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Abstract. System-level computer architecture simulations create large volumes 
of simulation data to explore alternative architectural solutions. Interpreting and 
drawing conclusions from this amount of simulation results can be extremely 
cumbersome. In other domains that also struggle with interpreting large 
volumes of data, such as scientific computing, data visualization is an 
invaluable tool. Such visualization is often domain specific and has not become 
widely studied and utilized for evaluating the results of computer architecture 
simulations.  

In this paper, we describe an interactive visual tool for exploring and 
analyzing alternative architectural solutions at multiple levels of abstraction. As 
a proof of concept, we have used this tool to create a coordinated, multiple-
view visualization for our computer architecture simulation and exploration 
environment, called Sesame, which aims at system-level performance analysis 
and design space exploration of multi-core embedded systems. Our results 
show that our multivariate visualization support can help designers to more 
easily understand the reasons behind the differences in performance of different 
design choices, and thus gain more insight in the performance landscape of the 
design space. 

Keywords: Computer architecture simulation, design space exploration, 
exploratory visualization, linked views, multiple views, coordination.  

1   Introduction 

Rapid advances in chip technology and the ever-increasing demands of computer 
applications have resulted in unprecedented complexity in embedded computer 
system design, often reflected by the different forms of concurrency exploited in the 
system architectures. This trend shows no signs of abating and is forcing designers to 
start modeling and simulating architectural components and their interactions at the 
very early design stages. Design Space Exploration (DSE), in which alternative 
architectural solutions are assessed, plays a crucial role in this system-level design. It 
is imperative to have good exploration methods, techniques and tools in the early 
design stages, where the design space is at its largest and where a wrong design 
decision can make the difference between the success or failure of the final product.  

System-level simulation frameworks that aim for early design space exploration 



create large volumes of simulation data in exploring alternative architectural 
solutions. Interpreting and drawing conclusions from these copious simulation results 
can be extremely cumbersome. In other domains that also struggle with interpreting 
large volumes of data, such as scientific computing, data visualization has become an 
invaluable tool to facilitate the data analysis. Such visualization is often domain 
specific and has not become widely used in evaluating the results of computer 
architecture simulations. Especially in the domain of system-level DSE of embedded 
systems, surprisingly little research has been undertaken in the interactive 
visualization to support and guide the process of DSE 

In this paper, we describe an interactive visual tool, based on the Improvise [14, 
15] framework, for exploring and analyzing alternative architectural solutions at 
multiple levels of abstraction. We have used this tool to create a coordinated, 
multiple-view visualization for our computer architecture simulation and exploration 
environment, called Sesame, which aims at system-level performance analysis and 
DSE of multi-core embedded systems. However, our visualization tool is not limited to 
Sesame and may be used for other DSE environments. Multiple views enable users to look 
at different aspects of their data using different types of visualizations. The various 
representations enable users to interpret information from different perspectives, thus 
gaining additional insight into the underlying information. Coordination between the 
views keeps them synchronized during interaction, which enables users to relate 
information between the views. Such visualization support can significantly help 
designers to understand the reasons behind the differences in performance of different 
designs, and thus gain more insight in the performance landscape of the design space. 

The remainder of this paper is organized as follows. Section 2 describes related 
work. In Section 3, we provide a short introduction on information visualization, 
and briefly describe the Improvise framework, which has been used to construct our 
visualization tool. Section 4 gives an outline of the Sesame simulation environment 
for which we have developed the multiple-view visualization tool. In Section 5, we 
elaborate on the various multivariate views that are provided by our visualization 
tool, followed by an evaluation in Section 6 illustrating how these different views 
improve the analysis of DSE data produced by Sesame. Finally, Section 7 
concludes the paper.  

2   Related Work 

The use of multiple views in information visualization is very common and useful. 
This technique has been applied in a variety of domains. Examples are: Navigational 
View Builder [1] for web site visualization, FilmFinder [2] and Cinegraph [3] for 
exploring and analyzing film databases, SeeDiff [4] for analyzing changes in source 
code files, and visualizing and exploring census data [7, 8].  

However, in the field of computer architecture simulations, and especially those 
aimed at system-level DSE, little research has been undertaken on (interactive) 
information visualization. Most of the visualization work in this area focuses on 
educational purposes (e.g., [11, 12, 13]), or only provides some basic support for the 
visualization of simulation results in the form of 2D (and sometimes 3D) graphs. 



The work of [16,17] provides advanced and generic visualization support, but tries 
to do so for a wide range of computer system related information which may not 
necessarily be applicable to computer architecture simulations and in particular to 
DSE, with its own domain-specific requirements. Vista [18] aims at visualization 
support for computer architecture simulations, but it does not target system-level 
simulations, which may have a serious impact on the scalability requirements of the 
visualization, nor does it address the needs for visualization from the perspective of 
DSE. The ARL Trade Space Visualizer [19] is an engineering decision making-tool 
for complex engineering systems to explore a multi-dimensional trade-off space in a 
visually intuitive manner. However it is not applicable to computer architecture 
simulations (e.g. only supporting numerical data types). 

3   Information Visualization and Improvise  

Visualization is all about representing information in a visual form to help a viewer to 
efficiently and effectively explore, analyze and explain complex information. A key 
challenge in visualization is designing suitable visual metaphors that enable users to 
better understand the underlying information and to convey the information that the 
user is looking for. Information Visualization (InfoVis) [5] focuses on techniques of 
visualization that deal with abstract data sets, that is, data without  “natural” physical 
or geometric representation such as hierarchical or textual information. Therefore, the 
user has no predetermined mental model about it.  

Information visualization systems have two main components: representation and 
interaction. The representation component involves the way that data is mapped to the 
visual form. Subsequently, the interaction component allows a user to directly 
manipulate the representation and to explore the data set to discover additional 
insights. Examples of interaction techniques are: select, filter, zoom, rotate and scroll. 
Visual data exploration usually follows a three step process: 1) overview 2) zoom and 
filter, and 3) details on demand (which has been called the Information Seeking 
Mantra [6]).  First, the user needs to get an overview of the data. The overview 
represents the whole data entity and provides a general context for understanding the 
data set. In the overview, the user identifies an interesting, significant or unusual 
subset of data and focuses on that. Evidently, the actual analysis of the selected subset 
that follows depends entirely on the nature of this data subset. 

Improvise [14, 15] is an exploratory information visualization environment which 
we have used to visualize the data generated by our Sesame simulation and DSE 
framework. Improvise is an end-user application for building visualizations of 
structured information such as tabular data. It enables users to load data, create views, 
specify visual abstractions (i.e., how specific data attributes are mapped into graphical 
attributes in views), and set up coordination between the views. Views can be 
coordinated in a variety of ways such that interacting with one view causes visual and 
meaningful effects in appearance or behaviour of other views.  To this end, Improvise 
enables users to define complex interactive dependencies between the views. These 
dependencies keep views synchronized during interaction which enable users to relate 
information between the views. Furthermore, it is scalable in the amount of data to be 



visualized, number of views and number of coordinates. 
Improvise is open source software written in Java. Moreover, its visualizations are 

saved and loaded as regular XML documents in a platform-independent format. 
Therefore the results can be shared and disseminated easily. 

 4   Sesame 

Sesame is a modeling and simulation framework geared towards efficient 
performance evaluation of embedded Multi-Processor System-on-Chip (MPSoC) 
platforms in the multi-media domain [9, 10]. Models in Sesame are defined at a high 
level of abstraction and capture only the most important characteristics of the 
components in the system. By omitting detailed component properties, the simulation 
of an entire system can be much faster than with traditional simulation approaches. 
This allows for the (performance) assessment of a large number of design options.  

A key element in Sesame is the recognition of separate application models and 
architecture models. The application model is an actual application program 
expressed as a process network consisting of communicating concurrent tasks. The 
architecture model represents the hardware components in the system, such as 
processors, memories and interconnection networks, and captures their performance 
constraints. The application and architecture models are subsequently co-simulated - 
using a trace-driven mechanism – to assess the performance of a certain mapping of a 
(concurrent) application onto the underlying (parallel) architecture. To this end, the 
application model generates event traces which drive the architecture model. These 
events are an abstract workload representation that only capture the most important 
behavioral actions of an application, such as reading and writing to/from other 
processes or execution of a significant unit of computation. The architecture model 
simulates the execution of every event and associates timing latencies with them 
where applicable. A global system clock monitors the progress through time of the 
system model as a whole. 

As mentioned, there is an explicit mapping of application tasks (i.e. processes) 
onto architecture components (typically processors). In case multiple tasks are 
mapped onto the same processor, then a scheduler decides on the order in which the 
processor model component processes the events from each of the tasks. The mapping 
as well as the scheduling policy, which are important factors in the overall system 
performance, are specified as parameters of the simulation. 

During execution of the system model, the simulation runtime system collects 
various performance statistics which are useful for evaluation of the system. The most 
important statistic is perhaps the "Elapsed Time" that describes the total execution 
time of the system in terms of the number of simulated processor cycles. However, 
more detailed statistics on a per-component basis are also available, such as for 
example the utilization of each component. Utilization is described as a percentage of 
the Elapsed Time that a component was busy processing events or interacting with 
other components. Clearly, such statistics could, e.g., reveal possible bottlenecks in 
the system. Similarly, many other statistics can help the designer to evaluate 
other performance properties of the system. 



Sesame models are highly parameterized, so that a single model can be used for 
evaluating a large number of different configurations of a system, which are called  
design instances. One important parameter is the mapping specification that we 
mentioned before. Other parameters may describe properties of the architecture: e.g. 
the number and type of processors, scheduling strategies, network types, memory 
sizes, or processing/communication speed of different components. The combination 
of all possible parameters forms the design space that needs to be explored. 
Combinatorial explosion of the parameters can easily make the design space very 
large. Therefore, iterative simulation of each instance will result in a huge amount of 
statistical data that need to be evaluated by the designer. 

5   Visualization of Computer Architecture Simulation Data 

In this section we explain how the large collection of statistical data generated by 
Sesame will be transformed into a visual form. Note that these transformation 
techniques are not limited to Sesame and may be used for other DSE environments. 
Multiple Coordinated Views is a specific exploratory visualization technique that 
enables users to explore their data [5]. Displaying the data in multiple ways enables 
users to understand the information through different perspectives, gaining 
additional insight and better understanding of the underlying information, 
overcoming possible misinterpretation and finding interdependencies between data.   

 We have developed the following views that show the simulation data from 
different perspectives and which are coordinated with each other: 

• Overview+Detail views: Selecting an item in the “overview” navigates the 
“detail view” to the corresponding details. Items are represented visually 
smaller in the overview. This provides context and allows direct access to 
details. The detail view is a zoomed-in-view of the overview. In these views, 
all design instances are shown in one scatter plot. They are sorted by elapsed 
time. So the best instances are on the left side. 

• Table view: some attributes of all design instances are shown in a tabular view  
and can be sorted in either ascending or descending order. 

• Latency view: the read and/or write communication latencies of selected 
instances in the overview are shown.  

• Matrix view: a multivariate view to compare selected instances in terms of a 
large variety of characteristics, such as task mapping, number and type of 
processors, scheduling policy, etc,  

• Task view: shows the application task mapping and task execution times of an 
instance selected from the matrix view.  

• Method view: shows a break-down of the time spent in each method call (read, 
write, execution, etc.) for each processor component in the architecture model 
of an instance selected from the matrix view.  

In Fig. 1, an example screenshot of our visualization is shown. A demo and color 
versions of the pictures are available on the homepage of the primary author. The 
remainder of this section will discuss each of the above views in more detail. For 
more details about the experiment that generated the data in this figure, see section 6. 



Fig.1. Screenshot of the coordinated multiple-view visualization. 

 

         



5.1   Overview+Detail Views 

Usually, the amount of data to be displayed is too large to fit on the screen 
completely. It is also useful to be able to zoom in on certain parts of the data. In such 
cases, one wants to focus on certain data, without losing track of the position in the 
whole data set. Therefore, two separated views are used. One is the overview that 
provides a global map of all data and the other is the detail view that provides a 
zoomed-in-view for detailed information about a small portion of the data. Users can 
select items from the overview to navigate to corresponding detailed information in 
the detail view and vice versa, navigating in the detail view indicates the 
corresponding selection in the overview. 

Overview and detail diagrams (Fig. 1-A and 1-B) are scatter plots in which the x-
axis shows the design instance number and the y-axis shows the elapsed time. 
Instances are sorted by elapsed time. As a result, the best instances (instances with 
minimum elapsed time) are on the left side of the diagram. For each instance, there is 
a nested bar plot that shows the load balance for each processor in the design instance. 
It uses one bar per processor in which the color of the bar shows the processor type 
and the scheduling policy of that processor. This is called color coding in literature 
and in this case  each color indicates one property and the color shade shows another 
property. For example, in our diagrams we use color to identify the processor type 
and the color shade to identify the scheduling type.  

If a user selects one or more instances in the overview diagram, the corresponding 
instances in the detail view will be highlighted, and vice versa, selecting some 
instances in the detail view highlights corresponding instances in the overview. By 
selecting some instances in either overview or detail view, the matrix and latency 
views will also be filled with those instances’ information.  

The overview and detail diagrams are mainly used to recognize general 
performance trends, such as finding the best and worst design instances, and 
retrieving some high-level information about them (e.g., about the number of used 
processors, processor types, scheduling policy, and processor utilization).  

5.2   Table View 

In the table view (Fig. 1-C), all instances are displayed in rows with columns that 
contain various attributes of the instances, like instance number, number of 
processors, type of processors, mapping of application tasks onto processors, and 
elapsed time. The user can sort the table in both ascending and descending order on 
any of its attributes. In addition, the table view supports the sorting on multiple 
columns, allowing a user to sort design points by multiple attribute values. In multiple 
sort, a number will be written in the column header that indicates the order of that 
column in the multiple sort. 

Selecting one or more rows in the table view will highlight the corresponding 
instances in the overview and detail views. Also, the matrix and latency views will be 
loaded with detailed information about those instances. 

The table view is useful for finding and selecting some specific instances. For 
example, if a user wants to select design instances that contain two MicroBlaze 



processors and one PowerPC processor (indicated by the string “PC MB MB” in 
Sesame) and sort them by elapsed time, then the table is first sorted by architecture 
string and then by elapsed time in descending order. (Fig. 1-C) 

5.3   Latency View  

The latency view (Fig. 1-D) is another scatter plot in which the x-axis represents the 
selected instances from the overview diagram and the y-axis shows the application 
tasks. For any instance selected in the overview, the latency view shows the amount 
of time that each task is waiting for read and/or write communications. Here, again 
the color coding has been utilized to represent the latency: yellow to red for read 
latency and green to blue for write latency. For each instance and task in the latency 
view, two rectangles are drawn filled with these colors representing the read and write 
latency. Moreover, the user can select to just see read or write latencies, or both of 
them.  

5.4   Matrix View  

The matrix view (Fig. 1-E) shows more detailed information about selected instances 
and can be used to compare the instances. The columns of the matrix represent the 
application tasks while the rows are the selected instances. The instances in the matrix 
view are sorted by elapsed time, therefore the instances with lower elapsed times are 
on the top.  

Each cell is filled by a color matching the type of the processor and the scheduling 
policy. Needless to say, the color coding is the same as in the overview diagram. The 
small rectangles drawn at the bottom right of each cell are used to recognize the tasks 
which have been executed on the same processor. These tasks have the same color in 
this small rectangle. In addition, the number written at the upper left of a cell shows 
the percentage of time that the corresponding processor was busy executing the task.  

The value in the bottom left of the square denotes the execution time of this task 
relative to execution of the same task in all the other instances in the experiment. The 
value “min” means that no other instance executes the task faster, “max” means that 
no other instance executes the task slower. Note that the performance of an instance 
for a particular task could also be in between “min” and “max”: we then provide a 
normalized number between 0 and 1 with respect to the “min” and “max” values. 

If the user selects one instance in the matrix view, more details about the task 
mapping and methods will be shown in the task and method view sections. 
Furthermore, the selected instance will be highlighted in this diagram and also in the 
overview and latency diagrams.  

5.5   Task View  

This view (Fig.1-F) shows the application task mapping of an instance selected from 
the matrix view. For each processor of the selected instance, a stacked bar-chart is 



drawn. Each stack shows the tasks executed on the processor using different colors. 
The stack height shows the percentage of time that the processor was executing the 
task. The idle time percentage is shown at the top of the stacked bar with light yellow. 
The stacks are sorted by their heights (the task with maximum time usage percentage 
is at the bottom of the chart).  

5.6   Method View  

This view (Fig.1-G) shows a break-down of method call statistics of processor 
components in the architecture model of a selected design instance. Basically, this 
shows the intensity of reading data, writing data, and executing of the different 
processors in the selected design instance.  

6   Evaluation 

By default, Sesame outputs various simulation statistics in human-readable text files. 
For a DSE experiment consisting of many simulations, the designer would either have 
to go through the files manually, or write an evaluation program to extract particular 
relevant information from file and represent it in a useful way (e.g. average numbers, 
distributions or graphics). The former is time-consuming, error prone, and most 
importantly, overwhelms the designer with detailed statistics. The latter is time 
consuming as evaluation programs may not be easily reusable between experiments. 
Moreover, the designer may not know what exactly needs to be evaluated before he 
has performed an initial survey of the results. In this section, we will show a number 
of example observations using our visualization tool that could not be made so easily 
before. The experiment explores differently configured instances of a multi-processor 
system-on-chip (MPSoC) running a parallelized video encoder application. Instances 
consist of 1, 2 or 3 processors of one of two types: MicroBlaze (MB) or PowerPC 
(PC). Furthermore, we consider every possible mapping of tasks onto processors. 

Using the overview diagram, we can find that the best instances (Fig.2 on the left) 
are mostly colored red (MB), while in the worst instances most of the processors are 
blue (PC). Overall, we can conclude that better instances contain more MB 
processors. This result was to be expected, since we knew beforehand that for our 
application the MB processor is faster for almost all application tasks. So a very basic 
design question is whether we should include a PowerPC (PC) in the design at all. 
When the designer zooms in on the left hand side of the detailed view, it becomes 
clear that the optimal instances actually have one PC. However, from this view it is 
also clear that the performance difference with the best 3-MB system is quite small. 
Now the designer can make a trade-off between system performance and other design 
criteria. For example, the cost of IP licenses for a heterogeneous system may not be 
worth the small performance gain. Similarly, system flexibility, die-size or reliability 
may influence the final design decision. 



 
Fig.2. Overview and detail views showing best design instances. 

Now, let us look at the influence of the task mappings on performance. Using the 
easy-to-use selection mechanism from the visualization tool (table view), we selected 
all instances that use the same mapping as the optimal instance (instance 297), but 
have a different underlying architecture. In Fig.3-A, we can see that these instances 
are all grouped relatively close to the optimum. Further investigation of other 
mappings close to the optimum, shows a similar result. However, when we select 
some of the worst mappings, then we see that identical mappings are more evenly 
distributed among the 36-100th percentile (Fig.3-B). From this, we can conclude that a 
good mapping is less dependent on the underlying architecture than a bad one. Using 
the visualization tool, this trend could be discovered in mere minutes, but without it, it 
could have gone unnoticed to the designer or he would have found out much later. 

  
              Fig. 3-A Best mapping subset.                          Fig. 3-B Worst mapping subset. 

Conversely, we can also look at the different mappings for a certain architecture (data 
not shown here). From this, we learn that a 2 or 3 processor instance with only MBs 
always performs within the 0-48th percentile, implying that even the worst mapping is 
still better than 52% of all instances. Further, multi-processor instances with a 
heterogeneous architecture (using both MB and PC) span the entire performance 
range (from poor to good, and everything in between). The 2 and 3 processor 
instances with only PowerPCs yield a performance that always falls in the 14-100th 
percentile, which means that even the best mapping for those architectures is worse 



than 14% of all instances. This corroborates our previous findings and, moreover, is 
interesting for the designer if he is looking for a system that can flexibly deal with 
different task mappings: an all-MB system will give reasonable (but not optimal) 
performance.  

The visualization can also be used to understand some exception conditions. In Fig. 
4 we show various instances where task 2 is mapped onto a separate processor.  From 
the latency view we can easily see that in these mappings task 2 has a higher write 
latency compared to other mappings. This is because task 2 never reads but only 
generates data and subsequent task 3 cannot read the data fast enough. Therefore, the 
rate of data production is faster than consumption and the write latency is increased.  

 
Fig.4. Write latencies for a selection of instances. 

Fig. 1-D shows a selection of instances with increasingly high read latencies for tasks 
3, 4, 5 and 6. Furthermore, from the min/max annotation in the matrix view (Fig. 1-E) 
we see that for the worst instances most tasks execute on a processor that is not the 
optimal processor type for that task. These observations are indications of bottlenecks 
in the system, but the detailed explanation is outside the scope of this paper. 

Each of the above observations could be done much easier and quicker using the 
visualization than with our previous analysis techniques. Moreover, the visualization 
invites the designer to look at data that would otherwise have been ignored. 

7   Conclusion 

System-level (embedded) computer architecture simulations create large volumes of 
simulation data to explore alternative design solutions. Interpreting and drawing 
conclusions from this amount of simulation results can be extremely hard and time 
consuming. So far, little research has been undertaken in the application of techniques 
from the field of information visualization to facilitate such analysis. In this paper, we 
presented a multiple-coordinated visualization tool and we use it to explore simulation 
results from our Sesame simulation and design space exploration framework.  

The overall premise for this visualization tool is that users understand their data 
better if they interact with the presented information and view it through different 
representations. Our visualization tool therefore allows a designer to 1) get a quick 
and clear overview of the performance of a large number of evaluated design points, 
2) select a set design instances for further investigation, 3) compare the selected 
design points in terms of different characteristics and metrics using multivariate 



visualization, 4) look at the simulation results from different levels of abstraction, and 
5) find relationships between design parameters and their effects on performance. 

In the future, we will perform a case study with more complicated application and 
architecture models. This way, we can further test and improve the capabilities of the 
visualization for even more intricate exploration case studies. 
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