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Abstract
This paper introduces a method called relational perspective map (RPM) to

visualize distance information in high-dimensional spaces. Like conventional

multidimensional scaling, the RPM algorithm aims to produce proximity

preserving 2-dimensional (2-D) maps. The main idea of the RPM algorithm is to
simulate a multiparticle system on a closed surface: whereas the repulsive forces

between the particles reflect the distance information, the closed surface holds

the whole system in balance and prevents the resulting map from degeneracy.
A special feature of RPM algorithm is its ability to partition a complex dataset

into pieces and map them onto a 2-D space without overlapping. Compared to

other multidimensional scaling methods, RPM is able to reveal more local
details of complex datasets. This paper demonstrates the properties of RPM

maps with four examples and provides extensive comparison to other

multidimensional scaling methods, such as Sammon Mapping and Curvilinear
Principle Analysis.
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Introduction
Many fields in sciences and technologies make extensive use of high-
dimensional data, which are presented in the form of numerical tables or
abstract distance matrices. Visualizing these data through 2-dimensional
(2-D) maps is often an efficient way to discover regularities and extract
information. This is especially true when dealing with new types of data
where conventional analysis tools such as statistical modeling have
difficulties because of lack of initial models. Data visualization, on the
other hand, presents data directly to the human eyes, whose extremely
high capability of pattern recognition is still unmatched by other
analytical techniques.

Whereas the general goal of data visualization is to extract useful
information for human eyes, visualization of high-dimensional data
particularly faces two main challenges. First, it has to map the dataset
onto a 2-D space while preserving distance information of the original
dataset as much as possible. Second, it has to partition complex datasets
into less complex pieces and present them in a non-overlapping manner so
that people can easily discern regularities or irregularities.

In this paper we introduce a method, called the relational perspective
map (RPM), which visualizes high-dimensional data through 2-D maps.
The RPM method tries to preserve distance information similar to many
known dimensionality-reducing mapping methods. But more importantly,
the RPM method also shows the ability to visualize data in a non-
overlapping manner so that it reveals short-range distance information
better than other known mapping methods.
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The starting point of the RPM algorithm is a set of
abstract data points si, i¼1, y, N with a distance matrix
dij, i,j¼1, y, N. The RPM algorithm maps data points si

into image points ti in a 2-D space in such a way that
visual distances between the image points, denoted by dij,
resemble the distances dij. The image points ti, i¼ , y, N
therefore provide a 2-D visualization of distance informa-
tion of the initial dataset. For the sake of our discussion,
we call dij and dij, respectively, relational and image distance
matrices.

As illustrated in Figure 1, the RPM algorithm first maps
data points onto the surface of a torus, then the flat
rectangle by a vertical and a horizontal cut. The second
step is more or less straightforward, thus the RPM
algorithm focuses on how to map the dataset onto the
torus surface so that the configuration of the image
points reflects the distances information in the original
dataset.

In order to find an appropriate configuration, the RPM
algorithm considers the image points together with the
torus as a force-directed multiparticle system: the image
points are considered as particles that can move freely on
the surface of the torus, but can not escape the surface.
The particles exert repulsive forces on each other so that,
guided by the forces, the particles rearrange themselves to
a configuration that visualizes the relational distances dij.

In particular, the RPM algorithm uses Eq. (1) as the
total potential energy to characterize a configuration.

Ep :¼
X
ioj

dij

pd
p
ij

with E0 :¼ �
X
ioj

dij lnðdijÞ: ð1Þ

The parameter p in Eq. (1) is called the rigidity whose
value is a real number between �1.0 and +N. Following
the usual physical formalism, the forces between the
particles are characterized by

fij :¼
qEp

qdij
¼ � dij

d
pþ1
ij

: ð2Þ

From a physical point of view, the RPM algorithm
simulates the multiparticle system described above by
allowing the particles to move along the repulsive forces
and therefore minimizes the potential energy. Eq. (2)
states that the repulsive force between two image points
is proportional to their relational distance, therefore data

points with a larger relational distance between them will
be mapped to further apart positions on the torus surface.
Assuming p¼0, Eq. (2) also states that the repulsive force
between two image points is reversely proportional to the
image distance between them. This means that more
closely located image points have larger contribution to
the total potential energy and therefore carry more
information about the original dataset. In general, the
parameter p provides a means to control how fast the
repulsive force decreases with increasing image distances,
and therefore controls how strong the system biases
towards information represented by closely located image
points.

Related works
In a broad sense, the RPM method can be considered as a
technique of multidimensional scaling (MDS1,2) that, as a
family of techniques, aims to produce multidimensional
geometric representation of data. RPM resembles con-
ventional MDS in problem setting, but differs in
approach. To put it in a simplified way, compared to
the energy function Eq. (1) used in this study, the usual
MDS tries to minimize the so-called stress function as
described in below

E ¼
X
ioj

ðdij � dijÞ2: ð3Þ

By minimizing Eq. (3), the MDS algorithm forces image
distance dij to approach the relational distance dij, which
is also called dissimilarity or proximity in traditional
MDS literatures.

When we consider the optimization process of MDS as
a force-directed dynamic system, the image points exert
two kinds of forces on each other depending on the
image and relation distances: the attractive force when
the image distance is larger than the relational distance;
or the repulsive force when the image distance is smaller
than the relational distances. In contrast to this kind of
dual force system, the RPM model only employs repulsive
force but resorts to topological means (closed surface) to
prevent the system from degeneracy.

A well-known problem of conversional MDS is that the
stress function aggregates uniformly over all distances so
that the long-range relational distances often dominate

Dataset with 4 points in
high dimensional space

4 image points on 
the torus surface 

RPM map of the
dataset

Figure 1 Model of the RPM method.
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the global structure of MDS maps. If a dataset is
structured in the way that it can not be mapped smoothly
to the 2-D plane, the MDS method generally scarifies
short-range distance information. This often leads to
overlapping of image points in resulted maps as will be
demonstrated later in this paper by examples.

Some variations of the stress function have been
proposed that reduce the dominating effects of the
long-range distances. One of the widely used methods
is the Sammon mapping,3 which uses the Newton–
Raphson method (which will be discussed later in more
detail) to minimize stress function

E ¼
X
ioj

ðdij � dijÞ2

dij
: ð4Þ

The denominator dij in Eq. (4) obviously reduces the
effect of long-range relational distances. However, this
modification is often not sufficient to deal with a
complex dataset as will be demonstrated in this paper
by examples.

Another approach, the maximum likelihood MDS,4

proposed the use of function Eq. (5) to limit the effects of
long distances by logarithmical transformation.

E ¼
X
ioj

½logðdijÞ � logðdijÞ�2: ð5Þ

The curvilinear component analysis (CCA) algorithm5

employed a more direct and effective means to reduce the
dominating effects of the long-range distances; it extends
traditional MDS by using the function Eq. (6) as the stress
function.

E ¼
X
ioj

ðdij � dijÞ2 Fðdij; ltÞ with

Fðdij; ltÞ ¼
1 if dij � lt ;

0 if dij4lt ;

� ð6Þ

where lt is a time-dependent parameter that gradually
goes from the largest possible image distance to zero
during the optimization process. It is obvious that, in
terms of force-directed system, the addition factor F(dij,lt)
gradually shrinks the interaction range between image
points to zero. The CCA method has been shown to be
effective in unfolding data with a complex structure and
reveal details in a non-overlapping way. Compared with
CCA, RPM seems to be able to carry out more global
dataset partition so that local details are better reflected
in resulting maps. We will compare CCA with RPM with
several examples in this paper.

More recently, the Isomap method6 and curvilinear
distance analysis (CDA)7,8 have been introduced as non-
linear visualization methods for datasets from high-
dimensional space. These two methods extend the
traditional MDS by using the geodesic distance instead
of the usual Euclidian distance. Intuitively, to apply the
geodesic distance, we assume the underlying dataset
forms a kind of a geometrical surface (e.g. 2- or 3-D
manifolds), and then we define the geodesic distance
between two points as the shortest distance following a

curve connecting the two points on the surface. Since the
geodesic distance is invariant under a large class of
deformations, the conversion from Euclidean distance to
geodesic distance practically extracts deformation invar-
iant distance information from a dataset. Both Isomap
and CDA have been shown to be very effective in
visualizing dataset with manifold alike characteristics
(e.g. 2-D surface), but for a dataset with higher intrinsic
dimensionality or fractal structure they resort, more or
less, to the ability of the traditional MDS algorithm. Since
the outgoing point of the RPM algorithm is an arbitrary
distance matrix, we can apply the RPM algorithm with
geodesic distance matrix without modifications.

Most recently, a fast MDS method has been proposed,9

which combines several hybrid approaches and substan-
tially speedsup the calculation of MDS maps. Although
the method aimed to speed up a particular MDS method
(which is based on the force-directed model as FDP
mentioned below), the elaborate sampling and interpola-
tion techniques might be adapted to the RPM method to
achieve higher performance.

The concept of self-organizing map (SOM) developed
by T. Kohonen10 represents a large set of generic mapping
methods for high-dimensional data. Based on neural
network models, SOM provides an effective tool to cluster
a large set of data points and form the so-called self-
organizing feature maps. However, unlike MDS, self-
organizing feature maps normally do not preserve
distance information, but only the topological informa-
tion, that is the neighboring relationships between the
data points.

In practice, the neural network in the SOM algorithm is
often structured as a torus instead of a rectangle mesh.
This technique aims to avoid possible degeneracy at
boundaries. The RPM method shares with SOM in the use
of this technique. However, torus plays a more essential
role in the RPM algorithm than in SOM: applying RPM
algorithm on a rectangle image space would mostly result
in strongly degenerated maps.

The method of force-directed placement (FDP)11 has
been developed to construct graphic networks to visualize
objects with given relationship structures. The FDP
method is based on physical models that make explicit
use of attractive and repulsive forces between objects.
Similar to the FDP method, we described the RPM
algorithm as a force-directed dynamic system, instead of
using more commonly used terms such as gradient and
stress function as used in some MDS literatures. By doing
this, we hope that our description becomes more intuitive.

From a more theoretical aspect, the physical model
underlying the RPM algorithm resembles the Thomson
Problem,12 which aims at finding the equilibrium con-
figurations of point charges on a spherical surface. As far
as we know, there is no published work that uses this kind
of model as a technique to visualize data.

We have adapted the Newton–Raphson (NR) method
in the RPM algorithm to minimize the energy function
Eq. (1). Like most multivariate optimization problems,
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being caught into a local minimum is a main concern in
the RPM algorithm. To alleviate this concern, we have
used the method of simulated annealing13 (SA) to verify
the minimum found by the RPM algorithm. SA works by
simulating the annealing process from material science in
which annealing describes the process to eliminate lattice
defects in crystals by first heating the crystal and then
gradually cooling it to room temperature. Theoretically, if
an annealing process is conducted slowly enough, the
crystal obtained should have all defects removed. As a
general-purpose stochastic optimization method, SA is
known as the last-resort method for bad-conditioned
optimization problems. Although SA is normally not very
efficient, it is often capable of finding good quasi-global
optimum. Apart from being used as a reference method
in this paper, SA also provides concepts such as
temperature and dynamics that offer a different aspect
to analyze the RPM optimization process.

The RPM algorithm
Recall that the RPM algorithm aims to minimize the
energy function Eq. (1) to find a minimum energy
configuration {ti|i¼ 1, y, N}. We have informally stated
that ti are image points of a mapping that maps {si|i¼ 1, y, N}
on the torus surface. In order to derive a practical
algorithm, we first give a more formal specification of
the torus and this mapping. Then we will adapt the NR
method to find a minimum energy configuration.

Let T:¼ [0,w]	 [0,h]CR2 denotes the rectangle plane of
width w and height h in the 2-D Cartesian coordinator
system. Let S:¼ {si|i¼ 1, y, N} be an abstract set of points.
A torus mapping is understood as a mapping of the
following form:

j : S ! T ; si 7!ti :¼ ðxi; yiÞ: ð7Þ
Next, we define a distance function on T to reflect the
torus topology. Let ti:¼ (xi, yi), tj:¼ (xj, yj) be two points
from T, the distance between ti and tj is defined as follows:

dðti; tjÞ :¼minfjxi � xjj; w � jxi � xjjg
þ minfjyi � yjj; h � jyi � yjjg:

ð8Þ

With the above distance function, the opposite edges of
the rectangle T are actually stuck together, so that it
becomes topologically equivalent to a torus as depicted in
Figure 1. Intuitively, d is the city-block distance metric on
the torus surface; it defines the distance between two
points as the shortest walking distance between the two
points while restricting the walking directions to the
horizontal or vertical direction.

Having defined T and d, we can now say that the torus
surface used in the RPM algorithm is actually the metric
space (T, d). The distance dij in the Eqs. (1) and (2) is
actually the abbreviation for d(ti, tj). The goal of RPM
algorithm is thus to find a torus mapping j of form (7)
that minimizes Eq. (1).

The RPM algorithm adapts the NR method to minimize
the energy function Eq. (1). The NR method is a widely
used method to find the root of differentiable functions.

More detailed discussion about this method can be
found, for instance, in.14 Generally speaking, for a given
single-variate function f(x) the NR method suggests the
following iterative formula to find a root of the function:

xðmþ1Þ ¼ xðmÞ � f ðxðmÞÞ
f 0 ðxðmÞÞ : ð9Þ

An optimum point of f(x) can then be found by finding a
root of f 0ðxÞ by the following formula:

xðmþ1Þ ¼ xðmÞ � f 0ðxðmÞÞ
f 0 0ðxðmÞÞ : ð10Þ

Thus, in order to apply the NR method to our optimiza-
tion problem, we need to calculate the first- and second-
order partial derivatives of E with respect to all variables xi

and yi. In the following, we will just consider the
calculation of derivatives with respect to xi; the calcula-
tion with respect to yi is completely analogous. With
respect to xi we have the following equations:

qE

qxi
¼

X
koj

qE

qdkj

qdkj

qxi
¼

X
koj

�
dkj

d
pþ1
kj

qdkj

qxi
: ð11Þ

In the above form, the symbol
P

koj stands for the
summation over all k¼1, y, N and j¼ 1, y, N with koj.
Since dkj depends on xi only if i either equals k or j, we
have qdkj / qxi¼0 for iaj and k. Also, since both dij and dij

are assumed to be symmetric we have dij¼ dji and dij¼ dji

for all i, j. With these relationships the above equation
can be further simplified to

qE

qxi
¼

X
ioj

� dij

d
pþ1
ij

qdij

qxi
þ
X
koi

� dki

d
pþ1
ki

qdki

qxi

¼
X
k6¼i

� dik

d
pþ1
ik

qdik

qxk
: ð12Þ

Let hik :¼ qdik/qxk, and let fik be as been defined in Eq. (2),
we have then

qE

qxi
¼

X
k6¼i

hikfik: ð13Þ

Referring to Eq. (8), hik can be calculated as follows:

hik ¼ qdik

qxi
¼

qðjxi � xkjÞ=qxi if jxi � xkjow=2;

qðw � jxi � xkjÞ=qxi if jxi � xkj4w=2;

�

¼

þ1 if jxi � xkjow=2 and xi4xk;

�1 if jxi � xkjow=2 and xioxk;

�1 if jxi � xkj4w=2 and xi4xk;

þ1 if jxi � xkj4w=2 and xioxk:

8>>><
>>>: ð14Þ

We note that hik in Eq. (14) is undefined for the case
|xi�xk|¼w/2, we will address this issue latter. In plain
text, fik stands for the repulsive force between the image
point ti and tk; hik is the operator that bridges the torus
topology and the Cartesian representation of the torus:
hik equals +1 if increasing xi will increase the image
distance dik and hik equals �1 if increasing xi will decrease
the image distance dik. More intuitively, Figure 2 illus-
trates how the operator h works: in the figure, we have
three points from the torus surface represented as points
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A, B and C in the Cartesian coordinator system. The
shortest way from A to B is simply the straight line
between them. The shortest way from A to C is, however,
the dashed line that wraps around the torus. Thus, if
point A moves to the right somewhat, the distance
between A and B will decrease, but the distance between
A and C will increase. This behavior is characterized by
the h operator as hAB¼1 and hAC¼�1.

The second-order partial derivative of E is calculated as
follows:

q2E

qx2
i

¼
X
k6¼i

qðfikhikÞ
qxi

¼
X
k6¼i

hik
qfik

qxi
þ fik

qhik

qxi
¼

X
k 6¼i

hik
qfik

qxi

¼
X
k6¼i

hik
qf ik

qdik

qdik

qxi
¼

X
k6¼i

hikðp þ 1Þ dik

d
pþ2
ik

hik

¼ ðp þ 1Þ
X
k 6¼i

h2
ik

dik

d
pþ2
ik

¼ ðp þ 1Þ
X
k 6¼i

f ik

dik
:

ð15Þ

Having worked out the first- and second-order derivatives
we can now apply the NR method to our energy function
E. Following Eq. (10) we have Eq. (16) as an iterative
formula to find the minimum energy configuration.

x
ðmþ1Þ
i ¼ x

ðmÞ
i � qE=qx

q2E=qx2
¼ x

ðmÞ
i � 1

ðp þ 1Þ

P
i6¼k hikfikP

k6¼i fik=dik
: ð16Þ

For the RPM algorithm, we, however, use a modified
variation of the above formula as shown below

x
ðmþ1Þ
i ¼ x

ðmÞ
i � cðmÞ

P
k6¼i hikfikP

k6¼i fik=dik
: ð17Þ

In Eq. (17), we have only replaced the constant 1/(p+1) in
Eq. (16) with a parameter c(m) that is called the learning
speed at step m. c(m) should approach zero as m increases.
For our experiments, we used the following simple form
to set c(m):

cðmÞ ¼ ram; ð18Þ
where r is the initial learning speed, a is a number
between 0.0 and 1.0. Both r and a are determined
empirically. The reason for using a vanishing learning

speed is that the standard NR procedure does not
converge to a minimum for our problem, but oscillates
in an equilibrium state. Generally, the closer a ap-
proaches 1.0, the longer the optimization process and
the better the resulting minimum energy configuration.

In summary, the RPM algorithm works as follows:

In the above description we have, for the sake of
simplicity, neglected some issues. The first is that the
first-order derivative in Eq. (13) is not defined for the case
|xi�xj|¼w/2 as hik is not defined in this case. In an
implementation of the RPM algorithm, we can set hik to
+1 or �1 for the case |xi�xj|¼w/2, either way the resulting
minimum energy configuration would not be affected
significantly. The reason for this is that the learning speed
c(m) approaches zero as the iterative process continues, so
that the changes made to the image points will gradually
approach zero. On the other hand, the discontinuity of
Eq. (13) seems to be a source of instability in the
optimization process, and this necessitates the use of
the gradually vanishing learning speed c(m).

One main impact of the high instability during the
optimization process is that the algorithm lost its second-
order convergence rate as it is the case by the standard NR
method.14 The convergence rate of RPM is directly tied to
how fast the learning speed c(m) vanishes. On the other
hand, the high instability seems to provide necessary
dynamics to help the optimization process avoid local
minimums. Like the temperature parameter in simulated
annealing algorithm, the learning speed has a direct
impact on the resulting minimum: the slower the
learning speed vanishes, the better the chance to find
the global minimum.

Another question that rises naturally is about image
distance defined in Eq. (8) which is derived from the city-
block distance. Why did we not derive the image distance
from the usual Euclidian distance? To answer this
question, we considered the following more general
parameterized image distance:

drðti; tjÞ :¼ðminfjxi � xjj; w � jxi � xjjgr

þ minfjyi � yjj; h � jyi � yjjgrÞ1=r :
ð19Þ

This image distance is adapted from the Minkovsky
distance, which becomes the Euclidian distance for
r¼2.0 and becomes city-block distance for r¼ 1.0. We

Figure 2 Shortest way between points with respect to the torus

topology.

1. Select a mapping j that maps {si|i¼ 1, y. ,N} to
randomly selected points {(xi

(0), yi
(0))AT|i¼1, y, N}.

Set m¼ 0.
2. Calculate x

ðmþ1Þ
i according to Eq. (17). Calculate

yi
(m+1) analogously.

3. Stop the simulation if the total changePN
i¼1

x
ðmþ1Þ
i � x

ðmÞ
i

��� ���þ y
ðmþ1Þ
i � y

ðmÞ
i

��� ��� is smaller than a

pre-set constant, say 0.0001.

4. Set m:¼m+1; Go to step 2.
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have not adopted the NR method to solve this general-
ized minimization problem as it will become substan-
tially more complicated. Instead, we used the SA
algorithm to solve the minimization problem. Our
experiments have found that, in most cases, only when
r is close to 1.0 the resulting minimum energy config-
urations are not degenerated. Thus, the city-block
distance not only greatly simplifies the calculation but
also seems to be necessary to obtain useful maps.
Unfortunately, we do not have a theoretical explanation
for this rather surprising phenomenon.

It should also be noted here that the energy function
defined in Eq. (1) has a negative value for po0.0. This
characteristic obviously contradicts the usual energy
concept in physics, but it does not impact the RPM
algorithm as the energy function is only used to formalize
an optimization problem.

Example 1: the spherical dataset
Our first example is a syntactic dataset that contains
about 1000 data points that are evenly distributed on a
sphere as depicted in Figure 3a. The relational distances
are the Euclidian distances between the points. The main
challenge of this dataset is that the spherical structure
can not be mapped smoothly to a flat plane in a non-
overlapping way. Any non-overlapping map of the
spherical dataset must have some kind of discontinuous
distortion.

Figure 3b shows the Sammom mapping of the spherical
dataset. We note that this map resembles very much the
linear projection of Figure 3a and it is basically an
overlapping of two discs. This map also shows a typical
property of Sammon mappings: two closely related points
are mapped to closely located positions but, on the other
hand, two far apart points are not necessarily mapped to
two distant positions. From a mathematical point of
view, Sammon mapping realizes a non-linear, but con-
tinuous function.

The CCA map as shown in Figure 3c achieved a non-
overlapping map of the spherical surface. Intuitively,
during the optimization process the CCA algorithm
opened a hole on the spherical surface and then gradually
deformed or unfolded it to a flat map. We see that, unlike
the Sammon mapping, CCA favors the short-distance
information in the way that closely located image points
normally correspond to closely located data points.
However, distant image points do not always correspond
to distant data points and in particular, the image points
at boundary suffer quite some distortions.

The RPM map of the spherical dataset is shown in
Figure 3d. We note that RPM maps have to be understood
as maps on the torus surface. This means the opposite edges
of the map have to be considered as stuck together. Thus,
Figure 3d actually shows two equal-sized discs on the
torus surface: one depicted in the center of the map, the
other one on the four corners. Intuitively, the RPM
algorithm cut the sphere into two equal halves and then

Figure 3 Different maps of the spherical dataset: (a) linear projection; (b) Sammon mapping; (c) CCA map; (d) RPM map.
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deformed it into two discs. Compared to the CCA map,
the RPM map suffers less local distortion since these
image points are more evenly distributed. On the other
hand, the RPM map made more radical global distortions
as it partitioned the sphere into two halves instead of
opening a hole.

With a close look at Figure 3d, we can also notice
another interesting capability of the RPM map: the two
circled regions show some irregular arrangements of
some points. These irregularities are not caused by
randomness of the optimization process. They are indeed
present in the original dataset! Although this test dataset
was generated with the best effort to make the points
evenly distributed on the sphere, it was not perfectly
done and some points do have irregular distances to their
neighbors. These irregularities are illustrated in Figure 4,
which shows the linear projection of two subsets of the
spherical dataset. This feature demonstrates that RPM is
capable of preserving very fine details within a dataset.
We notice that the Sammon mapping in Figure 3b failed
to reveal such details because of extensive overlapping.
The CCA map revealed one irregular region as indicated
by the circle in Figure 3c, but failed to reveal the second
irregular region because of the extensive distortion
occurring in the boundary area.

The fact that the RPM map’s opposite edges have to be
understood as stuck together is to certain extent contra-
intuitive. This drawback can be significantly compen-
sated by interactive exploring support of software
programs. The program used in this paper,15 for instance,
implements a tiling technique that tiles multiple in-
stances of the same RPM map together and creates an
impression of an endless map. Based on the tiled
representation, the user can then easily focus investiga-
tion on any sub-regions. Figure 5 depicts one example of
such a tiled representation of Figure 3d.

Example 2: two crossing squares
The next example is also a syntactic dataset; it comprises
about 1000 points that form two crossing squares in 3-D
space as depicted in Figure 6a. Similar to example 1, this
dataset cannot be smoothly mapped to a 2-D plane
without overlapping. However it differs from Example 1
in that its geometric shape is not a convex object.

Figure 6b shows the Sammon mapping of the two
crossing squares. Similar as in example 1, this map is
again basically a linear projection in which the two
squares overlap over each other. Figure 6c shows the
corresponding CCA map. In this case, the CCA algorithm
has fragmented the dataset into several, more or less
irregular, pieces and then flattened them to the plane.

The RPM map of this dataset is shown in Figure 6d. The
RPM algorithm partitioned the dataset into four major
pieces along the intersection line between the two
squares, then deformed and combined them together
along the intersection line. We note that the RPM map
reflects remarkably well the symmetrical structure of the
dataset and, partially, the connectivity information along
the intersection line.

Example 3: rigidity and fragmentation
Recall that Eq. (2) implies that the rigidity p controls how
fast the repulsive force decreases with increasing image
distance: larger p causes the repulsive force to decrease
more rapidly, and therefore more rapidly reduces the
effect of long-range distance. Since long-range distances
define the global structure of the dataset, very large p may
lead to unnecessary fragmentations of the dataset. To
illustrate this phenomenon, we consider in this example
a dataset with 400 data points that form two interlaced
rings in 3-D space as depicted in Figure 7a. This dataset
has been used in16 as an example of a difficult problem
for the CCA algorithm since the dataset can not be
embedded into a plane without breaking its topology.
However, this mapping problem is not particularly hard
for the RPM algorithm as the two rings can be embedded
smoothly onto a torus.

Figure 7b shows the RPM map of the two rings created
with rigidity P¼ 0.0. The map contains two rings on theFigure 4 Two irregular regions in the spherical dataset.

Figure 5 Tiling of multiple instances of the RPM map in

Figure 3d.
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torus that correctly reflects the uniform density of the
original dataset. For rigidity P¼0.5, Figure 7c shows that
the two rings have suffered some fragmentation at two
regions. For rigidity, P¼1.0, we see in Figure 7d that the
fragmentation has spread over the whole dataset.

Whereas the rigidity 0.0 is the preferred choice in most
cases, in some rare cases higher rigidity seems to be more
appropriate as it may lead to a better approach for local
structures. On the other hand, if we want to emphasise
the long-distance information, that is, the global struc-

Figure 6 Maps of two crossing squares: (a) simple linear projection; (b) Sammon mapping; (c) CCA map; (d) RPM map.

Figure 7 RPM maps of two interlaced rings: (a) linear projection; (b) RPM map with rigidity, P¼0.0; (c) RPM map with rigidity,

P¼0.5; (d) RPM map with rigidity, P¼ 1.0.
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ture, we can use low rigidity, for example, �0.5 or even
lower values.

In general, we have found during our experiments
that, when high rigidity is used, the RPM map tends to
be broken unnecessarily into pieces, especially when
the simulation is cooled too fast (i.e. c(m) in Eq. (17)
vanishes too fast). One measure to avoid these unneces-
sary fragmentations is to start the simulation process
with a low rigidity, say �0.75, and then gradually
increase the rigidity to the targeted value. In this
way, the RPM algorithm first approaches the global
structures, and then gradually changes the emphasis
to local structures. According to our experiences,
this strategy resulted in better RPM maps in most
cases.

Example 4: the S&P 500 stock performance
Our last example is a real-world example. The dataset
contains 500 data points and each stands for the stock
price histogram of an S&P 500 index company. The
relational distances between the data points are calcu-
lated as follows: we first obtained the weekly average
prices of each stock for the year 2002 from public
available sources so that we have an array of 52 numerical
values for each stock. We then scaled these arrays
individually so that all arrays start from the value 1.0.
The relational distances between the stocks are then
defined as the Euclidian distance between their scaled
arrays.

The mapping problem in this example is thus to map a
dataset from the 52-D space to the 2-D space. Figure 8
shows the RPM map generated with rigidity 0.0. The
different glyphs for the stocks are to indicate their
relative locations in the map. The main property of this
map is that closely located stocks should have similar

histograms for the year 2002. To show this property, we
have plotted histograms of stocks from three selected
regions as indicated by three circles from the map: the
lower left group represents the extremely bad-performing
stocks. The middle group represents the average-perform-
ing stocks, where the black dot represents the S&P 500
index itself. The upper-right group represents the stocks
which out-performed the market.

For comparison, we created a Sammon mapping for the
S&P 500 dataset as depicted in Figure 9. We notice in this
map that a large amount of data points are concentrated
in the center of the map, whereas a few data points are
scattered around and occupy relatively large areas
compared to the corresponding RPM map. There could
be two reasons for the high concentration in the map’s
center. First, some stocks are very volatile and therefore
have large distances to the rest of the stocks. Sammon
mapping algorithm tried to preserve these long-range
distances by allocating more space to them. Conse-
quently, less volatile stocks cover less space. For instance,
stocks represented by ‘+’glyph are relatively volatile
stocks, and they occupy collectively more space com-
pared to those in the corresponding RPM map. Second,
the less volatile stocks have quite similar distances to
each other so that they form a kind of high-dimensional
simplex. Similar to the spherical dataset, Sammon
mapping approaches these data points by projecting
them to the same region so that many points overlap
each other.

This example demonstrates that, although Sammon
mapping might be preferable for capturing long-range
distance information and providing high-level overviews,
the RPM map is more preferable for revealing details
owing to its ability to limit the effects of long-range
distances and to partition complex structures.

Figure 8 RPM map of the S&P 500 dataset. Each data point represents a stock of the S&P index stock.
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General discussion

An important question for a massively multivariate
optimization problem is whether a solution is a global
optimum or just a local minimum. Does the RPM
algorithm always find the global minimum? If not, how
far is the solution from the global minimum? We do not
have a general answer to this question yet. To obtain
some experimental evidence, we used SA as a reference
method to solve the same optimization problems and
compared the results with those obtained from the RPM
algorithm. We found that in most cases, the minimum
energy found by the SA algorithm is very close to those
found by the RPM algorithm, often within the range of
70.1%. Also, the obtained maps from the two algorithms
are visually quite alike. However, the SA algorithm is
more than an order of magnitude slower than the RPM
algorithm in our tests.

Although the computational speed is not a primary
goal of this report, the actual simulation time is
of interest for real-world application. We have imple-
mented the algorithm in C# language and run the test
on a 1.9 GHz personal computer. For a dataset with
1000 data points, it takes 1–2 min to generate an
RPM map. For datasets with 5000 data points, the
optimization process can take a couple of hours. In
general, since the RPM optimization problem can
have up to O(N2) independent parameters, its compu-
tation complexity is expected to be at least O(N2) for a
dataset with N data points. The dynamical behaviors
observed during our experiments seem to suggest that
there is still large potential for enhancement. Thus,
finding a faster optimization algorithm for the RPM
method could be a promising task for the future study.
Currently, for datasets with more than 10,000 data
points, we recommend the use of some clustering
methods, such as SOM, to reduce the dataset size before
applying RPM algorithm.

The software program used to produce examples in this
paper is available free for non-commercial use. This

program and more other test datasets can be downloaded
from the web site at http://www.visumap.net.

The RPM method as presented in this paper can be used
generally where other known MDS methods such as
Sammon mapping and CCA can be used. Compared to
other known methods, our experiments showed that
RPM is more preferable to reveal details in an easily
discernable way because of its ability to partition
complex dataset and present them in a non-overlapping
manner. On the other hand, because of its bias towards
short-range distances, RPM normally does not preserve
long-range distance information as well as some conven-
tional MDS methods such as Sammon mapping.

In this paper we demonstrated the characteristics of
RPM maps mainly through concrete examples. There are
many theoretical and practical questions about the RPM
map which could be interesting subjects for future
investigations. For instance, RPM maps in examples 1
and 2 show some natural partitions of simple structures.
Can we find a more formal way to describe such
partitions? How can we predict possible partitions under
different conditions? How can we validate RPM maps?
The distances used in examples of this paper are all
Euclidian distances. How does the RPM map behave
under other distance metrics?

Furthermore, conceptually RPM algorithm can use any
closed surface as its image space. The reason why we
chose the torus surface in our study is its simplicity with
respect to a conventional computation model. It would
be interesting to study RPM maps generated on other
closed surfaces such as the sphere or even 3-D manifolds.

Conclusion
The RPM algorithm presented in this paper combines
traditional multidimensional scaling method with topo-
logical constraints. Compared with other known dimen-
sionality-reducing mapping methods, the RPM algorithm
takes a significantly different approach to deal with
compromises that often have to be made when approach-

Figure 9 Sammon mapping of the S&P 500 dataset.
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ing both global and local distance information. The RPM
algorithm is especially characterized by its ability to
achieve a good non-overlapping approximation for local
distance information through partitioning. The RPM
map therefore offers a new way to explore high-
dimensional data.

Acknowledgments
The author wishes to thank Dr. Lida Yang from Shell
Canada Ltd. for reviewing the manuscript and for her kind

support during the research and the development of the

software.

References
1 Cox T, Cox M. Multidimensional Scaling. Heinemann: 1994.
2 Borg I, Groenen P. Modern Multidimensional Scaling. Spring: 1997.
3 Sammon JW. A nonlinear mapping algorithm for data structure analysis.

IEEE Transaction on Computers 1969; C18: 401–409.
4 Ramsay JO. Maximum likelihood estimation in multidimensional scaling.

Psychometricka 1977; 42: 241–266.
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