelas, Heorhiy; Bondarev, Egor; Telea, Alexandru

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2006

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Byelas, H., Bondarev, E., & Telea, A. (2006). Visualization of Areas of Interest in Component-Based
System Architectures. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for
Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 23-08-2022

https://research.rug.nl/en/publications/5ac20cd6-1a62-4b8e-b92c-ec5e51ba3c90

Visualization of Areas of Interest in Component-Based System Architectures

 Heorhiy Byelas Egor Bondarev Alexandru Telea
Technische Universiteit Technische Universiteit Technische Universiteit

Eindhoven Eindhoven Eindhoven

h.byelas@tue.nl e.bondarev@tue.nl a.c.telea@tue.nl

Abstract

Understanding complex component-based systems

often requires getting insight in how certain system

properties, such as performance, trust, reliability, or

structural attributes, correspond to the actual system

architecture. Such properties can be seen as defining

several ‘areas of interest’ over the system architecture.

We present an interactive tool that efficiently and

effectively combines visual presentation of component-

based architectures with that of areas of interest. Our

tool helps users investigate how various system

properties correlate with each other and correspond to

the actual architecture, while preserving the visual

architecture layout familiar to designers. We validate

our tool and the proposed techniques on a component

framework used in the industry.

1. Introduction

Component based software engineering is a
promising way towards reducing software
development time and costs. Several methods exist that
help system architects and developers to describe and
understand component-based systems. Visual UML-
like diagrams are used to describe the compositional
aspects of the system, i.e. the various components,
interfaces, and structural dependencies thereof
 [11] [12]. Software metrics can effectively describe
various aspects of complex architectures, e.g. resource
usage, component complexity, system stability, or
performance [3] [6] [7]. Metrics can answer complex,
targeted questions, such as “which components are
unstable or non-conforming to specific guidelines and
requirements?” or “what happens if I change this
component?” [10]

Components that share some common property are
of particular interest in system analysis, e.g. “all high-
reliability components”, “all components using over 1
MB of memory”, “all components introduced in the

system version 2.3”, or “all components in the same
thread” [15]. We call such a set of components an area

of interest (AOI). AOIs can be specified using various
software metrics [4] [6] [7] which can be computed by
existing analysis tools [2] [18].

However, such metrics (defining AOIs) are usually
shown to users in a tabular format. A better way is to
visually combine the AOIs with the UML
(architecture) diagrams, to let users correlate concerns
(described by AOIs) with the system structure
(diagrams). We present here an approach that
combines architectural and AOI information for
component-based systems in an integrated, interactive
visualization. Users can smoothly navigate between
views of classical UML diagrams and AOIs, while
preserving the familiar diagram layout. We detail how
to visualize multiple, possibly overlapping, AOIs, and
demonstrate our approach on a real-life industrial
component framework.

Section 2 presents related work in visualizing AOIs
and diagram data. Section 3 details the new techniques
we propose to combine AOIs and diagrams in an
effective and efficient way. Section 4 presents our case
study on an industrial component-based system.
Section 5 discusses our findings and the lessons learnt.
Section 6 concludes our paper and outlines directions
for future work.

2. Related work

We describe our goal of visualizing areas of
interest on component architectures with the 5-
dimensional model of Marcus et al. [9]: task, audience,
target, medium, and representation. Our task is to
understand how various (non-)functional system
properties, described in terms of areas of interest,
correspond to the system architecture, described by
UML-like diagrams. In this work, we assume areas of
interest are specified by already-computed software
metrics. Our audience covers system architects and

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

mailto:h.byelas@tue.nl
mailto:e.bondarev@tue.nl
mailto:a.c.telea@tue.nl

developers. Our visualization target is the system
architecture (a set of component diagrams) enriched
with metrics that describe various AOIs. The
visualization medium is the standard PC display.
Finally, the representation enriches the classical box-
and-line UML-like diagram drawings with areas of
interest, drawn as soft textured images using a novel
technique.

UML modeling tools, e.g. Rational Rose [11] or
Together [12], are the most accepted way to visualize
software architectures. However, such tools have little
support to add extra information to the picture, e.g. to
support questions as “which components are in a given
AOI?” One could show an AOI by marking its
component icons with the same color. A related
approach draws icons on components, scaled, colored,
and shaped to show metric values [14]. Yet, this color
or icon marking technique is hard to follow visually
and non intuitive on large diagrams (see Figure 8 later
in this paper). Another option is to move component
icons that are in an AOI close to each other and draw a
surrounding frame around them [5]. However,
changing the layout is usually unacceptable: Diagrams
are often built manually with great care to reflect
various user semantics. Also, drawing both AOIs and
components as ‘boxes’ (frames) easily leads to
confusion between the two. Finally, both icon/color
marking and framing scale very badly when showing
several (overlapping) AOIs.

We describe next our novel approach whose goal is
to overcome these limitations while showing AOIs.

3. Visualizing areas of interest

In designing a way to visualize AOIs, the following
requirements must be met:

a) AOIs must not change the given diagram layout
b) AOIs should be drawn with minimal visual clutter,

even when they overlap
c) AOIs and diagrams should not visually interfere,

i.e. the two should be drawn in different ways
d) AOI drawing should be fast, even for large

diagrams

As a design start point, we propose to render AOIs in a
similar way human users draw them with pen on paper
diagrams, i.e. as some vague, sketchy, rounded, shapes
that surround the concerned components. We next
present an automated two-step method that addresses
all our requirements, as follows. First, we build a

skeleton of the AOI using the components’ geometric
layout data (Sec. 3.1), thereby addressing requirement
(a). Next, we draw the AOI using a graphics technique

called texture splatting (Sec. 3.2). By controlling the
various splatting parameters, we address requirements
(b,c,d). All these techniques are described next.

3.1. Skeleton construction

The input of the first step is the set of components
in a given AOI. For every component, we assume we
have its geometric layout information, i.e. the position
and size of its 2D rectangular bounding box. We now
build a skeleton of the AOI as follows (see Figure 1,
which illustrates the complete process on a simple AOI
that contains three components).

C2

C1

C3

C

R

R2

rj

pj

Figure 1: Geometric skeleton construction

First, we compute the center ∑∑
==

=
N

i

i

N

i

ii ACAC
11

of the

AOI as the average of the component icons’ centers Ci
weighted by their areas Ai. Next, we compute a

radius ()iii hwR ,max2
1= for each component, where wi

and hi are the width and height of the component’s

icon, and a radius ∑∑
==

=
N

i

i

N

i

ii ARAkR
11

 for the center C

as a fraction k of the average radius. For all images in
this paper, we used k=0.8. Next, we sample every line
segment CCi with several points pij so that the distance
between two consecutive points pij and pij+1 is a small
fraction δ of R. For all images in this paper, we used
δ =0.1*R. For every pij, we compute also a radius rij by
linear interpolation between the radii R and Ri at the
end of the segment CCi. The geometric skeleton is now
the complete set of points and radius values {(pij,rij)}i,j.

3.2. Texture splatting

We now use the skeleton to draw the AOI, as
follows. First, we construct a so-called splat. This is a

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

radial function () ()22, yxfyxT += . T looks as shown by

Figure 2a (dark=opaque, light=transparent). Here, f is
the profile, or shape, of the splat. We shall use f(x)=xk,
so T increases linearly with the distance for k=1,
exponentially for k>1 and logarithmically for k<1 (see
Figure 2b). T is implemented as a transparency (also
called alpha) texture using the OpenGL graphics
library [17]. Hence, T=0 yields fully transparent pixels
and T=1 fully opaque pixels. We now draw the AOI
simply by rendering the texture T centered at every
skeleton point pij, scaled by the radius rij, and colored
by a user specified AOI color. Finally, we draw the
component diagram itself as usually, atop of the AOI.

0 1 x

f(x)

1
k<1

k=1

k>1

a) b)

splat texture(k=1)

opaque

transparent

Figure 2: Splat texture (a) Texture profile (b)

Figure 3 shows the result of the texture splatting

for the AOI of the components in Figure 1. Several
properties of our method are visible here. First, the
AOI is visually quite different (i.e, soft and round)
from the component diagram, which is sharp and
drawn with straight lines. This distinguishes the two
visually, hence addressing requirement (c). Second,
our splatting method is a robust, simple and fast way to
draw a shape that contains all components in an AOI
and also has a simple, predictable ‘look’, even for
AOIs containing many components scattered all over a
diagram. This addresses requirement (d).

Figure 3: Area of interest drawn with splatting

By changing various parameters of the splat texture,
we obtain different visual effects useful for different

user scenarios. If we want to draw ‘hard’ AOIs with a
sharp, precise, border, we set k<1 (e.g. k=0.3, Figure
4a). This is useful e.g. to show important system
properties or metrics having a high confidence value.
If we want to draw ‘soft’, fuzzy AOIs, we set k>1 (e.g.
k=5, Figure 4b). This is useful e.g. to show less
important properties, which should distract less the
user’s eye from the more important diagram drawing,
or metrics having a low confidence value. Clearly,
many other scenarios are possible too.

A second variation our users found useful during
our case studies was to draw AOIs as contours instead
of filled shapes. This is easily achieved in two passes.
First, we draw the filled AOI using the splat textures,
as described so far. Second, we draw the same AOI,
using the same splat texture centered at the skeleton
points, but now scaled to a smaller radius d*rij, and
using the background color (e.g., white). Here, d ∈
[0,1] controls the contour width: d=0 yields the filled
shapes, while a d close to 1 yields a very thin contour.
Just as before, k controls the contour sharpness. Figure
4(c,d) shows two examples of areas of interest drawn
with contours, where we used a contour width d=0.8.

a) b)

c) d)

filled, hard
(k=0.3)

filled, soft
(k=5)

contour, hard

(k=0.3)

contour, soft
(k=5)

Figure 4: Area of interest drawing variations

3.3. Erasing overlapping components

The drawing method described so far does indeed
guarantee that the drawn shape visually surrounds all
components in the AOI. However, the drawn shape
might surround, or overlap with, components which
are not in the AOI, e.g. the marked one in Figure 5a.
This is, of course, an undesired side effect.

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

a) b)

c) d)

problem
component

eraser
solution

eraser, hard

(b=1)

eraser, soft
(b=0.1)

Figure 5: Erasing overlapping components

We solve this problem as follows. First, we draw all
AOIs as described so far. Next, for all components not
in any AOI, we draw an eraser texture. This is a
transparency texture, like the splat texture (Figure 2)
used to draw the AOIs, except that it has a rectangular
(instead of radial) shape (see Figure 6a) and a profile
given by a slightly different function. Instead of
f(x)=xk, we use now the following profile f (Figure 6b):

()
⎪⎩

⎪
⎨
⎧

≥⎟
⎠
⎞

⎜
⎝
⎛ −

<
=

bx
b

bx

bx

xf
k

,

,1

Using a fixed k=4 and varying b in [0,1] yields an
eraser ranging from hard (b=1) to very soft (b=0.1), as
shown in Figure 5. The value b=0.8 is a good default.

0 1 x

f(x)
1

b) profile

opaque

transparent

a) texture

b

Figure 6: Eraser texture

Drawing the eraser texture mapped on background-
colored (white) rectangles slightly larger than the
components effectively erases the AOIs underneath,
yielding the effect shown in Figure 5b. The component
that was erroneously overlapping with the AOI appears

now to be outside the AOI. As for the splat textures,
we can control the eraser strength by the k parameter,
yielding results from hard to soft (Figure 5c,d).

3.4. Drawing multiple areas

Drawing multiple AOIs is simple: We just apply
the skeleton construction and rendering described so
far, using different user-specified colors, for each area
in turn. If desired, we let users specify priorities for
every AOI. Next, we draw AOIs from low to high
priority, thereby ensuring that high-priority AOIs will
always be more visible, since drawn atop of low-
priority AOIs.

4. Applications

We implemented all our visualization methods in
the MetricView tool [14]. MetricView is an interactive
software architecture visualization tool which
combines metric and UML diagram data. We next
present a case study where we used our visualization
tool.

4.1. Context of assessment

Within the ITEA Trust4All project [13], we have
developed a Real-Time Integration Environment
(RTIE) toolset that provides design and development
of embedded real-time, component-based systems,
based on the Eclipse platform [2]. RTIE contains three
tools: Repository, Composer and Quality Attribute
Analyzer (QAA). The Repository provides storage,
search and retrieval of third-party components, and
also stores component models representing abstract
specifications of the component quality attributes. The
Composer allows the application designer to select and
instantiate components and bind their provided and
required interfaces, thereby specifying a desired
system software architecture, all via point-and-click
mouse operations in a GUI-based tool. The QAA tool
performs design-time analysis and prediction of
various quality attributes of the designed system, e.g.
reliability, hardware resource usage, task delays and
throughput. Finally, our extension of the MetricView
tool reads the output of the Composer tool (i.e. a
component diagram) and QAA (i.e. software metrics)
and visualizes the composition together with areas of
interest determined by the predicted quality attributes,
using the techniques described in 3.

 The RTIE toolset uses the ROBOCOP component
model [8]. ROBOCOP was developed during a 5 year
period by an international consortium joining industry
and academia. ROBOCOP provides a generic, flexible,
and resource-efficient set of mechanisms and tools to

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

implement, compose, deploy, and monitor component-
based software applications for high-volume
embedded appliances, e.g. mobile phones, set-top
boxes, and embedded controllers. Overall, its
component model is similar to Rubus [1] and PECOS
 [16].

4.2. Case study: The Car Media Center

We have used the RTIE toolset described above in a
case study on a Car Media Center (CMC) real-time
system. The CMC has the following functionality: (a)

GPS-based car navigation; (b) radio and digital TV
reception and rendering; (c) CD/DVD playback. We
designed the CMC system with out RTIE toolset out of
both proprietary and 3rd-party ROBOCOP components.
Figure 7 is an actual snapshot from the Eclipse-based
Composer GUI. It shows the CMC system design
consisting of 28 component instances together with the
connections between their various provided interfaces
(drawn at the left of the component icons) and required
interfaces (drawn at the right of the component icons).

1

2

3

4 5

6

7

8

9

10

11

12 13

14

15

16

18

19

20 21

22

23 24
25

26

27 28

17

Figure 7: Car Media Center component-based design (GUI-based Composer tool snapshot)

Let us briefly explain the component functions in the
CMC system. The Main_UI component (1) receives
user input by polling the state of the buttons on the
CMC dashboard. The TV_UI (2) and DVD_UI (3)
components receive and process TV and DVD-related
user commands. TV_UI sends the currently selected
TV channel to the TV_Tuner (4) component that does
the TV tuning. The transport bit stream of the chosen
TV channel is sent to the TS_DMX (5) component,
which de-multiplexes the stream into video and audio.
The video stream is next processed by several video
filters: VLDecoder (6, variable length decoder),
Inverse Quantizer (7), IZigzag_Scanner (8, inverse
zigzag scan), IDCT_row and IDCT_column (9, 10,
inverse row/column discrete cosine transform). The
decoded video stream is next sent to the
VideoController (11) component, which specifies on

which display to render the video. A second video
stream comes to the VideoController from the
Graphics (12) component carrying the graphical data
(UI and navigation) coming from the Main_UI
component. The VideoController outputs two video
streams to the Main_Scaler (13, scales images to
display size) or the PiP_Scaler (14, scales images to
picture-in-picture format). Two VideoRenderer (15,
16) components perform the actual display rendering
and update. The audio path starts from the TS_DMX
(5) or DVDReader (17) and PS_DMX (18)
components, goes to the AudioDecoder (19) and
AudioController (20), and ends up in the AudioOutput
(21) component, which controls the car loudspeakers.
AudioController also accepts the audio stream from the
Radio (22) component and decides which of the two
streams to play. Finally, the car navigation is

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

implemented as follows. The user inputs an address via
the Smart_Typewriter (23) component. The address is
next sent to the SearchEngine (24) component, which
finds the desired location by querying the DataBase
(25) component, compares it with the current car
location received from the GPSReceiver (26)
component, and computes the best driving path. The
driving path and instructions are sent to the Graphics
component for video rendering and to the
AudioController component for voice messages.
Finally, the Timer (27) and Logger (28) components
perform system-wide synchronization and logging.

4.3. System analysis with areas of interest

The architects of the CMC system were interested
in several aspects. Among others, these were:

• How are component functions related to vendors?
• Which components are on the video or audio

paths?
• Which components have user interface functions?
• Is performance-sensitivity related to functionality?
• How is availability related to functionality?

All aspects (vendor, performance, availability, etc)
were represented by metric values obtained from the
RTIE toolset. Based on the values of these metrics, our
users created next several areas of interest, as follows:

Are
a

Explanation

A1 Components produced by Vendor A
A2 Components produced by Vendor B
A3 Components on the video path
A4 Components on the audio path
A5 Availability-sensitive components
A6 Performance-sensitive components
A7 Interaction-sensitive (GUI) components

We first visualized these areas of interest (AOIs) using
the standard metric icons provided by MetricView
 [14], by assigning different icon shapes and colors to
every AOI. Components in one AOI thus share the
same icon shape and color. Figure 8 shows the result.
As expected, this visualization is not easy to follow.
Next, we visualized the same AOIs, this time using our
new splatting method. Figure 9 shows the result. We
used here the same area colors as for the metric icons
in Figure 8. Clearly, the AOIs, and their relations with
the system structure, are now easier to follow. Looking
at the Vendors and Paths visualizations, we see now
easily that all video components (A3) come from

vendor A (A1). Looking at the component functions
(see 4.2), we concluded that vendor B (A2) provided
all the navigation (GPS)-related components. The
Paths visualization also reveals some insight about the
diagram layout, which was manually constructed by
the designed in the RTIE Composer tool. Clearly, its
upper part (A3) contains the video path, its lower part
(A4) the audio path, and components are laid out from
left (path begin) to right (path end). Comparing the
Sensitivity visualization with the Vendors and Paths
visualizations in Figure 9 answers further questions.
We see that only the video components (A1) are
performance-sensitive (A6). The interaction-sensitive
components (A7) are found only at the beginning of
both video and audio paths (A3,A4). Only components
from vendor B (A2) have availability-related problems
(A5), except the video component ‘11’ which is from
vendor A. Finally, we locate two interesting
components (VideoController and Main_Scaler,
denoted ‘11’ and ‘13’ in both Figure 7 and Figure 9)
which are both performance and availability-sensitive.

 Vendors

Paths

Sensitivity

A1: vendor A
A2: vendor B

A3: video
A4: audio

A7: interaction

A5: availability

A6: performance

Figure 8: AOIs for the CMC system (icons)

The AOIs are easier to follow than metric icons for
scenarios as described above. Yet, metric icons are
better when one wants to visually compare individual
metric values. We can easily combine the power of the

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

AOIs (showing subsets of interest of a system’s
architecture) with the metric icons (showing individual

component properties), by displaying the two atop of
each other in a 3D view. Figure 10a shows such a
visualization, made with our modified MetricView
tool. Here, we show the audio components as an AOI
and the ‘video processing power demands’ metric as
vertical metric bars (the bar heights show actual metric
values).

A1: vendor A

A2: vendor B

A3: video

A4: audio

A7: interaction

A6: performance

A5: availability

Vendors

Paths

Sensitivity

11

13

Figure 9: AOIs for the CMC system (splatted)

Finally, we mention that our AOI technique is not
limited to component diagrams. Figure 10b shows an
AOI rendered with our extended MetricView tool on a
UML class diagram modeling a lift control software
system, as well as various software metrics relevant to
this application. This figure also illustrates the overall
look of our tool’s user interface, similar to [14].

a)

b)

Figure 10: Diagrams, metrics, and AOIs

5. Discussion

To implement the material presented in this paper,
we added a component diagram renderer to
MetricView (which only supported class diagrams,
state charts, and message sequence charts), and a
renderer for AOIs. Our work was greatly eased by the
choice to represent AOIs as metric values, which are
already supported by the original MetricView tool. We
designed the component diagram renderer to produce
near-identical drawings with the Eclipse-based
Composer GUI (compare Figure 7 with Figure 9). The
AOI renderer was written in OpenGL in a few hundred
lines of C++. Adding AOIs to other designer tools, e.g.
 [11] [12], should be very easy, once one has access to
the tool renderer code and this renderer supports an
OpenGL-like API. As outlined in Sec. 3, rendering an
AOI involves drawing a few tens (at utmost, hundreds)
of transparency textures, an operation that OpenGL
can do in real-time, even for very large diagrams. This
enables users to interactively edit component diagrams,
e.g. by dragging component icons in the tool GUI,
while the AOI rendering is updated on-the-fly.

The technical description of the AOI rendering in
Sec. 3 involves many parameters, which may suggest
that users have to tune many values in the MetricView
tool to get a useful visualization. This is not the case.
We mentioned all these parameters just to make the
explanation of our technique detailed and complete. In
the MetricView tool GUI, users actually tune just a
few parameters: AOI color, drawing mode (filled or
contour), and AOI transparency, and use default values

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

for the rest. Using AOIs is very simple and intuitive.
Making the pictures in Sec. 4.3 took a few minutes for
users already familiar with our MetricView tool.

The greatest limitation of the AOI method
presented here is that it cannot avoid undesired
overlaps of the rendered areas. However, this is very
hard to avoid, given that we impose ourselves not to
alter the diagram layout. We are working to minimize
the AOI overlap by means of more advanced skeleton
designs.

6. Conclusions

We have presented a technique that adds areas of
interest (AOIs) to the rendering of classical component
diagrams. We implemented our work in MetricView,
an existing metric-and-diagram interactive
visualization tool. Throughout our work, users and
their preferences stood central: First, we use the UML-
like diagrams and graphical layouts familiar to
architects and developers. Second, users can navigate
between classical UML-like diagram drawing and the
AOIs by the simple use of a transparency slider. Third,
AOIs are defined easily and flexibly using software
metric values. Since the original MetricView tool
clearly separates metric and diagram specification, we
can define and/or change any number of AOIs per user
scenario without touching the diagram data and/or its
XMI input format. This decoupling of concerns
allowed us to integrate our visualization tool in the
already existing RTIE toolset for component system
design and simulation, all in a few hours. The only
code we needed to write for this was a plug-in for
MetricView to accept RTIE’s metric output format.

We are already investigating several extensions of
our AOI techniques. We look at ways to parameterize
the AOI rendering (e.g. color and texture) by actual
metric values, in order to display metric values of
whole component sets. A second, more challenging,
direction we are working on is a better AOI skeleton
generation algorithm to provide better-looking, less
overlapping, AOI shapes, targeted to support very
large component diagrams with many complex-shaped
areas of interest.

7. Acknowledgments

This research is part of the ITEA project Trust4All,
which aims to develop models and methods to
describe, evaluate, and assess trust and other non-
functional parameters in component-based frameworks
used in the middleware of high-volume embedded
appliances [13]

8. References

[1] Articus Systems, Rubus OS Reference Manual, 1996

[2] Bondarev, E., Chaudron, M., de With, P. A Process for

Resolving Performance Trade-offs in Component-Based

Architectures, Proc. 9th Intl. Symposium on Component-
Based Software Engineering, Springer LNCS, 2006, to
appear

[3] Dumke, R. Schmietendorf, A. Possibilities of the

Description and Evaluation of Software Components,
Metrics News, vol. 5, 2000.

[4] Fenton, N., Pfleeger, S. Software Metrics: A Rigorous

and Practical Approach, Chapman & Hall, London, 1998

[5] Gansner, E., North, S. C. An open graph visualization

system and its applications to software engineering,
Software: Practice & Experience, vol. 30, no. 11, J. Wiley &
Sons, 2000, pp. 1203– 1233

[6] Gill, N., Grover, P. Component-Based Measurement: A

Few Useful Guidelines, ACM SIGSOFT Software
Engineering Notes, vol. 28, 2003, ACM Press.

[7] Goulão, M., Abreu, F. Formalizing Metrics for COTS,
Proc. MPEC’04, Edimburgh, 2004

[8] ITEA, ROBOCOP: Robust Open Component Based

Software Architecture for Configurable Devices. Public
document, version 1.0, May 2002; available online at:
http://www.hitech-projects.com/euprojects/robocop/

[9] Marcus, A., Feng, L., Maletic, J. I. 3D Representations

for Software Visualization, Proc. ACM SoftVis’03, ACM
Press, 2003, pp. 27– 36.

[10] A. Möller, M. Åkerholm, J. Fredriksson, and M. Nolin,
Evaluation of Component Technologies with Respect to

Industrial Requirements, Proc. EUROMICRO’04, IEEE
Press, 2004, pp. 56 – 63.

[11] Rational Rose: www.306.ibm.com/software/rational/

[12] Together: http://www.borland.com/together, 2005

[13] Trust4All ITEA project: http://www.win.tue.nl/trust4all/

[14] Termeer, M., Lange, C., Telea, A., Chaudron, M. Visual

exploration of combined architectural and metric

information, Proc. Vissoft’05, IEEE Press, 2005, pp. 21– 26

[15] Voinea, L., Telea, A., A framework for interactive

visualization of component-based software, Proc.

EUROMICRO ’04, IEEE Press, 2004, pp. 567 – 574

[16] M Winter, T Genssler, Components for Embedded

Software – The Pecos Approach, Proc. 2nd Intl. Workshop on
Composition Languages, ECOOP’02, June 11, 2002

[17] Woo, M., Neider, J., Davis, T. Shreiner, D. OpenGL

Programming Guide, 3rd edition, Addison-Wesley, 2001

[18] Wust, J. SDMetrics: The software design metrics tool

for UML, http://www.sdmetrics.com, 2005

Proceedings of the 32nd EUROMICRO Conference on Software Engineering and Advanced Applications (EUROMICRO-SEAA'06)

0-7695-2594-6/06 $20.00 © 2006 IEEE

http://www.hitech-projects.com/euprojects/robocop/
http://www.306.ibm.com/software/rational/
http://www.borland.com/together
http://www.win.tue.nl/trust4all/

	1. Introduction
	2. Related work
	3. Visualizing areas of interest
	3.1. Skeleton construction
	3.2. Texture splatting
	3.3. Erasing overlapping components
	3.4. Drawing multiple areas

	4. Applications
	4.1. Context of assessment
	4.2. Case study: The Car Media Center
	4.3. System analysis with areas of interest

	5. Discussion
	6. Conclusions
	7. Acknowledgments
	8. References

