
By their very nature, microscopy and magnetic resonance 

imaging (MRI) (Fig. 1 and Boxes 1 and 2) are dependent 

on data visualization. Whereas in the past it was consid-

ered sufficient to show images (photographs or digitized 

images) in the printed version of an article to illustrate an 

experimental result, the presentation of image data has 

become more challenging for three reasons. First, new 

imaging techniques allow the generation of massive data-

sets that cannot be adequately presented on paper nor be 

browsed and looked at with older software tools. MRI, 

which is mostly used to acquire three-dimensional (3D) 

imagery, has faced some of these problems for many years. 

Second, the availability of high-throughput techniques 

enables experiments on a large scale, generating large sets 

of image data, and even though the readout of each single 

experiment may be easily visualized, this is no longer true 

for whole screens consisting of thousands of such experi-

ments. Third, microscopy and MRI are increasingly part 

of a broader analytical context that may include quan-

titative measurement, statistical analysis, mathematical 

modeling and simulation and/or automated reasoning 

over multiple datasets reflecting different properties and 

possibly resulting from different acquisition techniques at 

different scales of resolution, often generated at different 

institutions. This review describes how the visualization 

challenges in these three areas are addressed for a range of 

imaging modalities.

To be useful to the immediate research group and more 

broadly to the scientific community, massive datasets must 

be presented in a way that enables them to be browsed, 

analyzed, queried and compared with other resources—

not only other images but also molecular sequences, struc-

tures, pathways and regulatory networks, tissue physiology 

and micromorphology. In addition, intuitive and efficient 

visualization is important at all intermediate steps in such 

projects: proper visualization tools are indispensable for 

quality control (for example, identification of dead cells, 

‘misbehaving’ markers or image acquisition artifacts), the 

sharing of generated resources among a network of col-

laborators or the setup and validation of an automated 

analysis pipeline.

The first section of this review briefly describes issues 

related to digital images. The second section deals with 

visualization techniques for complex multidimensional 

image datasets at relatively low throughput. Next, we 

discuss typical visualization problems arising with an 
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increase in scale: here, the challenges are to 

provide tools allowing the user to navigate 

through large image-derived datasets at dif-

ferent levels of abstraction and to develop 

meaningful profiles and clustering meth-

ods. The last section deals with how images 

can be shared with collaborators or with the 

community. Finally, we conclude with the 

need for integration and linking of different 

image-based source data (including compu-

tational models) into a comprehensive view 

of biological entities.

Accessing the images
Digital representation of images. The use 

of digital images as a convenient replace-

ment for photographic film has paved 

the way for the increase in the volume of 

images produced. While we expect a digital 

image to carry the same amount of visual 

information as its analog counterpart, it is 

amenable to faster and more complex pro-

cessing, and the task of viewing an image is 

complicated by the lack of standard image 

representation. Whereas photographic film 

used to provide a common format for image 

representation, digital images have different 

formats with respect to the number of bits 

per pixel or whether the encoded values are 

signed or unsigned.

Although most image-handling software 

programs support unsigned 8-bit images 

(values between 0 and 255) and unsigned 

16-bit images (values between 0 and 65,535), 

care must be taken with more ‘exotic’ for-

mats, such as unsigned 12-bit images (val-

ues between 0 and 4,095) or signed 16-bit 

images (values between –32,768 and 32,767), 

which are routinely produced by modern 

imaging equipment. If, for instance, an 

unsigned 12-bit image is simply interpreted 

as an unsigned 16-bit image, only ~6% of the 

dynamic range will be used and the images 

may appear ‘dark’. If the image is rescaled to 

cover the maximal dynamic range (as it is the 

default behavior of many image viewers), the 

absolute intensity information is lost, which 

makes any comparison between different 

images impossible. Signed values are also 

often misinterpreted by the image-handling 

software (for example, negative values may be 

ignored). Although the above may be trivial 

issues for imaging experts, they are pitfalls 

routinely encountered by biologists.

Image file formats. The fields of microscopy 

and MRI both face significant challenges in the 

sharing and processing of data owing to the 

variety of digital file formats that are used.
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Figure 1 | Imaging techniques. (a) Brightfield microscopy: mouse embryo, in situ expression pattern 
of Irx1, Eurexpress; scale bar, 2 mm. (b) Fluorescence microscopy: HT29 cells stained for DNA (blue), 
actin (red) and phospho-histone H3 (green)75; scale bar, 20 µm. (c) Confocal microscopy: actin 
polymerization along the breaking nuclear envelope during meiotic maturation of a starfish oocyte. 
Actin filaments, red (rhodamine-phalloidin stain); chromosomes, cyan (Hoechst 33342 stain). 

Projection of confocal sections, (image courtesy P. Lénárt); scale bar, 20 µm. (d) Bioluminescence 
imaging: in vivo bioluminescence imaging of mice after implantation of Gli36-Gluc cells76, (figure 
courtesy B.A. Tannous). (e) Optical projection tomography: mouse embryo, EMAP33,66; scale bar, 
1 mm. (f) Single/selective plane illumination microscopy: late-stage Drosophila embryo probed 
with anti-GFP antibody and DRAQ5 nuclear marker: frontal, caudal, lateral and ventral views of the 
same embryo77; scale bar, 50 µm. (g) Transmission electron microscopy: human fibroblast, glancing 
section close to surface (image courtesy R. Parton and M. Floetenmeyer); scale bar, 100 nm.  
(h) Scanning electron microscopy: zebrafish peridermal skin cells (courtesy R. Parton and  
M. Floetenmeyer); scale bar, 10 µm. (i) microMRI: mouse embryo (source: http://mouseatlas.
caltech.edu/); scale bar, 5 mm. (j) T2-weighted MRI: human cervical spine (source: http://www.
radswiki.net/); scale bar, 5 cm. (k) Fluid attenuation inversion recover (FLAIR) image of a human 
brain with acute disseminated encephalomyelitis. Bright areas indicate demyelination and possibly 
some edema (image courtesy N. Salamon); scale bar, 5 cm. (l) Diffusion-weighted image of a human 
brain after a stroke. Bright areas indicate areas of restricted diffusion (image courtesy N. Salamon); 
scale bar, 5 cm. (m) Maximum intensity projection image of a magnetic resonance angiogram of 
a C57BL/6J mouse brain acquired in vivo using blood pool contrast78 (image courtesy G. Howles); 
scale bar, 5 mm. (n) 3D proton magnetic resonance spectroscopic imaging study of normal human 
brain. Graph shows proton spectrum for the brain location identified by yellow markers on the 
T1-weighted MRI (lower left) and N-acetylaspartate (NAA; lower right) images. Data acquired 
using the MIDAS/EPSI methodology79 (image courtesy J. Alger); scale bar, 5 cm. (o) Functional 
MRI activation map overlaid on a T1-weighted MRI: human brain (image courtesy L. Foland-Ross); 
scale bar, 5 cm. (p) Direction-encoded color map computed from DTI. Red, left–right directionality; 
green, anterior–posterior; blue, superior–inferior; scale bar, 5 cm.
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format. To address this important issue, the BioFormats project has 

been working to create translators for a variety of image formats and 

has accomplished this task for over 70 image file formats so far (http://

www.loci.wisc.edu/software/bio-formats).

However, most high-dimensional and high-throughput projects 

require devising a system to store and query further metadata about 

the images. For example, interpreting a time-lapse experiment requires 

understanding which images represent which time points for which 

samples, and there is no standard way of organizing the images to 

For microscopy images, no format has been adopted as a univer-

sal standard. Faced with a choice, many new users are unaware that 

image quality is degraded when using a file format that relies on a lossy 

compression algorithm (for example, JPEG). Image files can also hold 

further information about the image. Instrument manufacturers use 

either a proprietary format or a customized version of a pre-existing 

extensible format (for example, TIFF) to include metadata such as 

the time the image was acquired within the image file itself. These 

embedded metadata usually do not survive conversion to another 

BOX 1 MICROSCOPY TECHNIQUES

Brightfield microscopy with colorimetric stains is the primary 
technique for capturing tissue and whole organism morphology 
(Fig. 1a). For high-throughput capture of in situ expression 
patterns, automated bright-field microscopy has been used for 
whole-genome projects such as the Allen Brain Atlas.

Widefield fluorescence microscopy is the most widely used 
imaging technique in biology (Fig. 1b). Fluorescent markers 
make it possible to see particular structures with high contrast, 
either in fixed samples using immunostaining or in living cells 
with expressed GFP-tagged proteins83. The resolution is limited by 
diffraction to about 200 nm.

Confocal scanning microscopy generates optical sections 
through a specimen by pointwise scanning of different focal 
planes and thereby reduces both scattered light from the 
focal plane and out-of-focus light84. The image quality of two-
dimensional images is therefore improved, and 3D images can be 
taken (axial resolution is typically 2–3 times lower than lateral 
resolution; see Fig. 1c). The method is also applicable to live 
cell imaging. There are variants of this method increasing axial 
resolution (for example, 4Pi microscopy)85.

Computational optical sectioning microscopy (COSM) achieves 
optical sectioning by taking a series of two-dimensional images 
with a widefield microscope focusing in different planes of the 
specimen84. Out-of-focus light is then removed computationally.

Structured illumination microscopy acquires several 
widefield images at different focal planes using spatial 
illumination patterns84. As the out-of-focus light is less 
dependent on the spatial illumination pattern than the 
in-focus light, combinations of different images at the same 
focal plane under laterally shifted illumination patterns allow 
computational attenuation of out-of-focus light.

Two-photon microscopy is similar to confocal scanning 
microscopy but uses nonlinear excitation involving two-photon (or 
multiphoton) absorption86. This allows the use of longer excitation 
wavelengths, permitting deeper penetration into the tissue and—
owing to the nonlinearity—confines emission to the perifocal 
region, leading to substantial reduction of scattering.

Super-resolution fluorescence microscopy groups several 
recently developed methods in light microscopy capable of 
significantly increasing resolution and visualizing details at the 
nanometer scale. In stimulated emission depletion (STED) 
microscopy85, the focal spot is ‘narrowed’ by overlapping it 
with a doughnut-shaped spot that prevents the surrounding 

fluorophores from fluorescing and thereby contributing to 
the collected light. In PALM (photo-activated localization 
microscopy)87 and STORM (stochastic optical reconstruction 
microscopy)88, subsets of the fluorophores present are activated 
and localized. Iterating this process and combining the acquired 
raw images yields a high-resolution image.

Bioluminescence imaging (Fig. 1d) is based on the detection 
of light produced by luciferase-mediated oxidation of a substrate 
in living organisms. Transfected cells expressing luciferase can 
be injected into animals, or transgenic animals can be created 
that express luciferase as a reporter gene. When such animals 
are injected with a luciferase substrate, light is produced by 
the luciferase-expressing cells in the presence of oxygen. The 
bioluminescence image is often superimposed on a white-light 
image to show localization of the light-producing cells.

Optical projection tomography captures object projections in 
different directions as line integrals of the transmitted light89 (Fig. 
1e). From these projections (corresponding to the ‘shadow’ of the 
object), a volumetric model can be calculated by means of back-
projection algorithms.

Light sheet–based fluorescence microscopy uses a thin 
sheet of laser light for optical sectioning and a perpendicularly 
oriented objective with a CCD camera for detection of the 
fluorescent signal. Single- or selective plane illumination 
microscopy (SPIM)90 (Fig. 1f) adds sample rotation that 
enables acquisition of large samples from multiple angles. Low 
phototoxicity, high acquisition speed and ability to cover large 
samples make it particularly suitable for in toto time-lapse 
imaging of developing biological specimens, such as model 
organism embryos, with cellular resolution.

Transmission electron microscopy (TEM) (Fig. 1g) uses 
accelerated electrons instead of visible light for imaging. As a 
result, the achievable resolution (typically 2 nm) is much higher 
than in light microscopy. The method is not applicable to live cell 
imaging, and the specimen preparation is technically very complex. 
In electron tomography, the specimen is physically sectioned 
and 3D images are obtained by imaging each section at progressive 
angles of rotation, followed by computational reassembly to yield a 
tomogram. Resolution ranges from 20–30 nm to 5 nm or less.

Scanning electron microscopy (SEM) (Fig. 1h) produces an 
image of the 3D structure of the surface of the specimen by 
collecting the scattered electrons (rather than the transmitted 
electrons as in TEM). The resolution is typically lower than for TEM.
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rapidly becoming the standard in the neuroimaging community. It 

is supported by many of the popular image analysis suites and pro-

vides unambiguous information about image orientation, additional 

reflect this information (typically, a time-lapse experiment is stored 

as a stack of images, where the time information is encoded in the file 

names). Hence, researchers must often rely on their notes to determine 

what each image represents, which becomes 

an issue, particularly when the data are to be 

shared between collaborators. The most com-

mon practice is to duplicate images and share 

metadata in spreadsheets, although a suitable 

laboratory information management system 

(LIMS) informatics platform could be used 

for managing the metadata in a reliable and 

convenient way. An attempt to overcome 

these issues is the OMERO platform from 

the Open Microscopy Environment (OME), 

which provides a client-server system for 

managing images and their associated meta-

data through a common interface1–3.

Commercial microscopy and image analy-

sis software companies often engage in for-

mat ‘wars’, whereas open-source solutions 

struggle to bridge the gaps among the many 

proprietary formats. A movement toward 

universally adopted standards, with a degree 

of data integration like that which has been 

achieved for genome sequences (for example, 

GenBank) and microarray data (for example, 

MIAME), must become a common goal of 

industry and academia.

MRI is an inherently digital medium and 

similarly faces problems with file formats. 

Acquisition systems from different scanners 

often use proprietary file formats. Though 

clinical scanners support the DICOM stan-

dard managed by NEMA, the Association of 

Electrical and Medical Imaging Equipment 

Manufacturers, writing a validly formatted 

DICOM image file is neither practical nor 

required for many academic imaging projects. 

In addition, emerging imaging techniques are 

often not fully standardized within DICOM, 

and implementation of the standard varies 

by scanner vendor. As a result, investigators 

often rely on file formats that are both sim-

pler and better able to capture the parameters 

required for their particular domains. The 

Analyze 7.5 file format (Analyze Direct) has 

been widely used in many software packages, 

but its interpretation often differs among 

these. As a result, ambiguities arise regarding 

the orientation of the stored data, and great 

care must be taken to ensure that the right 

and left sides of the image volume are inter-

preted correctly. Furthermore, the Analyze 

format is not designed to store much of the 

metadata that is contained in DICOM or 

other proprietary formats.

The NIfTI file format4 (http://nifti.nimh.

nih.gov/nifti-1/) was recently developed 

to address many of these problems and is 

BOX 2 MAGNETIC RESONANCE IMAGING TECHNIQUES

Magnetic resonance imaging uses the intrinsic nuclear magnetization of materials to 
probe their general physical and chemical structure. A sample to be imaged is first 
placed in a strong static magnetic field. Gradients in the static field force the Larmor 
frequency (resonance frequency) of the sample’s atomic nuclei to be a function of their 
spatial position within the sample space. The sample is then excited by a carefully 
crafted radio frequency electromagnetic pulse that deflects the magnetic moments 
of the sample’s nuclei away from their steady-state orientation. The relaxation of 
the magnetic moments back to their steady state creates a radio frequency echo that 
is detected by an acquisition system. The composition of the material, the spatially 
dependent Larmor frequency and the magnetic pulse itself determine the characteristics 
of that echo. Variations in the power, orientation and duration of the radio frequency 
pulse allow different tissue properties to be probed while retaining some details of 
differentiation (different composition) and position. Paramagnetic T1 contrast agents, 
such as gadolinium, may be injected into the subject. The agent alters the relaxation 
characteristic of water, and the image appears hyperintense in areas of contrast agent 
concentration; applications include vascular imaging (Fig. 1m) and detection of active 
tumors or lesions. Some of the widely used acquisition methods are described below.

Clinical MRI devices typically use static field strengths in the range of 1.5–3T and have 
resolutions on the order of 1 mm. Small-animal scanners apply the same principles but 
use stronger field strengths (typically in the range 7–11T) and are capable of resolutions 
on the order of tens of microns.

T1 applies a short excitation time and a short relaxation time; fat appears bright, water 
appears dark. In brain images, white matter appears bright, gray matter slightly darker 
and cerebrospinal fluid very dark (Fig. 1o).

T2 typically uses a long excitation time and a long relaxation time; fluid (for example, 
cerebrospinal fluid) appears bright in these scans, and fat is less bright (Fig. 1j).

T2* (usually pronounced “T2-star”) is observed in long-excitation-time gradient echo 
images; contrast is sensitive to local magnetic field inhomogeneities produced, for 
example, by iron oxide T2 contrast agents and air-tissue interfaces.

Proton density information is obtained from scans with a short excitation time and a 
long relaxation time, or by extrapolating relaxation-weighted datasets back to zero time.

Fluid attenuation inversion recovery (FLAIR) pulse sequences suppress the fluid 
signal, which allows otherwise hidden fluid-covered lesions to be observed (Fig. 1k).

Magnetic resonance angiography uses the water proton signal to produce millimeter-
scale images of arteries and veins without the addition of contrast agents.

Magnetic resonance spectroscopy acquires localized spectra from a defined region 
within the sample, with spectral peaks indicating the presence of various metabolites or 
biomolecules such as lactate, creatine, phosphocreatine and glutamate (Fig. 1l).

Functional MRI (fMRI) measures the signal change that occurs when blood is 
deoxygenated; neuronal activity relates to increased oxygen demand, allowing 
maps of activation to be made by examining the blood oxygenation level–
dependent (BOLD) signal (Fig. 1o).

Diffusion MRI uses the reduction in the detected MR signal produced by diffusion of 
water molecules along the magnetic gradient. Areas with lower diffusion are affected 
less than areas with high diffusion, producing brighter signals (Fig. 1l). Performing 
multiple acquisitions with different gradients and field strengths allows models of the 
directionality of the local diffusion properties to be resolved in the form of diffusion 
tensors (DTI) or more complicated patterns (Q-Ball and DSI). The diffusion properties are 
governed by local physical structures in the material. (Fig. 1p).
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cells and annotations of subcompartments 

or tissues. Care must be taken in the inter-

pretation of visualized samples, analysis 

results and derived measurements, as each 

acquisition method has its own resolution 

limitation, and therefore not all biological 

structures might be imaged at sufficient 

resolution to show relevant detail. Last but 

not least, intuitive visualization using simu-

lated behavior of biological entities can aid 

understanding of scientific methods, mod-

els and hypotheses not only for scientists 

themselves but also for the general public. 

Visualization and analysis of many complex 

datasets are beyond the capabilities of exist-

ing software packages and rely on cutting-

edge research in computer graphics and 

computer vision fields.

In most biological experiments, visual-

ization means displaying the variations in 

several channels over the spatiotemporal 

dimensions. As standard computer moni-

tors can only display two spatial dimensions 

directly, some sort of data reduction must 

be applied to visualize multidimensional 

images. The simplest solution is to display 

only selected dimensions from the multidi-

mensional dataset at a time—for instance, 

one two-dimensional image—and allow 

the user to interactively change the remain-

ing dimensions. Because computer mem-

ory becomes limiting for large datasets, 

multidimensional image browsers must 

ensure that only data that are being viewed 

are loaded into memory. Proper memory 

management is particularly important for 

online browsing applications that must minimize the amount of 

image data transferred between the client and the server5.

3D visualization techniques
Multidimensional images can typically be observed as a collection 

of separate slice planes, but often dimensions are combined using 

various projection methods to form a single display object (Fig. 2). 

For two-dimensional display, one spatial dimension can be collapsed 

by an orthographic projection (for example, maximum intensity 

projection), creating a partially flattened image (Fig. 2a,b). The pro-

jection can also be applied along any other axis, such as time (creat-

ing a kymogram) or joint display of color-coded channels. A more 

advanced technique, the perspective projection, preserves the 3D 

appearance of the object in the two-dimensional projection image 

(Fig. 2c). In perspective projection, the geometry of the image is modi-

fied to have the x and y coordinates of objects in the image converge 

toward vanishing points, whereas in the so-called isometric projec-

tion, the original sizes of the objects are preserved. Perspective views 

look more realistic, but isometric views are useful if the image is to be 

used for distance measurements.

Projections can be combined with other techniques from computer 

graphics, such as wire frame models, shading, reflection and illumina-

tion, to create a realistic 3D rendering of the biological object. When 

codes that describe aspects of the image including its intent and a 

standardized method for adding extensions to the format. Although 

standardized formats address many interoperability issues, significant 

challenges remain in digitally describing the full experimental para-

digm used to collect the data. For example, functional MRI stimulus 

paradigms must typically be hand coded into an application-specific 

proprietary format for statistical analysis. Similar issues appear in the 

analysis of dynamic contrast enhanced images, diffusion images and 

other new scanning techniques.

Visualization of high-dimensional image data
As technology develops, images are carrying more and more infor-

mation in the form of additional dimensions. Typically, these 

dimensions correspond to space (3D imaging techniques; Fig. 

1c,e–f,i–p), time (for example, live cell imaging, functional MRI; 

Fig. 1o) and channels (for example, different fluorescent markers, 

multispectral imaging; Fig. 1b,c,f). Emerging microscopy tech-

niques, such as single plane illumination microscopy (SPIM; Fig. 

1f) or high-throughput, time-lapse live cell imaging, combine all 

these dimensional expansions and generate massive 3D, time-lapse, 

multichannel acquisitions. High-dimensional visualization is not 

limited to raw image data; it can also be useful for understand-

ing features derived from the image data, such as segmentations of 

a b c
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Figure 2 | Visualization of high–dimensional image data. (a) SPIM scan of autofluorescent adult Drosophila 
female gives an impression of 3D rendering in maximum intensity projection (image courtesy D.J. White); 
scale bar, 100 µm. (b) Maximum-intensity projection of tiled 3D multichannel acquisition of Drosophila 
larval nervous system; scale bar, 400 µm. (c) The corresponding 3D rendering in Fiji 3D viewer; borders 
of the tiles are highlighted; scale bar, 100 µm. (d) Visualization of gastrulation in Drosophila expressing 
His-YFP in all cells by time-lapse SPIM microscopy. The images show six reconstructed time points covering 
early Drosophila embryonic development rendered in Fiji 3D viewer. Fluorescent beads visible around sample 
were used as fiduciary markers for registration of multi-angle SPIM acquisition; scale bar, 100 µm. (e,f) 
Two consecutive slices from serial section transmission electron microscopy dataset of first-instar larval 
brain. Yellow marks, corresponding SIFT features that can be used for registration; yellow grid, position 
and orientation of one of the SIFT descriptors; inset, corresponding pixel intensities in the area covered by 
the descriptor; scale bar, 1 µm. (g) Multimodal acquisition of Drosophila first-instar larval brain by confocal 
(red, green) and electron microscopy (underlying gray). The two separate specimens were registered 
using manually extracted corresponding landmarks (not shown). Main anatomical landmarks of the brain 
correspond in the two modalities after registration (white labels). (Electron microscopy images courtesy A. 
Cardona; confocal image courtesy V. Hartenstein). Scale bar, 20 µm.
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only the outer shape of the 3D object needs to 

be realistically visualized, surface rendering 

of the manually or automatically extracted 

outlines of organelles, cells or tissue can 

help in assessing their topological arrange-

ment within the 3D volume of the imaged 

specimen. In contrast, when the interior of 

3D objects is of interest, ‘volume rendering’ 

coupled with transparency manipulations or 

orthogonal sectioning is required.

In direct volume rendering, viewing rays 

are projected through the data6. Data points 

in the volume are sampled along these rays, 

and their visual representation is accumu-

lated using a transfer function that maps the 

data values to opacity and color values (Fig. 

3a). The transfer functions can be adjusted 

to emphasize different structures or fea-

tures and may introduce color or opacity 

changes as a function of the local intensity 

gradient. Similarly, the intensity gradient 

vector can be used to emulate the effect of 

external light sources interacting with tis-

sue boundaries. Although direct volume 

rendering can be computationally expen-

sive, the advent of high-powered graphical 

processing units has allowed many software 

tools (for example, OsiriX, ImageVis3D in 

SCIRun, 3D Slicer7,8, VTK (Tables 1 and 2)) 

to provide these capabilities interactively on 

personal computers.

Direct volume rendering has the advantage 

of requiring little preprocessing to produce 

high-quality renderings of multidimensional 

data and is best suited for data in which the 

structures of interest are readily differenti-

ated by the pixel intensity. When this is not 

the case, further analytical techniques are 

required to clearly visualize these structures. 

It is also possible to view all three spatial 

dimensions at once. In stereoscopic views, 

an image is presented to the right eye and the 

same image rotated by a small angle is pre-

sented to the left eye. This can be achieved by 

presenting the two images in the two halves 

of the monitor or by superimposing the two 

images with a small relative shift. The final 

frontier in this area is volume visualization of 

biological image data that combines various 

visualization approaches and couples them 

to virtual reality environments to allow not 

only seamless navigation through the data 

but also intuitive interaction with the visual-

ized biological entities.

Treatment of the time dimension
The changes along the time axis in dynami-

cally changing biological specimens are best 

visualized by assembling a static gallery of 

Figure 3 | Visualization of anatomical features in MRI. (a) Volume rendering of a difference image 
computed from a pre- and post-gadolinium contrast scan. Brighter areas indicate a concentration of 

gadolinium, emphasizing the vasculature. (b) Time-lapse imaging of a subpopulation with Alzheimer’s 
disease showing loss of cortical gray matter density at 0, 6, 12 and 18 months80. Blue, no significant 
difference in cortical thickness from elderly control subjects; red and white, significant differences in 
cortical thickness (image courtesy P. Thompson). (c) Cardiac MRI analysis using anatomical scans and DTI 
of an ex vivo rat heart81. Color encoding of the DTI indicates the direction of the primary eigenvector:  
x direction, green; y, red; z, blue. (d) Visualization of a human brain DTI field during a fluid deformation 
process for image registration82. Orientation and shape of each ellipsoid indicate the pattern of diffusion 
at that location. Color encoding: low diffusion, green, to high diffusion, red. (e) Interactive visualization 
of high angular resolution diffusion imaging (HARDI) data using spherical harmonics27. Each shape 
represents the orientation distribution function measured at that point, which indicates the probability 
of diffusion in each angular direction. Colors indicate direction of maximum probability: red, lateral; blue, 
inferior–superior; green, anterior–posterior. Visible in this frame are portions of corpus callosum (central 
red area) and corticospinal tracts (blue vertical areas near edges). (f) White matter tracts computed from 
diffusion spectral imaging (DSI) data using Diffusion Toolkit (http://www.trackvis.org/dtk/). The tracts 
were then clustered automatically into bundles based on shape similarity measures and finally rendered 
using BrainSuite27. Each color indicates a different bundle. (g) 3D orthogonal views of an MRI volume, 
displayed with an automatically extracted surface mesh model of the surface of the cerebral cortex 
(BrainSuite27). (h) 3D surface reconstructions (Amira) from micro-MRI data: left hindlimb of a mouse with 
peroneal muscular atrophy. (i) Surgical planning visualization for assessment of white matter integrity: 
tumor model (green mass), ventricles (blue), local diffusion for one slice plane (ellipsoid scale and 
orientation indicating local diffusion tensor: red, low anisotropy; blue, high) and white matter fiber tracts 
shaded red to blue with increasing local anisotropy (thin lines, peri-tumoral; thick lines, corticospinal 
tracts). 3D Slicer: http://wiki.na-mic.org/Wiki/index.php/IGT:ToolKit/Neurosurgical-Planning.
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higher-spatial-resolution structural MRIs to provide anatomical con-

text for the functional activation information (Fig. 1o).

Analysis and visualization of temporal information also depend 

on the time scale of the studies. Typical studies in molecular biology 

cover relatively short time intervals, ranging from several minutes 

to several hours and sometimes to several days. Often these studies 

require reliable tracking algorithms12,13 that enable researchers to fol-

low the same object (for example, single molecules or cells) over time 

and to extract and visualize trajectories and other measurements (for 

example, color-coded speed of cells in a developing embryo14). In 

other cases, imaging is only a means to derive various parameters, 

whose kinetics are then visualized. For instance, variations in fluo-

rescence intensity over time can be used to measure diffusion coef-

ficients or concentrations. Another example is high temporal reso-

lution MRI (‘cine-MRI’) of the heart, where epi- and endocardial 

borders can be traced in the images to obtain global cardiac func-

tional parameters such as ventricular volumes or wall thickening. 

Alternatively, displacement or velocities of the ventricular wall can 

images from different time points (for printed media, see Fig. 2d) 

or presenting a movie (for the web). The biological processes are 

often too slow to be shown in real time, and time-lapse techniques, 

where the frames are replayed faster, may reveal surprising details. 

Nevertheless, movies are significant simplifications of the acquired 

multidimensional data (for example, they do not allow rigorous time 

point comparisons and typically discard too much of the captured 

data) and researchers should always have the possibility of brows-

ing through the raw data along arbitrary dimensions. Movies of 3D 

volume renderings of biological data tend to be particularly impres-

sive but require substantial computational power. Alternatively, sig-

nal changes over time can be visualized as heat maps overlaid on the 

other dimensions of the image9, on normalized reference templates or 

on surface models of cellular or anatomical structures. For example, 

functional MRI acquires many images in the span of several minutes 

during the application of some study paradigm. These are then pro-

cessed using statistical methods to produce maps of activation, using 

tools such as SPM10 or FSL11. These maps may then be aligned to 

Table 1 | A selective list of image visualization tools

Name Cost OS Description URL

Stand-alone

Amira* $ Win, Mac, Linux Multichannel 4D images, image processing, extensible (in C++), scripting  
(in Tcl)

http://www.amiravis.com/

Arivis $ Win Multichannel 4D images, image acquisition, processing, collaborative 
annotation and browsing, extensible (MATLAB and Python)

http://www.arivis.com/

Axiovision $ Win Multichannel 4D images, image acquisition, image processing http://tiny.cc/cZUbB

BioImageXD Free Win, Mac, Linux 3D image analysis and visualization, in Python using VTK library http://www.bioimagexd.net/

Blender Free Win, Mac, Linux 3D content creation suite, the open source Maya http://www.blender.org/

Fiji* Free Win, Mac, Linux ImageJ distribution focused on registration and analysis of confocal 
and electron microscopy data. Six scripting languages, extensive wiki 
documentation, video tutorials

http://pacific.mpi-cbg.de/

Imaris* $ Win, Mac Multichannel 4D images, image processing http://www.bitplane.com/

IMOD Free Win, Mac, Linux Monochannel 4D images, extensible (in C/C++) http://tiny.cc/kfLgQ

Huygens $ Win, Mac, Linux Multichannel 4D images, image processing, scripting (in Tcl), web interface 
for batch processing

http://www.svi.nl/

Image-Pro $ Win Multichannel 4D images, image acquisition, image processing http://www.mediacy.com/

ImageJ* Free Win, Mac, Linux Image processing, extensible (in Java) http://rsbweb.nih.gov/ij/

LSM image 
browser

Free Win Multichannel 4D images http://tiny.cc/WMHsE

MetaMorph $ Win Multichannel 4D images, image acquisition, image processing, extensible  
(in Visual Basic), scripting (with macros)

http://tiny.cc/YrCK3

POV Ray Free Win, Mac, Linux High-quality tool for creating impressive 3D graphics http://www.povray.org/

Priism/IVE Free Mac, Linux Multichannel 4D images, image processing, extensible (in C and Fortran) http://tiny.cc/SIAMF

V3D, VANO and 
Cell Explorer

Free Win, Mac, Linux 3D Image visualization, analysis and annotation http://tiny.cc/JWdFb

VisBio Free Win, Mac, Linux Multichannel 3D images, image processing (with ImageJ), connection to an 
OMERO server

http://tiny.cc/TOZad/

Volocity $ Win, Mac Multichannel 4D images, image acquisition, image processing http://www.improvision.com/

VOXX Free Win, Mac, Linux Real-time rendering of large multichannel 3D and 4D microscopy datasets http://tiny.cc/b0KRt

VTK* Free Win, Mac, Linux Library of C++ code for 3D computer graphics, image processing and 
visualization

http://www.vtk.org/

Web-based

Brain Maps Free Win, Mac, Linux Interactive multiresolution next-generation brain atlas http://brainmaps.org/

CATMAID Free Win, Mac, Linux Collaborative Annotation Toolkit for Massive Amounts of Image Data: 
distributed architecture, modeled after Google Maps

http://fly.mpi-cbg.de/~saalfeld/catmaid/

*Recommended and popular tools. Free means the tool is free for academic use; $ means there is a cost. OS, operating system: Win, Microsoft Windows; Mac, Macintosh OS X. Tools running on Linux usually also 
run on other versions of Unix. 4D, four-dimensional.
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acquisitions and compare multiple subjects, the data must be regis-

tered spatially (see Registration below) for the time series to be ana-

lyzed. These dynamic effects are often analyzed using many subjects; 

this adds the requirement that all subject data be spatially resampled 

to bring them into anatomical correspondence. The FreeSurfer pack-

age, for instance, accomplishes this using a cortical surface match-

ing technique that aligns brains on the basis of their cortical fold-

ing patterns and is widely used for detecting these brain changes, 

be measured temporally to quantify transmural wall motion and to 

assess cardiac function regionally.

In the medical sciences, there is interest in long-term studies—

often measuring effects over time periods of several months or years. 

For example, in neurology, the ability to accurately measure the local 

thickness of the cerebral cortex provides an important measure of 

pathological changes associated with Alzheimer’s disease and other 

types of cognitive decline. Since these studies rely upon separate 

Table 2 | A selective list of MRI visualization tools

Name Cost OS Description URL

3D Slicer* Free Win, Mac, Linux Tools for visualization, registration, segmentation and quantification of medical data; 
extensible; uses VTK and ITK

http://www.slicer.org/

Amira $ Win, Mac, Linux Allows 2D slices to be viewed from any angle; provides image segmentation, 3D mesh 
generation; surface rendering; data overlay and quantitative measurements

http://www.amiravis.com/

Analyze $ Win, Mac, Linux Many processing and visualization features for many types of medical imaging data http://tiny.cc/gXO76

Anatomist Free Win, Mac, Linux Visualization software that works in concert with BrainVisa; can map data onto 3D 
renderings of the brain; provides manual drawing tools

http://brainvisa.info/

AVS $ Win, Mac, Linux General purpose data visualization package http://www.avs.com/

BioImage 
Suite*

Free Win, Mac, Linux Tools for biomedical image analysis; includes preprocessing, voxel-based 
classification; image registration; diffusion image analysis; cardiac image analysis; 
fMRI activation detection

http://bioimagesuite.org/

BrainSuite Free Win, Mac, Linux Automated cortical surface extraction from MRI; orthogonal image viewer; automated and 
interactive segmentation and labeling; surface visualization

http://tiny.cc/Qxv6x

BrainVisa Free Win, Mac, Linux Toolbox for segmentation of T1-weighted images; performs classification and mesh 
generation on brain images; automated sulcal labeling

http://brainvisa.info/

BrainVoyager $ Win, Mac, Linux Analysis and visualization of MRI and fMRI data and for EEG and MEG distributed 
source imaging

http://tiny.cc/kFKhv

Cardiac Image 
Modeller

$ Irix Visualization and functional analysis, in 3D space and through time of cardiac cine data http://tiny.cc/4KY6E

DTIStudio Free Win Tools for tensor calculation, color mapping, fiber tracking and 3D visualization http://tiny.cc/pvU9B

FreeSurfer Free Mac, Linux Automated tools for reconstruction of the brain’s cortical surface from structural MRI data 
and overlay of functional MRI data onto the reconstructed surface

http://tiny.cc/H3uG5

FSL* Free Win, Mac, Linux Comprehensive library of analysis tools for fMRI, MRI and DTI brain imaging data; includes 
widely used registration and segmentation tools

http://tiny.cc/NFPHO

ImageJ Free Win, Mac, Linux Image processing, extensible (in Java), large user community http://rsb.info.nih.gov/ij/

ImagePro $ Win 2D and 3D image processing and enhancement software http://www.mediacy.com/

ITK Free Win, Mac, Linux Extensive suite of software tools for image analysis http://www.itk.org/

Jim $ Win, Mac, Linux Calculates T1 and T2 relaxation times, magnetization transfer, diffusion maps from MRI data http://www.xinapse.com/

MBAT Free Win, Mac, Linux Workflow environment bringing together online resources, a user’s image data and 
biological atlases in a unified workspace; extensible via plug-ins

http://tiny.cc/W2Tx2

MedINRIA Free Win, Mac, Linux Many algorithms dedicated to medical image processing and visualization; provides many 
modules, including DTI and HARDI viewing and analysis

http://tiny.cc/RCptw

MIPAV Free Win, Mac, Linux Quantitative analysis and visualization of medical images of numerous modalities such as 
PET, MRI, CT or microscopy

http://mipav.cit.nih.gov/

OpenDX Free/$ Win, Mac, Linux General-purpose data visualization package http://www.opendx.org/

OsiriX* Free Mac Image processing and viewing tool for DICOM images, provides 2D viewers, 3D planar 
reconstruction, surface and volume rendering, export to QuickTime

http://tiny.cc/kOTzy

SCIRun Free Win, Mac, Linux Environment for modeling, simulation and visualization of scientific problems; includes 
many biomedical analysis components, such as BioTensor, BioFEM and BioImage

http://tiny.cc/eLufx

SPM Free Win, Mac, Linux Analysis of brain imaging data sequences; applies statistical parametric mapping methods 
to sequences of images; widely used in fMRI; provides segmentation and registration

http://tiny.cc/dVc7v

TrackVis Free Win, Mac, Linux Tools to visualize and analyze fiber track data from diffusion MRI (DTI, DSI, HARDI, 
Q-Ball) tractography

http://trackvis.org/

TractoR Free Linux Tools to segment comparable tracts in group studies using FSL tractography http://tiny.cc/OsBH9

VTK* Free Win, Mac, Linux Library of C++ code that implements many state-of-the-art visualization techniques 
with a consistent developer interface

http://www.vtk.org/

*Recommended and popular tools. Free means the tool is free for academic use; $ means there is a cost; free/$ means free for Windows and Linux, at a cost for Mac OS X. OS, operating system: Win, Microsoft 
Windows; Mac, Macintosh OS X. Tools running on Linux usually also run on other versions of Unix. Irix is SGI’s Unix operating system. 2D, two-dimensional; CT, computed tomography; PET, positron emission 
tomography; HARDI, high angular resolution diffusion imaging.
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of this is white matter tractography in the brain. Identification and 

visualization of white matter tracts (see, for example, Fig. 3f) in diffu-

sion imaging are provided by several of the software packages listed in 

Table 2 (for example, DTIStudio, TrakVis, ITK, 3D Slicer, MedINRIA, 

TractoR and FSL).

Although in microscopy some tools have been developed aimed at 

visualizing directional data such as diffusion properties and mapping 

them onto two- or 3D datasets (for example, spatio-temporal image 

correlation spectroscopy (STICS)23), the microscopy application field 

seems to be less advanced than in MRI. It will therefore be interest-

ing to see whether the tools developed for visualization of diffusion-

weighted MRI data will be adopted for microscopy applications.

Segmentation
Whether analyzing scalar images, vector volumes or more complicated 

data types, a frequent task in processing and visualizing 3D data is the 

segmentation of cellular or anatomical structures to define the bound-

aries of target structures. Once the boundaries of a structure have 

been defined, a surface mesh model can then be generated to repre-

sent that structure. These models are often generated using isosurface 

approaches such as the marching cubes algorithm24. The meshes may 

then be rendered rapidly using accelerated 3D graphics hardware that 

is optimized for drawing triangles. The VTK software library provides 

a widely used implementation of these techniques and is incorporated 

in, for example, OsiriX, BioImage Suite and 3D Slicer. Surface mesh 

techniques can visualize anatomy, produce 3D digital reconstructions 

and make volumetric measurements (Fig. 3g,h). Extra related data, 

such as statistical maps of tissue changes, can also be represented on 

these surfaces for display purposes (Fig. 3b).

In many biomedical imaging applications, structures to be seg-

mented are identified in the data either through manual delineation 

or through automated and semiautomated computational approach-

es. Image analysis tools, such as 3D Slicer25, MIPAV26, BrainSuite27, 

MedINRIA and Amira (Visage Imaging), can be used to display and 

manually delineate 3D volumetric data, which are then turned into 

3D surface models. Although manual delineation is often the gold 

standard for identifying structure, many computational approaches 

have been developed. Extensible tool suites such as ITK, SCIRun, 

MIPAV and ImageJ provide collections of automated approaches to 

the general problem of segmentation for two- and 3D images, as well 

as tools designed to extract specific anatomical structures. Several 

tools have been developed for the task of extracting, analyzing and 

visualizing models of the brain from MRI (for example, FreeSurfer28, 

BrainSuite27, BrainVoyager29, MedINRIA and BrainVisa30), as have 

tools specific to cardiac image processing and analysis (for example, 

Cardiac Image Modeller). Many of these display tools provide facili-

ties for image, volume or surface registration, allowing 3D surface-

rendered data acquired during different experiments to be overlaid 

and displayed. These capabilities allow 3D anatomy to be digitally 

reconstructed and enable comparison of various samples. Combining 

organ- and tissue-specific analysis techniques with calibrated MRI 

acquisition sequences can support accurate in vivo measurement of 

anatomical structures.

Registration
The dimensional expansion of biological image data goes beyond 

individual datasets. Gene activity, to take one exemplar of the proper-

ties of biological systems, may be imaged and visualized one gene at 

a time but systematically for many genes in different specimens31–36. 

for populations and for single subjects over time15–17. Once such a 

spatial normalization has been performed, statistical maps may be 

computed to examine changes in various biomarkers, such as cortical 

thickness, and these measures may then be mapped onto images or 

surface models for visualization in the form of renderings or time-

lapse animations (Fig. 3b).

Extra dimensions
Image data can have more dimensions than space and time in two 

ways. Either extra channels can be recorded or each voxel can be 

associated with a dataset encoding various properties. Although dif-

ferent channels could be browsed as extra dimensions, they are usu-

ally color coded and jointly displayed. For more than three channels, 

however, the combinations of channel values do not result in unique 

colors. Dimensionality reduction techniques can be applied to map 

meaningful channel combinations to unique colors. This, however, 

only partially alleviates the problem as the number of combinations 

to display could easily exceed the number of available colors. Color 

coding becomes useless when tens or hundreds of channels must 

be visualized simultaneously (for example, in multi-epitope-ligand 

cartography18). To solve this problem, some authors have even con-

sidered converting data to sound (‘data sonification’ (T. Hermann, 

T. Nattkemper, H. Ritter and W. Schubert. Proc. Mathematical and 

Engineering Techniques in Medical and Biological Sciences, 745–750, 

2000) to take advantage of people’s ability to distinguish subtle varia-

tions in sound patterns, which shows that in this challenging field, 

there is still room for new, sophisticated visualization tools.

The advent of diffusion MRI has increased the number of dimen-

sions of MRI images. In their most basic form, these images present a 

scalar value at each voxel indicating a measure of the local water mol-

ecules diffusion properties of the imaged sample along a particular 

direction19. These water diffusion properties indicate the local struc-

ture along that direction in the image and can be used to examine, for 

example, the architecture of white matter in the brain. When multiple 

images are acquired using different gradient directions, a more com-

plete spatial approximation of the diffusion can be formed. In the 

case of diffusion tensor imaging (DTI), a rank-2 diffusion tensor is 

estimated at each voxel20. These images may be visualized by using 

color to represent the principal direction of diffusion (Figs. 1p and 

3c). They may also be visualized as fields of glyphs representing the 

two-dimensional tensor as an ellipsoid or other shapes that indicate 

the pattern of water diffusion and thus provide an indication of the 

structure in the image (Fig. 3d). As the number of angular samples 

increases (for example, in Q-Ball imaging21), to resolve multiple white 

matter fiber populations in each voxel, the orientation distribution 

function, which describes the probability of diffusion in a given angu-

lar direction, becomes more complicated and can be represented using 

higher-order functions, such as spherical harmonic series (Fig. 3e). 

For both DTI and Q-ball, the data is represented as two-dimensional 

surfaces at each point in a 3D volume. Diffusion spectral imaging 

(DSI)22 further increases the dimensionality with multiple acquisi-

tions at different magnetic gradient strengths yielding a 3D dataset at 

each voxel in the 3D volume.

The challenge of processing and visualizing these data is to convert 

the raw data into the tensor or glyph representations and display them 

in a meaningful way to the user. This may include additional process-

ing to reduce the data dimensionality into scalar measures (for exam-

ple, fractional anisotropy) or to extract features from the tensor, Q-ball 

or DSI data that indicate structure in the sample. A prime example 
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to it, but this approach introduces reference-specific bias to the data. 

The computationally most elegant solution is to register all datasets to 

one another simultaneously in an empty output image space, but such 

an approach is also the most computationally expensive. Therefore, 

the most commonly used technique is atlas registration, whereby indi-

vidual acquisitions are registered to an idealized expert-defined atlas 

based on prior knowledge of the imaged system.

Furthermore, different imaging techniques offering different resolu-

tions may be used to visualize different aspects of gene activity. The 

gene identity becomes yet another dimension in the data, and to quan-

titatively compare across this dimension the datasets must be prop-

erly registered. Many tools have been developed for image registra-

tion36–39. In its simplest form, registration is achieved by designating 

one acquisition as the reference and registering all other acquisitions 

Figure 4 | Visualization of high–throughput data. (a) By analogy with the ‘eisengram’ for microarray data, the discrete spatial gene expression (left) 
annotation data can be summarized by a so-called ‘anatogram’ (right), wherein anatomical structures are color coded, grouped temporally (vertical black 
lines) and ordered consistently within the temporal groups. Over- or under-representation of anatomical term in a group of genes is expressed by height of 
the color-coded bar; width of the bar is proportional to the frequency of the anatomical term in the annotation dataset. (b) Typical visualizing and browsing 
of high-throughput data at experiment level: color-coded cell density on a 384-well plate with link to raw data. (c) Typical visualizing and browsing of high-
throughput data at the level of exploratory analysis: density plots of nuclear features (area and intensity), linked to the single segmented nuclei. (d) Joint 
visualization of 2,600 time-lapse experiments with one-dimensional readout (here proliferation curves): values are color-coded; each row corresponds to one 
experiment. (e) Time-resolved heat map for multidimensional read-out (here percentages of nuclei in the different morphological classes shown at the top): 
values are color-coded; each row corresponds to one RNAi experiment. Rows are arranged according to trajectory clustering64. (f) Event order map visualizing 
the relative order of phenotypic events in cell populations: events are color-coded and centered around one phenotype (here dynamic). (g) Visualizing 
high-throughput subcellular localization data (iCluster): images of ten subcellular localizations (indicated by outline color) spatially arranged by statistical 
similarity to identify outliers and representative images. (h) Visualization of spatially mapped simulation results (The Visible Cell): simulation of insulin 
secretion within a beta cell based on electron microscope tomography data (resolution, 15 nm). Blue granules are primed for insulin release, white are docked 
into the membrane (releasing insulin) and red are returning to the cytoplasm after having been docked.
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Multimodal image registration is also an important issue for MRI 

data. Multiple scanning technologies are often applied to the same 

subject to provide an integrated assessment. For example, the inte-

gration of structural, functional and diffusion MRI has been pro-

ductively applied to the analysis of and treatment planning for deep 

brain tumors, in which functional MRI is used to indicate the ‘elo-

quent cortex’ (involved in tasks to be preserved during surgery) while 

diffusion imaging indicates the white matter fiber bundles and how 

they are invaded and/or displaced by the tumor43. Interactive visu-

alization techniques allow clinicians to superimpose the 3D render-

ings of the various image modalities to better understand the clinical 

situation and evaluate treatment options (Fig. 3i). Creating an inte-

grated visualization is complicated by patient motion between scans 

and by inherent geometric distortion associated with different scan 

techniques—for example, eddy current–induced distortions in dif-

fusion MRI. Automated registration and distortion correction tech-

niques can be used to compensate for these effects when creating the 

integrated view.

Multimodal MRI visualization can be also used together with 

real-time data to guide therapeutic procedures such as neurosurgery. 

Current neurosurgical practice is often augmented with so-called 

‘navigation’ systems consisting of surgical tools whose position and 

orientation are digitally tracked. This information is used to provide 

a reference between the preoperative image data and the live patient 

with submillimeter accuracy. In this context, it is possible to support 

the procedure with visualizations of MRI data collected preoperatively. 

For many interventions, nonlinear deformation of the image data are 

required owing to significant changes between pre- and intraoperative  

Registration algorithms can take advantage of the actual pixel 

intensities in the 3D datasets and iteratively minimize some cost 

function that reflects the overall image content similarity. Given 

the size of typical 3D image data, such intensity-based approaches 

are often slow or unfeasible. Therefore, the image content is typi-

cally reduced to some relatively small set of salient features (Fig. 2e,f) 

and correspondence analysis is used to match the features in dif-

ferent 3D acquisitions and iteratively minimize their displacement. 

The features may be extracted from the images fully automatically, 

as in the popular ‘scale invariant feature transform’ (SIFT40), or an 

expert can define them manually. The manual definition of the  

corresponding landmarks is at present the only option when register-

ing multimodal data of vastly different scales, such as from confocal 

and electron microscopy (Fig. 2g). When technically possible, it is ben-

eficial to uncouple the registration problem from the image intensities 

by using fiduciary markers such as fluorescent beads41 or gold par-

ticles. Regardless of the image content representation, the algorithms 

used for registration use some form of iterative optimization of an 

appropriately chosen cost function.

An interesting idea for multimodal image registration is to establish 

a reference output space where the different modalities are registered 

to each other once, and subsequently new instances of one modality 

are mapped onto the already registered example. This process can also 

be iterative, increasing the registration precision with each new incom-

ing dataset. The visualization of registered multimodal image data of 

different scales presents a new set of challenges (Fig. 2g). Proper down-

sampling techniques based on Gaussian convolution must be used 

when changing the scale dimension of the multiresolution data42.

Table 3 | A selective list of high-throughput visualization tools

Name Cost OS Description URL

BD Pathway $ Win Automated image acquisition, analysis, data mining and visualization http://tiny.cc/093OJ

Cellenger $ Win Automated image analysis http://tiny.cc/rARky

CellHTS Bioconductor (R) Free Win, Mac, Linux Analysis of cell-based screens, visualization of screening data, statistical 
analysis, links to bioinformatics resources

http://www.bioconductor.org/

CellProfiler CP-Analyst* Free Win, Mac, Linux Automated image analysis, classification, interactive data browsing, data 
mining and visualization; extensible, supports distributed processing

http://www.cellprofiler.org/

CompuCyte $ Win Automated image acquisition, analysis, data mining and visualization http://tiny.cc/jHsAm

GE IN Cell Investigator, Miner $ Win Automated image acquisition, analysis, data mining and visualization http://tiny.cc/9rFoh

Genedata Screener* $ Win, Mac, Linux Data analysis and visualization http://tiny.cc/HBfpY

Evotec Columbus, Acapella $ Win, Linux Automated image analysis, distributed processing, data management 
(OME compatible), data mining and visualization

http://tiny.cc/yvyek

HCDC Free Win, Mac, Linux Workflow management, data mining, statistical analysis, visualization, 
based on KNIME (http://www.knime.org/)

http://hcdc.ethz.ch/

iCluster Free Win, Mac, Linux Spatial layout of imaging by statistical similarity, statistical testing  
for difference

http://icluster.imb.uq.edu.au/

MetaMorph MetaXpress, 
AcuityXpress*

$ Win, Mac, Linux Automated image acquisition, analysis, data mining and visualization http://tiny.cc/OU9sf

Olympus Scan^R $ Win Image acquisition, automated image analysis, extensible (with LabView) http://tiny.cc/NtEhH

Pathfinder Morphoscan $ Win Automated image analysis, cell and nuclear analysis, karyotyping, histo- 
and cytopathology, high-content screening

http://www.imstar.fr/

Pipeline Pilot $ Win, Linux Workflow management, image processing, data mining and visualization http://tiny.cc/uY4ZO

Spotfire* $ Win, Mac, Linux Data analysis and visualization http://tiny.cc/rtVeL

Thermo Scientific Cellomics $ Win Automated image analysis, analysis, data mining and visualization http://tiny.cc/Bt7Ov

TMALab $ Win Automated image acquisition, storage, analysis, scoring, remote sharing 
and annotation; mainly for clinical pathology

*Recommended and popular tools. Free means the tool is free for academic use; $ means there is a cost. OS, operating system: Win, Microsoft Windows; Mac, Macintosh OS X. Tools running on Linux usually 
also run on other versions of Unix.
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development—eased by the use of custom-built annotation 

tools34,52,53. Several visualization aids have been developed to suc-

cinctly summarize the complex, multidimensional annotations and 

organize them using clustering methods borrowed from the microar-

ray data analysis field. The main challenge of representing qualitative 

rather than quantitative annotation data was addressed by introduc-

ing discrete color coding for the controlled vocabulary terms collapsed 

to the most informative level in the annotation ontology. In that way, 

the analog microarray ‘eisengram’ evolved into the digital ‘anatogram’ 

capable of visually summarizing the gene expression properties of 

arbitrary groups of genes (Fig. 4a). Once large, expert-annotated 

image sets became available, computational approaches were success-

fully used to automate the annotation process (for example, automatic 

annotation of subcellular protein localization54 and gene expression 

patterns55,56). In most cases, large image datasets are automatically 

processed to extract a wide range of attributes from the images.

To navigate efficiently through this sea of data, users need visual-

ization software that can display informative summaries at different 

levels: in the acquisition and quality-control phase, multiwell plate 

and similar visualizations (Fig. 4b) that show image-based data values 

with a raw data link or thumbnails of images that can be enlarged 

for careful examination are very helpful. Tools are also needed to 

show relevant image-based data to biologists in an intuitive manner 

and enable them to identify meaningful characteristics and explore 

potential correlations and relationships between data and to point 

them toward the most interesting samples in their experiment. For 

this exploratory data analysis, data-enhanced scatter and density 

plots (Fig. 4c) and histograms of image-derived data can be used, in 

which the user can select subsets of data, view examples of the raw 

images producing those data points and filter data points for further 

analysis. Browsing these graphical representations linked to the raw 

data allows biologists to identify interesting subsets (for example, the 

morphological classes present in a cell-based screen or training sets for 

subsequent supervised machine learning) in an interactive and intui-

tive manner. Linking to the original data are particularly important: 

first, because users must frequently locate relevant images to manually 

confirm the automated, quantitative results and, second, because there 

is often no obvious a priori link between quantitative image descrip-

tors and biological meaning. Further analysis of these attributes and 

eventually identified subsets leads to image annotations (for example, 

phenotypes) and/or classifications (for example, as a ‘hit’), often by 

means of supervised learning methods.

When putting the experiment into the context of existing biological 

knowledge, researchers are concerned about how images and their 

derived data relate to known biological entities. For example, one may 

want to browse all images related to a given gene, gene ontology term 

or chemical treatment. This requires integration with other sources 

of information, usually external databases. The visualization methods 

suited for this are also commonly used in systems biology: heat maps 

and projections in two-dimensional maps57.

However, many of these goals remain unaddressed by existing 

software tools. Gracefully and intuitively presenting rich image data 

representing possibly hundreds of attributes extracted from bil-

lions of cells is a demanding task for a visual analysis tool. Still, some 

recent developments have begun to ease aspects of these visualization 

challenges for high-throughput experiments. Several software tools 

offered by screening-oriented microscope companies enable certain 

data visualizations (Table 3), as does third-party software such as 

Cellenger and the open-source CellProfiler project58,59 (Table 3). 

patient anatomy. The VectorVision (BrainLabAG) System is an 

example of a state-of-the-art MRI surgical navigation system, while 

BioImage Suite, 3D Slicer and other open source software tools are 

available for researchers looking to provide enhanced functionality.

Implementation issues
The main commercial software tools providing methods for viewing 

primary image data in cell biology are MetaMorph, Imaris, Volocity, 

Amira and LSM Image Browser. There is also a wide range of open 

source tools, such as various plug-ins to the image analysis suite 

ImageJ and Fiji, its distribution specialized in 3D registration and 

visualization; BioImageXD, based on the state-of-the-art VTK library; 

and the V3D toolkit, emerging from systematic 3D imaging efforts in 

neurobiology at Janelia Farm in Ashburn, Virginia, USA (see Table 1). 

Because visualization strategies are very diverse, no single software fits 

all needs, and the availability of either the program’s source code or a 

functional application programming interface (API) is a must for the 

programming required to realize complex visualizations.

Most of these software tools require that the image volumes of inter-

est be read into the computer memory before they can provide effi-

cient visualization and reasonable interactive response. Recent com-

mercial and open-source tools have started to use graphics hardware 

to accelerate 3D visualization. Wider adoption of these approaches 

is prevented by the small spectrum of graphical processing units 

(GPUs) accessible for parallel programming using standard program-

ming languages and the relatively small size of GPU memory. Image 

datasets produced nowadays are often so large that it is impossible to 

load them even into the CPU memory except on systems configured 

expressly (and expensively) for the purpose. Open-source software 

suites such as ImageJ and Fiji provide practical solutions for managing 

memory and displaying massive datasets without unrealistic hard-

ware requirements. But although these tools are very user friendly and 

popular, they lack generic multidimensional data structures like those 

developed by the ITK/VTK project that enable programmatic abstrac-

tion of the access to arbitrary dimensions in the image data residing 

on the hard drive. Approaches that rely on random data access from 

the hard drive at multiple predefined resolutions are now available 

for very large-scale two-dimensional images in a client-server mode 

and can be accessed over the Internet, which greatly enhances their 

visibility and the possibilities for collaborative annotation. Examples 

include Google Maps, Zoomify and CATMAID. Browser-based visu-

alization of 3D image data are so far limited to slice-by-slice browsing 

of the z dimensions (CATMAID, BrainMaps). Web viewers for 3D 

data enabling section browsing at arbitrary angles and scales are just 

now emerging44,45.

Visualization of high-throughput microscopy data
In recent years, systems for performing high-throughput microscopy-

based experiments have become available and are often used to test the 

effects of chemical or genetic perturbations on cells46,47, to determine 

the subcellular localization of proteins48,49 or to study gene expression 

patterns in development50. These screens produce huge amounts of 

image data (sometimes tens of terabytes and millions of images) that 

must be managed, quality controlled, browsed, annotated and inter-

preted. As a consequence, tools for visualization and analysis are key 

at virtually all levels of such projects (see Fig. 4).

Some large-scale experiments involving particularly complex read-

outs have been annotated manually using controlled vocabularies51, 

in some cases—as for high-content analysis of gene expression during  
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Dissemination of image datasets
High-throughput microscopy techniques have led to an exponential 

increase in visual biological data. Although every high-throughput 

imaging project strives to perform a comprehensive analysis of its 

image data, the sheer volume of the images and the inadequacy of 

the computational tools make such efforts incomplete. It is likely that 

distributed, research community–driven and competitive analysis of 

these datasets will lead to new discoveries, as it has for publicly released 

genome sequences. Although standalone applications are catching up 

with the immediate needs of primary data visualization, solutions for 

distributing image data to the community or in collaborative environ-

ments are lagging behind. Traditional paper publication or publica-

tion as online supplementary materials is clearly inadequate, and the 

Journal of Cell Biology and Journal of the Optical Society of America 

have attempted to address this by implementing software systems to 

link original image data to articles. The former’s DataViewer (http://

jcb-dataviewer.rupress.org/) is based on OMERO and provides web-

based interactivity, whereas the latter’s ISP software uses VTK and 

requires readers of ISP-enabled articles to download and install the 

ISP software on their machine.

The first attempts at distributing large image datasets to the biol-

ogy community have come from atlases of gene expression in model 

organisms31–35,65 (Table 4). Two projects have now completed respec-

tively a transcriptome atlas for the adult mouse brain35 (Allen Mouse 

Brain Atlas) and for the mouse embryo (Eurexpress). In these projects 

images of tissue sections are captured at about 0.5 µm pixel resolu-

tion, resulting in images with pixel dimensions of about 4,000 × 4,000. 

With sampling through the brain or embryo at about 150 µm and for 

most (~20,000) expressed genes, this results in an archive of millions 

of images. These have been manually and automatically annotated; in 

the case of the brain data, this was done using 3D registration.

With the exception of Phenobank (http://worm.mpi-cbg.de/

phenobank2/cgi-bin/ProjectInfoPage.py), which provides data for 

a genome-wide time-lapse screen in Caenorhabditis elegans, image 

data from high-throughput, image-based RNAi screens have not yet 

arrived in the public domain, although several projects (Mitocheck, 

GenomeRNAi) aim to make their images available. The logistics and 

storage requirements are formidable, and perhaps a publicly funded 

centralized repository similar to GenBank or ArrayExpress should be 

established. Success of such a repository would depend on the will-

ingness of data producers to share their images through a central sys-

tem. Alternatively, a distributed infrastructure could be considered. 

Querying these resources relies on textual annotations of all images. 

Although already useful, text-based queries are limited by the lack of 

ontologies for many descriptive attributes. For example, how can the 

user retrieve all images of mitotic phenotypes when some annota-

tions are free text and use wording such as “chromosome segrega-

tion defect”? However, ontologies will not solve all problems in image 

retrieval, as many images will not have been annotated with the 

required level of detail. For example, in a screen, most images are just 

annotated as ‘not a hit’ for a given phenotype.

Another challenge is to allow browsing without significant down-

load time. In the Edinburgh Mouse Atlas33,66 (Table 4), the data range 

from medium-resolution (0.5 µm) tissue section images captured 

using light microscopy to full 3D images captured typically with opti-

cal projection tomography (see Box 1). The data are mapped onto a 

standard mouse embryo model to allow direct comparison and analy-

sis in spatial terms. Mapping the spatial patterns of gene expression 

provides some powerful options for query and analysis and avoids the 

These packages integrate image processing algorithms with statisti-

cal analysis and graphical representations of the data and also offer 

machine learning methods that capitalize on the multiple attributes 

measured in the images. In workflow management software (for 

example, HCDC; Table 3), where modules communicate through 

defined inputs and outputs, user-defined visualization modules can 

be integrated into a data acquisition and processing workflow; this 

increase in flexibility and history tracking typically comes with a loss 

in user-interactivity and browsing capabilities.

Although presentation, representation and querying of primary 

visual and quantitative data are a significant problem, an associ-

ated difficulty is that the dimensionality of data derived from or 

associated with each image or object is rapidly growing. The prob-

lem is to visualize such high-dimensional data in a concise way 

so that it may be explored to identify patterns and trends at the 

image level. A common strategy linearly projects high-dimensional 

data into low dimensions for visualization using various forms of 

multidimensional scaling60 (for example, principal component 

analysis, Sammon mapping61). Multidimensional scaling aims to 

map high-dimension vectors into low dimensions in such a way 

as to preserve some measure of distance between the vectors. Once 

such an embedding or mapping into two or three dimensions has 

been accomplished, the data can be visualized and any relationships 

observed. One approach to visualizing and interacting with high-

dimensional data and microscopy imaging is the iCluster system62, 

developed in association with the Visible Cell63. Here, large image 

sets from single or multiple fluorescence microscopy experiments 

may be visualized in three dimensions (Fig. 4g). Spatial placement 

in three dimensions can be automatically generated by Sammon 

mapping using high-dimensional texture measures or through 

user-supplied statistics associated with each image. Thus, sets of 

images that are statistically and visually similar are presented as 

spatially proximate, whereas dissimilar images are distant. This 

allows outliers and unusual images to be detected easily, while dif-

ferences between classes (for example, treatment versus control) or 

multiple classes within an experiment can be seen as spatial separa-

tion. Visualization of relationships and correlations among the data 

allow the user to find and define the unusual, the representative and 

broad patterns in the data.

Most of the above visualization schemes apply to cellular-level mea-

surements of populations of cells, but none of these methods takes 

into consideration time-resolved data. Although the temporal evolu-

tion of one or several cellular or population features from a single 

experiment can easily be plotted over time, this approach is imprac-

tical when relationships between hundreds or thousands of experi-

ments must be visualized. In this case, the time series can be ordered 

according to some similarity criterion and visualized as a color-coded 

matrix (Fig. 4d). Similarly, heat maps can be extended to represent 

multidimensional time series (Fig. 4e); the time series corresponding 

to different dimensions can be concatenated. Here, the most difficult 

part is to define an appropriate distance function for multidimen-

sional time series according to whether absolute or relative temporal 

information is important64.

Often, the time itself is less informative than the relative order in 

which events occur. In this case, it is also possible to estimate a rep-

resentative order of events from the time-lapse experiments (for 

example, phenotypic events on single-cell level). This event order can 

be used for characterizing, grouping and visualizing experimental 

conditions, creating an event order map (Fig. 4f)64.
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of images (so-called picture archiving and communication sys-

tems, or PACS), most research facilities rely upon local systems and 

protocols for data storage and organization. Large-scale research 

databases do exist that provide access for the neuroimaging com-

munity. Both the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI68) and the International Consortium for Brain Mapping 

(ICBM69) make use of the Laboratory of Neuro Imaging’s Image 

Data Archive (IDA) to store data for thousands of subjects, includ-

ing MRI, positron emission tomography, magnetic resonance 

angiography and DTI, as well as related meta-data70. The system 

provides investigators with fine-grained control of data access 

rights, ranging from allowing data to be made fully public to 

restricting it to collaborators. The Functional MRI Data Center 

(fMRIDC71) provides investigators with a repository for peer-

reviewed fMRI studies and underlying data, which may then be 

requested by visitors to the fMRIDC website. The Open Access 

Series of Imaging Studies (OASIS72) also provides collections of 

hundreds of brain MRI volumes to the scientific community at 

no charge. The Neuroimaging Informatics Tools and Resources 

Clearinghouse (NITRC; http://nitrc.org/) provides a central repos-

itory through which neuroimaging resources, such as software 

tools or data, may be described, disseminated and discussed. The 

development of large, publicly available collections of data pro-

vides opportunities for large-scale neuroimaging studies, which 

introduces new challenges for information visualization.

partiality, ambiguity and resolution problems 

of text annotation. For example, the EMAGE 

gene expression database67, which has spa-

tially mapped patterns, allows query on the 

basis of spatial location and pattern similar-

ity. Using a straightforward Jaccard index 

measure, the spatial search is sorted accord-

ing to similarity with the search area, which 

can either be manually drawn or can be the 

pattern resulting from an analysis of an input 

image—that is, “find one like this.” The same 

similarity measures can be used to cluster 

the data and enable varieties of automated 

data mining. Another example comes from 

neurobiology: the anatomic gene expression 

atlas (AGEA)38 of the mouse brain allows 

users to interactively explore spatial patterns 

of gene expression through correlation maps, 

to apply hierarchical, multiscale partitioning 

of the image volumes according to spatial 

gene expression similarity and to identify 

genes with localized enrichment in a chosen 

region of interest.

Systematic efforts are underway in neu-

robiology to map the anatomy and con-

nectivity of entire nervous systems. Various 

imaging modalities are used in tiling mode 

across serially sectioned tissues, resulting 

in massive layered image canvases. Several 

projects use a Google Maps–like user inter-

face to provide web access to the data. In 

BrainMaps (Table 1), images of serial sec-

tions of both primate and nonprimate 

brains scanned with submicrometer reso-

lution are presented in a Google Maps–like viewer with possibilities 

for controlled vocabulary annotation by registered users. CATMAID 

also uses the same navigation principle to allow collaborative man-

ual annotation of serial-section transmission electron microscopy 

images of the Drosophila larval brain imaged at a resolution of 4 

nm per pixel5. CATMAID implements synchronized browsing and 

annotation of linked multimodal image data (such as confocal and 

electron microscopy). CATMAID does not require the use of a cen-

tral data repository but instead allows the images to be distributed 

across several laboratories and thus avoids duplication of massive 

datasets. The use of a lightweight web client that is ‘aware’ of various 

datasets around the world through a collection of expert-submitted 

annotations in a centralized database seems to be a good approach to 

start mapping large biological image collections using a community-

driven effort. The alternative possibility would be the creation of 

well-structured repositories. Such repositories should ideally pro-

vide three levels of access to the data. The first level represents the 

raw data, and the second level comprises the data analysis results 

and/or annotations, with relevant external information. The third 

level consists in integrating different data sources such that data 

from multiple datasets can be simultaneously queried.

These efforts at making biological image data accessible and 

usable by the scientific community are paralleled by similar efforts 

in the MRI community. But whereas clinical scanners often rely 

upon specialized servers dedicated to the storage and distribution 

Table 4 | Selected image repositories

Name Description URL

4DXpress Cross-species gene expression database http://tiny.cc/DT6lh

ADNI Imaging and genetics data from elderly 
controls and subjects with mild cognitive 
impairment and Alzheimer’s disease

http://www.loni.ucla.edu/ADNI/

Allen Brain Atlas Interactive, genome-wide image database 
of gene expression

http://www.brain-map.org/

APOGEE Atlas of patterns of gene expression in 
Drosophila embryogenesis

http://tiny.cc/ZASKo

BIRN Lists of tools and datasets, mostly from the 
neuroimaging community

http://www.birncommunity.org/

Bisque Exchange and exploration of biological 
images

http://www.bioimage.ucsb.edu/

Cell Centered Database Database for high-resolution 2D, 3D and 4D 
data from light and electron microscopy, 
including correlated imaging

http://ccdb.ucsd.edu/index.shtm

Edinburgh Mouse Atlas Atlas of mouse embryonic development 
(emap) and gene expression patterns 
(EMAGE), 2D, 3D spatially annotated data

http://www.emouseatlas.org/

Fly-FISH Atlas of patterns of RNA localization in 
Drosophila embryogenesis

http://fly-fish.ccbr.utoronto.ca/

fMRIDC Public repository of peer-reviewed 
functional MRI studies and underlying data

http://www.fmridc.org/

ICBM Web-based query interface for selecting 
subject data from the ICBM archive

http://tiny.cc/0JDXE

Mitocheck Microscopy-based RNAi screening data http://www.mitocheck.org/

OASIS Cross-sectional MRI data in young, 
middle-aged, undemented and demented 
older adults; longitudinal MRI data in 
undemented and demented older adults

http://www.oasis-brains.org/

ZFIN The zebrafish model organism database http://tiny.cc/uitMn

2D, 3D and 4D: two-, three- and four-dimensional, respectively.
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