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We propose a visualization approach for analyzing players’ action behaviors. The proposed approach consists of two visualization
techniques: classical multidimensional scaling (CMDS) and KeyGraph. CMDS is for discovering clusters of players who behave
similarly. KeyGraph is for interpreting action behaviors of players in a cluster of interest. In order to reduce the dimension of
matrices used in computation of the CMDS input, we exploit a time-series reduction technique recently proposed by us. Our
visualization approach is evaluated using log of an online game where three-player types according to Bartle’s taxonomy are found,

that is, achievers, explorers, and socializers.
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1. INTRODUCTION

The market size of online games continues to experience
surging growth [1]. At the same time, competitions among
them are also becoming very high. The quality of player
service plays an important role in winning such competi-
tions. It is therefore inevitable to online-game developers and
publishers to know their player behaviors so that they can
develop game contents that fulfill player demands. Visual-
ization techniques have been recently applied to discover in-
game player behaviors.

Most work in the literature focuses on visualization of
player trails or time series of visited locations for examining
the distance over time among the members of a social group
[2], discovering playing strategies in a combat game [3], and
analyzing movement patterns [4]. Other work focuses on
extracting pathways [5] and on locating clusters of similar
players based on their movement patterns [6].

This research, however, focuses on visualizing player
behaviors based on their actions. According to Bartle’s
taxonomy [7], online-game players can be typically identified
based on their action behaviors into achievers, explorers,

killers, and socializers. Player-type information should,
therefore, be exploited to provide game contents that players
favor, for example, a wider variety of collectable items
for achievers, longer missions for explorers, more hunting
opportunities for killers, and a higher frequency of social
events for socializers. It has been recently reported in [8] that
Bartle’s taxonomy is also applicable to social data in a web-
based application.

In this paper, we propose an approach for visualizing
players’ action behaviors using classical multidimensional
scaling (CMDS) [9] and KeyGraph [10], both described
in Section 2. First, CMDS is used for locating clusters
of similarly behaving players. KeyGraph is then used for
interpreting playing behaviors of players in a cluster of
interest. The input to CMDS is derived based on time-
series matrices of players’ action sequences which are
needlessly long due to noise and redundancy, leading to
high computational cost. We, therefore, compute the CMDS
input based on reduced time-series matrices obtained by our
recently proposed time-series reduction technique in [11].
To make this paper self-contained, this technique is described
in Section 3. Evaluation of our visualization approach is
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given in Section 4, where achievers, explorers, and socializers
are found in play log from an online-game used in the
evaluation.

2. PLAYER VISUALIZATION

In this section, we describe CMDS, KeyGraph, log format,
and visualization metrics. As with most other tools for
information visualization [12], subjective interpretation is
required for KeyGraph. The described visualization metrics
are used for facilitating this task in Section 4.2.

2.1. Multidimensional scaling

CMDS is a prevailing technique for mapping pair-wise rela-
tionships to coordinates and has been applied to several areas
such as statistics, psychology, sociology, political sciences,
and marketing [9]. Recently, this technique has been suc-
cessfully applied to clustering of online-game players based
on their movement patterns [6]. CMDS takes as its input
matrix D, indicating dissimilarities between player pairs, and
outputs a coordinate matrix whose configuration minimizes
a loss function in preserving all interpoint distances. Two
time series of interest are considered similar if they have
similar rise and fall patterns, although they might have
different scales on the time axis. A good measurement for
deriving the distance or dissimilarities between such series is
the dynamic time warping (DTW) distance [13].

In our research, the ijth element in D is the DTW
distance between the reduced time-series matrices of action
sequences of players i and j. In addition, we use the function
cmdscale in the Statistical Toolbox of Matlab for performing
CMDS and select only the first two dimensions of the
constructed coordinates for plotting players.

2.1.1.  Action coding

Here, we describe how action sequences are numerically
coded into time-series matrices for computation of DTW
distances. Let O denote the set of action symbols of
interest and |O| its cardinality. Action sequence s =
s(1),s(2),...,s(L) is numerically coded into |O] X L time-
series matrix X = [X(1),X(2),...,X(L)], where X(i) is a
column vector with the element indexing the action symbol
of s(7) being 1 and other elements 0.

Consider, for example, the set of action symbols O =
{A, B, C}, and thus |O] = 3, where symbols A, B, and C are
represented by column vectors [100], [010]’, and [001]". In
an action sequence such as s = C,A,B,C, it is coded into
X= [[001]", [100]", [010]%, [001]",].

2.1.2.  Dynamic time warping

The DTW distance between time-series matrices X and Y,
dtw(X,Y), having lengths Lx and Ly, is defined as follows:

dtw(X,Y) = g(Lx, Ly), (1)
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FIGURE 1: Time-series matrices X and Y.
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FIGURE 2: Derivation of dynamic time warping distance between X
and Y.
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. 0 i=0, (2)
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g(0,j) = ]
o  j>0,

and d(i, j) is the Euclidean distance between X (i) and Y (j).

Consider, for example, the set of symbols O =
{A,B,C,D,E, F} and two action sequences x = A,C,B,E,F
and y = A,B,CE,D,F,B. The DTW distance between
corresponding time-series matrices X and Y (c.f., Figure 1),
dtw(X,Y), is 5.6, derived as shown in Figure 2.

2.2. KeyGraph

KeyGraph is a visualization tool for discovery of relations
among text-based data. Its underlying concept is based on
a building construction metaphor. As shown in [10], the
precision-recall curve of KeyGraph is superior to TFIDF
and NGRAM [14], well-known techniques for information
retrieval, in extraction of correct keywords from a set of
documents. KeyGraph has been later applied to visualize the
relations among Web pages, among products in markets,
among earthquake faults, and so forth [15]. It has also been
successfully applied to identification of player types in an
online-game simulator [16].
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F1GURE 3: KeyGraph applied to the abstract of this paper.

Three major components of KeyGraph are as follows.

(1) Foundations: subgraphs of highly associated and
frequent terms representing basic concepts in the
data.

(2) Roofs: terms highly associated with foundations.

(3) Columns: associations between foundations and
roofs used for extracting keywords or main concepts
in the data.

Associations between terms are defined as the co-
occurrence among them in same sentences, and keywords
are the terms in either foundations or roofs that are
connected to strong columns. Under KeyGraph represen-
tation, solid lines and their touching black nodes depict
foundations, dotted lines depict columns, red nodes depict
roofs excluding those in the foundations, and double
circles depict keywords. We use a tool called Polaris [17],
publicly available, for generating KeyGraphs (http://www.
chokkan.org/software/dist/polaris-0.19alpha.zip).

Figure 3 shows an example of KeyGraph when it is
applied to the text data taken from the abstract of this
paper, where common preprocessing for text data such as
removing of conjunctions, determiners, and prepositions is
performed. From this figure, it can be seen that there is one
foundation consisting of four terms, that is, “KeyGraph,”
“action,” “behaviors,” and “players.” The first three terms are
also keywords. Another keyword is “proposed.” Three roof
terms are “consists,” “two,” and “techniques.” These terms
well represent the messages in the abstract.

2.3. Logformat and visualization metrics

Player action sequences in our work are sequences of
action symbols extracted from game log, of an online game
discussed in Section 4, that has the following format:

time stampl|player ID||event||start position||stop positionl]|,

3)

where an event consists of an action and its object, if any. This
format is based on those adopted in an MMOG simulator

in [18] and 3D virtual worlds in [2]. In commercial online
games, this kind of game log is stored in the monitoring
database [19].

According to a recent work in [20], there are three
categories of play motivations in online games as follows.

(i) Achievement consisting of three subcomponents,
that is, advancement, mechanics, and competition.

(i) Social consisting of three subcomponents, that is,
socializing, relationship, and teamwork.

(iii) Immersion consisting of four subcomponents, that is,
discovery, role-playing, customization, and escapism.

The achievement, social, and immersion categories cor-
respond to Bartle’s achievers, socializers, and explorers,
respectively, although the above ten motivations overlap
among player types.

In our work, we focus in particular on

(i) advancement described in [20] as the desire to gain
power progresses rapidly and accumulates in-game
symbols of wealth or status,

(ii) socializing described in [20] as having an interest in
helping and chatting with other players, and

(iii) discovery described in [20] as finding and knowing
things that most other players do not know about.

This is because we anticipate that they should be identifiable
using our action sequences and KeyGraphs. Below, we
verify this anticipation with simplified data sets and their
KeyGraphs, which serve as our visualization metrics for
facilitating interpretation of KeyGraph results in Section 4.2.

Let us consider a set of action symbols {c, w, m, n,
r}, standing for chat, walk, interaction with a mission
master, interaction with a nearby object (item, NPC, or
monster), and interaction with a remote object, respectively.
The symbol w is a fundamental action and thus should be
a frequent symbol in all action sequences. It is therefore
removed from our consideration. For achievers motivated
by advancement, interactions with mission masters should
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FIGURE 4: (a) KeyGraphs for achievers, (b) socializers, and (c) explorers generated from the given sample data sets, where m (interaction to
a mission master), ¢ (chat), and r (interaction to a remote object) are the keywords in (a), (b), and (c), respectively.

be frequently seen in their action sequences, and thus all
possible sets of frequent action symbols for them are {c, m},
{m, n}, {m, r}, {c, m, n}, {c, m, r}, {m, n, r}, and {c, m,
n, r}. For socializers motivated by socializing, chats should
be commonly seen among them, leading to sets of frequent
action symbols {c, m}, {c, n}, {¢, r}, {c, m, n}, {c, m, 1}, {c,
n, r}, and {c, m, n, r}. For explorers motivated by discovery,
interactions with remote objects should be commonly seen
among them and thus their sets of frequent action symbols
should be {c, r}, {m, r}, {n, r}, {c, m, r}, {c, n, 1}, {m, n, r},
and {c, m, n, r}.

Figure 4 shows the resulting KeyGraphs for the three
player types, where each KeyGraph was generated from the
data sets of the corresponding player type. Note that m, c,
and r are the keyword nodes in the KeyGraphs of achiever,
socializer, and explorer, respectively, and henceforth these
findings are used as visualization metrics.

3. TIME-SERIES REDUCTION

Our technique for obtaining compact sequences representing
major player behaviors is based on Haar wavelet transform
[21]. The Haar wavelet transform technique has a wide range
of time-series applications including classification of DNA
sequences [22], which motivated us to apply the technique
to action sequences. Below, we first give an outline of the
Haar wavelet transform and then describe the time-series
reduction technique.

In the wavelet transform concept, decomposition
involves obtaining wavelet coefficients from a sequence
of interest. Reconstruction involves recovering the origi-
nal sequence from obtained coefficients. Henceforth, it is
assumed that the length L of a sequence is adjusted so that L is
apower of 2 and q = log, (L). The ith Haar wavelet coefficient
at resolution order k, d(x,), is derived as

X i—1) — X i
d(k,i _ (k+1,2i 1)2 (k+1,21)’ (4)

where X(ki) = (X(ks12i-1) + X(k+1,2i))/2 is the ith average
at order k between two corresponding adjacent values in
order k + 1. With this representation, kmax = ¢, the original
sequence is represented by x X(g,1)>X(q2)>- - - > X(q,L)- AN
example of Haar wavelet decomposition of the sequence 6,
8,2,7,6,5,4, 3 is shown in Table 1.

TasBLE 1: Example of Haar wavelet transform.

Resolution Averages X(kj) Coefficients d

k=4 (6,8,2,7,6,5,4,3) —

k=3 (7.0, 4.5,5.5,3.5) (-1.0,-2.5,0.5,0.5)

k=2 (5.75, 4.5) (1.25,1)

k=1 (5.125) (0.625)
A BCEDTFEFBA
110{0|0]0]|0|O0f1
o|1|0{0f0f0|1]|0
0ofof1[{0]|O]|O[O]|O
0[0f0[O]|1]0[O]|O
0fofof[1]|0]|0[O]|O
0[0f0O[O]|O|L[O]|O

FIGURE 5: Time-series matrix X.

Reconstruction of a given sequence from its Haar wavelet
coefficients and averages is done as follows:

X(k2i-1) = X(k=1,i) + dk—1,i)> 5)

X(k2i) = X(k-1,i) — A(k-1,i)-

Now, we describe our procedure for reducing the length
of the time-series matrix of an action sequence of interest.
For explanation, we use action sequence x = A,B,C,E, D, F,
B, A as an example, where O = {A,B,C,D,E, F} and thus
O] = 6.

(i) Derive time-series matrix X for action sequence x of
interest having length L. Figure 5 shows resulting time-series
matrix X in our example.

(ii) Decompose each row in X to obtain Haar wavelet
coefficients. Figure 6 shows resulting averages and coeffi-
cients for X in our example.

(iii) Reconstruct each row in X with selected Haar
wavelet coefficients as follows.

Reconstruction of each row in X starts from the coeffi-
cient at the lowest resolution order, that is, d(1, 1), to those
at the next higher order, and so forth. At a given resolution
order, when the number of remaining coefficients is less than
the number of coefficients in that order, they are selected
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0.25 0 0.25 |-0.25| 0.5 0 0 -0.5
0.25 0 0.25 |-0.25| -0.5 0 0 0.5
0.125 | 0.125 | -0.25 0 0 0.5 0 0
0.125 | —=0.125 0 0.25 0 0 0.5 0
0.125 | 0.125 | =0.25 0 0 -0.5 0 0
0.125 | —0.125 0 0.25 0 0 -0.5 0
Average Caefficients
k=1 k=2 k=3
FIGURE 6: X after decomposition.
0.25 0 0.25 |-0.25( 0 0 0 0
0.25 0 0.25 [-0.25| 0 0 0 0
0.125 | 0.125 | -0.25 0 0 0 0 0
0.125 | —0.125 0 0.25 0 0 0.5 0
0.125 | 0.125 | -0.25 0 0 0 0 0
0.125 | —0.125 0 0.25 0 0 05| 0
Average Caqefficients
k=1 k=2 k=3

FiGcuUre 7: X after coefficient selection.

based on their total energy value in decreasing order, where
total energy of dxi), E(x,i), is defined as

ol
Ekp = 2. diuriy (6)
n=1

where d(ki) is dki decomposed at row n of X. All
other unselected coefficients are then reset to zero. Figure 7
shows resulting X after selection of four coefficients in our
example. Following the recipe in [21], the number of Haar
wavelet coefficients used in our performance evaluation is
heuristically set to min(L — 1, [ log,L x 4]).

(iv) Reconstruct X with the above coefficients (c.f,,
Figure 8 for our example).

(v) Reduce the size of X by sampling down a group of
repetitive and consecutive elements at each reconstructed
row to one element. Figure 9 shows the reduced X in our
example.

Note that the DTW distance between the reduced time-
series matrices X of players i and j is assigned to the
ijth element of the CMDS input matrix D discussed in
Section 2.1.

4. EVALUATION
4.1. Settings

We obtained player log from the online game The ICE [23],
under development at our laboratory. A screen shot of The
ICE and the game map in use are shown in Figures 10 and
11, respectively. The main game objects were nonplayer char-
acters (NPCs), statically positioned at different locations,
with whom player characters (PCs) must interact—(chat,

5
0.5 0.5 0 0 0 0 0.5 0.5
0.5 0.5 0 0 0 0 0.5 0.5
0 0 0.5 0.5 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0.5 0.5 0 0 0 0
0 0 0 0 0 1 0 0
FiGure 8: Reconstructed X.
0.5 0 0 0 0.5
0.5 0 0 0 0.5
0 0.5 0 0 0
0 0 1 0 0
0 0.5 0 0 0
0 0 0 1 0
F1GURE 9: Reduced X.
TaBLE 2: Action list of The ICE.
Action Symbol
Attack with a snow ball (c.f., top half part of Table 3)
Chat C
Walk w
Trade t
Talk (c.f., bottom half of Table 3)
Pick up potion p
Use potion u
Dead d
Warp X

help, trade)—to receive and complete missions; the item-
shop, from which PCs bought items and monsters, randomly
positioned throughout the game world for PCs to attack with
snowballs. Major missions in the game are as follows.

(i) Item delivery where the PC must deliver an item from
the mission issuing NPC to a specified NPC.

(ii) Item trade where the PC must trade with NPCs to
increase the amount of money initially provided by
the mission issuing NPC.

(iii) Monster extermination where the PC must help the
mission issuing NPC by exterminating monsters.

Actions available in The ICE are summarized in Tables 2
and 3. All NPCs are involved in missions, except NPCs 1, 13,
14, and 16. In the resulting KeyGraphs given in Section 4.2,
the symbols for these four nonmission NPCs and monsters
are preceded by “n” for those residing in Town 1, that is, nH,
and “r” for those in Town 2 or the eastern border of the map,
that is, T, rU, rW, rA, and rD. This is done in order to utilize
the visualization metrics in Section 2.3.

A group of 20 players, on average 20 years of age,
participated in this evaluation. These players consisted of
third-year and fourth-year computer science undergraduate
students who were familiar with online-games but had no
experience in playing The ICE. After a brief introduction
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F1GURE 10: A screen shot of The ICE.

Town 2
NPC 7 ~ 15 (N~V)
item shop (G)

Monster 2,3

TaBLE 3: List of additional symbols related to actions Attack and
Talk.

F1GURE 11: Map and the positions of NPCs and monsters.

to the game, they were asked to arbitrarily play it, starting
from Town 1. In addition to these 20 players, labeled p1-p20,
three game masters, JOJO, Justice, KURO, also participated
in the event. In the rest of our evaluation, the symbol w was
removed from the log because it was frequently present in all
players’ action sequences and thus bared no information.

Symbol Description
A Attack to monster 1
B Attack to monster 2
C Attack to monster 3

Town 1 D Attack to boss monster

FE% E Attack to other game objects
(H~M) G Talk to the item shop
Item shop - H-M Talk to NPCs 1-6
(G) (D) N-V Talk to NPCs 7-15

w Talk to NPC 16

4.2. Results and discussions

Table 4 shows the mean and variance of time-series matrices
of action sequences before and after the time-series reduction
technique is applied.

Figure 12 plots all players on two-dimensional space
obtained by CMDS. Most players form a cluster on the right
half of the figure. The rests can be considered as outliers, that
is, p1, p5, p8, p9, pl7. To remove the effect of these outliers,
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F1GURE 12: MDS result for all data.

TABLE 4: Mean and variance of the data lengths before and after
applying the time-series reduction technique.

MEAV VAR
Before 262.7 7688.6
After 25.5 13.1

we excluded them from the log and obtained a new result in
Figure 13. From Figure 13, most players can be divided into
three clusters: cluster 1 of Justice, JOJO, KURO, p10, pl5,
p20; cluster 2 of p2, p3, p4, p6; cluster 3 of p7, p16, p18, p19.
Each cluster has different player behaviors as discussed below
through interpretation of KeyGraph visualization results.

4.2.1. Cluster 1: explorers

Figure 14 shows the KeyGraph of cluster 1 from which salient
features are summarized in the following.

(i) They moved away from town 1 and fought monsters
2and 3.

(ii) They also went to the end of the map and fought the
boss monster.

(iii) They were not active in pursuing missions.

The above summary is based on our interpretation of this
KeyGraph as follows. First, it can be seen that the foundation
of this KeyGraph is mainly composed of warp and attack
(monsters 2 and 3) nodes. Next, the symbol rD is a keyword
indicating that these players went far away to the end of the
map and fought the boss monster there. In addition, because
there is only one NPC symbol J in the keywords, these players
were not active in receiving missions, from NPCs, and in
pursuing them.

Consequently, it can be stated that the players in cluster 1
like to explore the world map and that these players have no
interest in pursuing missions and only fight monsters when
they find them. This type of players fits Bartle’s explorer.

800

600 F +pl4 i

Cluster 1
100 | Cluster |

+pl2 +pll

200 Cluster 2

Cluster 3

0/ +p6 1
—200 [+p2
—400

—600

—~800 1 1 1 1 1
—600  —400 —200 0 200 400 600

FiGURE 13: MDS result for data after exclusion of the outliers.

)
I

FiGURE 14: KeyGraph of cluster 1, where rD (attacks the boss
monster residing in the most remote map from the initial map) is
one of the keywords.

4.2.2. Cluster 2: achievers

Figure 15 shows the KeyGraph of cluster 2 from which salient
features are summarized in the following.

(i) They mainly moved within town 1.
(ii) They also fought monsters 2 and 3.

(iii) They received a lot of missions.

The above summary is based on our interpretation of this
KeyGraph as follows. First, it can be seen that besides nodes
related to fighting (B, C, E, u, p), nodes of NPCs residing
in town 1 (I, J, K) are included in the foundation of this
KeyGraph. This indicates that these players were mainly in
town 1. In addition, the keywords include symbols L and R
which denote NPCs who are involved in several missions.
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FiGure 15: KeyGraph of cluster 2, where L and R (talk to mission
NPCs) are among the keywords.

nH J

FiGure 16: KeyGraph of cluster 3, where ¢ (chat) is one of the
keywords on the foundation.

As aresult, it can be stated that the players in cluster 2 are
aggressive in pursuing missions, especially those completable
within or not far away from town 1. This type of players fits
Bartle’s achiever.

4.2.3. Cluster 3: socializers

Figure 16 shows the KeyGraph of cluster 3 from which salient
features are summarized in the following.
(i) They chatted a lot.
(ii) They mainly fought monsters 2 and 3.
(iii) They also fought the boss monster.
The above summary is based on our interpretation

of this KeyGraph as follows. First, the foundation of this
KeyGraph includes the symbol ¢, not seen in the foundation

or keywords of the previous two clusters. This indicates
that these players chatted a lot among each other. Next,
the symbol rD is a keyword showing that the players also
fought the boss monster. We have confirmed through directly
investigating the log that a group of three players (p5, p7,
p8) and another group of four players (p16, p17, p18, p19)
frequently chatted among their group members and that
each group went together to the end of the map to fight the
boss monster.

From the above interpretation, it can be stated that the
players in this cluster like to communicate with others via
chats. This type of players fits Bartle’s socializers.

4.3. Computational complexity

We give here the computational complexity of the techniques
used in our approach.

(i) CMDS: for m players, the time complexity of the
original CMDS is O(m?®). To cope with very large
m, a recently proposed approximation [24] taking an
O(m) time can be used.

(ii) DTW: the time complexity of DTW for computing
the distance between two time series of length I,
and [, is O(Ll,). We coped with this issue with
the time-series reduction technique in Section 3.
This technique can also be used together with an
approximation technique in [25] that introduces
lower bounding based on warping constraints.

(iii) KeyGraph: the time complexity of KeyGraph is
O(nlogn), where n is the number of action symbol
types.

(iv) Wavelet: for a time-series of length [, the Haar wavelet
transform has an O(l) time.

5. CONCLUSIONS AND FUTURE WORK

Understanding the player behaviors is an important issue
in improving the service quality of online games. We have
proposed a visualization approach that first locates clusters
of players who have similar action behaviors using CMDS
and then interprets such behaviors of a cluster of interest
using KeyGraph. To increase the efficiency in computation
of the CMDS input, we have described the use of the time-
series reduction technique proposed recently by us in [11].
Evaluation of the proposed approach has been done using
log from The ICE, where three clusters have been found to
fit three of the four Bartle’s player types, that is, achievers,
explorers, and socializers.

Our future work is to apply the proposed approach
to log from commercial online games and to examine if
Bartle’s player types can be found. It might also be interesting
to investigate log formats whose information can be used
for automatically identifying other types of Nick Yee’s play
motivations.
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