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Uncertainty is a tricky business. The term 

encompasses all sorts of unknowns, in-

cluding error, deviations, missing infor-

mation, or con�dence levels. Numerous methods 

exist for quantifying and expressing uncertainty, 

and its existence is persistent and accumulative 

throughout the visualization pipeline.1 For vi-

sualization researchers, this term is particularly 

complex owing to the visual display medium’s 

limitations.

Consequently, aggregation is a common tech-

nique for summarizing uncertainty for visualiza-

tion purposes. Two particular summary statistics 

stand out as the de facto characterization: mean 

and standard deviation. These statistics reduce un-

certainty to an expected value and variation from 

that value and are particularly effective in ex-

pressing normally distributed data. However, they 

aren’t always appropriate or even feasible, particu-

larly when we can’t describe the uncertainty in a 

dataset as a probability distribution function.

Consider a problem from medical-image pro-

cessing: segmenting a brain volume into speci�c 

tissue types using fuzzy classi�cation. Each voxel 

has 11 probability distributions, one for each pos-

sible tissue type. Because these probabilities are 

assigned over categorical data (in which a variable 

value is one of a limited number of nominal cat-

egories), traditional uncertainty measures aren’t 

well de�ned. In this setting, we can use entropy, 

in the information-theoretic sense, to quantify 

the spread of probabilities over the categories and 

encode uncertainty for visualization. For example, 

in Figure 1, a grayscale color map encodes each 

voxel’s entropy. The white areas indicate regions 

where the assignment of a voxel to a particular 

tissue type is inherently uncertain.

Uncertainty Visualization
Since the �rst calls for research in uncertainty 

visualization,2,3 much work has been done in re-

sponse.4,5 This goes hand in hand with comput-

ing-technology advances leading to larger, more 

complex datasets along with greater availability 

of uncertainty information for use in visualiza-

tions. In most cases, visualization researchers are 

ultimately presented with a probability distribu-

tion of possible instances of the data. The chal-

lenge here is to augment a visual representation 

of a single instance to incorporate the uncertainty 

represented in the probability distribution. This 

additional information poses challenges related to 

visual encoding, including visual clutter, cognitive 

overload, and data obfuscation, which can defeat 

uncertainty visualization’s main goals. In most 

cases, a comprehensive visualization of uncertainty 

isn’t feasible; a summary of the probability distri-

bution is required.

The typical framework for summarizing is to 

pick the “most likely” representation of the data, 

such as the mean, and add information about the 

variability through color, spatial distortion, and so 

on. So, uncertainty visualization’s major challenge 

is simply the perceptually ef�cient encoding of the 

dataset’s appropriate summary statistics. This ar-

ticle focuses on such statistics.

Although summary statistics such as the mean, 

the standard deviation, and quantiles are typical 

expressions of uncertainty,6 their use is limited 

to data classes in which they’re well de�ned. One 

data class for which they don’t work is categori-

cal data. For example, in medical images, a pixel 

(or voxel) might be one of several tissue types. In 

remote sensing, satellite image data might depict a 

particular ground cover, such as vegetation, urban 

space, or water. (Although such data might actu-

ally have an ordering provided by the imaging mo-

dality, the classi�cation into nominal categories 

often relies on both the scalar value and spatial 

location. So, the existent ordering is insuf�cient.)

Categorical data is inherently discrete; we can 

encode uncertainty through a discrete distribution 
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over the possible classi�cation by de�ning a prob-

ability for each nominal category. These categories 

have no meaningful ordering; that is, we can’t say 

a particular category is closer to another. So, we 

can’t de�ne a metric across the space. Moreover, 

we can’t combine categories such that a variable 

exists partially as multiple categories. Thus, we 

can’t meaningfully compute measures such as the 

mean or standard deviation because this would re-

quire averaging across different categorical types.

As an example, we use data from the BrainWeb 

project (www.bic.mni.mcgill.ca/brainweb), which 

seeks to provide a ground truth for medical-image-

processing techniques through a database of sim-

ulated magnetic resonance imaging (MRI) brain 

scans. BrainWeb provides a probabilistic anatomi-

cal model used for simulation. The anatomical 

model is represented through 11 volumetric sca-

lar �elds, each corresponding to one tissue type 

identi�ed in the MRI scan. A single volume rep-

resents the probability of the corresponding tis-

sue at each voxel. So, across all volumes, the 11 

probabilities at each voxel add to 1. Formally, we 

have a set of random variables X(i,j) at each voxel 

location (i, j), with a discrete distribution p(i,j) over 

the 11 tissue types.

An important question in this context is, what’s 

each voxel’s tissue type? To get a complete an-

swer, we must look at the probability distribution 

at each voxel and encode it into a visual repre-

sentation. Our approach follows the framework 

we mentioned earlier in this section. We encode 

the most likely representation as the maximum-

probability tissue type—that is, the maximum 

statistic at each voxel, arg maxx ∈ X(i,j)p(i,j)(x). We 

quantify the uncertainty through the distribu-

tion’s entropy, H[X(i,j)].

Entropy as a Measure of Uncertainty
Uncertainty visualization approaches have focused 

almost exclusively on applications that derive the 

uncertainty’s magnitude from a continuous dis-

tribution. Uncertainty stemming from a discrete 

distribution over (unordered) categorical variables 

presents unique challenges. In the continuous case, 

we can characterize the uncertainty by a measure 

of the distribution’s spread, most commonly de-

scribed by the distribution’s variance or quantiles. 

For categorical data, such a measure is possible 

only if we can meaningfully order the variables. 

For categorical data with no ordering, we believe 

that entropy is a more appropriate measure.

Let X be a random variable with the probability 

density p: Ω → R+ on the discrete sample space 
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ingful only if the addition of the random variables 

xi is sensible. Consider the example of different tis-

sue types in a brain MRI scan. Adding, for exam-

ple, white matter and cerebral spinal �uid (CSF) 

clearly isn’t sensible; tissue can’t be both white 

matter and CSF. So, we reasonably can’t de�ne the 

sample mean and variance. The Shannon entropy 
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log  relies on only the 

probabilities of tissue types rather than the value 

of xi. So, it’s sensible for categorical variables such 

as these tissue types.

Informally, entropy, like variance, measures how 

spread out a distribution is. A discrete distribution’s 

entropy ranges from 0 to –log(1/n); 0 corresponds 

to a distribution with a probability of 1 for a single 

outcome, and –log(1/n) is a discrete uniform dis-

tribution. In the tissue type example, a voxel with 

maximal entropy would indicate that the brain MRI 

scan is inconclusive regarding tissue type. Con-

versely, voxels with minimal entropy would indi-

cate, with a probability of 1, that the tissue is of a 

speci�c type.

However, unlike variance, entropy provides no 

information about the random variable’s value. 

Entropy only measures randomness, whereas the 

combination of mean and variance indicates a 

range of most likely values. The formal de�nition 

of entropy re�ects this by observing that only the 

probability density in�uences the entropy, not the 

random variable’s actual values.

Figure 1. This volume rendering of magnetic 

resonance imaging (MRI) brain data uses entropy 

to show areas in which the type of brain tissue 

is uncertain. The high-entropy regions, in white, 

highlight tissue boundaries where MRI couldn’t 

distinguish between the de�ned tissue types.
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Another perspective comes from information 

theory results for constructing optimal (minimal 

length) codes. We can translate those results into 

�nding the minimal expected number of yes or 

no (binary) questions,7 #Q, required to determine 

the value of an observation of X. This relates 

directly to the random variable’s entropy (in log2): 

H[X] ≤ E[#Q] < H[X] + 1. This entropy intuitively 

describes the uncertainty by encoding how close to 

deterministic a random variable acts.

Generally, the logarithm’s base only scales the 

entropy value and doesn’t affect the visualization’s 

qualitative aspects. In the following, we use a base 

two logarithm, which lets us interpret the entropy 

in bit units—that is, the expected number of binary 

questions required to determine the category.

As a concrete example, consider the following 

discrete distributions over four categories and the 

resulting entropies:

p1 = {1, 0, 0, 0} ⇒ H[X] = 0.00,

p2 = {0.85, 0.15, 0, 0} ⇒ H[X] = 0.61,

p3 = {0.85, 0.05, 0.05, 0.05} ⇒ H[X] = 0.85,

p4 = {0.25, 0.25, 0.25, 0.25} ⇒ H[X] = 2.00.

The �rst example, p1, is completely deterministic. 

Determining the outcome requires zero yes or no 

questions, corresponding to zero entropy. Examples 

p2 and p3 demonstrate increased entropy because the 

probabilities are distributed over more categories. Fi-

nally, p4 is the maximal-entropy case for four catego-

ries and results in the expected two binary questions 

required to determine an observation from p4.

Visualization Methodology
Using entropy to encode each voxel’s uncertainty 

lets us visualize the uncertainty across the entire 

volumetric dataset. This allows for a more con-

textual understanding of the data, including the 

individual tissues’ shape as well as their juxtaposi-

tion in the volume.

Figure 2 shows a slice through the volume of 

entropy values in which the distribution’s entropy 

at each voxel is color-mapped from low (blue) to 

high (white). White indicates where multiple tis-

sue types are possible; dark blue indicates a single 

tissue type. This is most readily apparent in the 

head’s outer edges, where a voxel might be classi-

�ed as skull, skin, muscle, CSF, fat, or connective 

tissue. Although this visualization appropriately 

expresses the regions of higher entropy (and thus 

uncertainty) around tissue boundaries, it’s missing 

the structural information from the original data.

To reincorporate structural and contextual infor-

mation, we look at a particular tissue’s most likely 

location, which we represent as the maximum-

probability tissue type at each voxel. A natural vi-

sual encoding of this information is to label each 

tissue type with a color and assign to each voxel 

the color of the tissue with the maximum prob-

ability at that location. Such an encoding is effec-

tive only when the colors are easily discernable. So, 

we must choose colors carefully, and the number 

of distinguishable color labels is generally limited 

to a dozen or so. Figure 3 shows a slice through 

this tagged dataset. Each of the 11 tissues is as-

signed a color, and each voxel in the slice repre-

sents a single tissue.

0.000 0.442 0.885

Entropy
1.33 1.77

Figure 2. A slice through the entropy volume. Low to high entropy 

is color-mapped blue to white. Low entropy indicates where a 

voxel’s category is known, such as the volume’s four corners, where 

“background” is the only possible category. High entropy indicates 

where multiple categories can exist, such as around tissue boundaries.

Background

Cerebral spinal 
fluid (CSF)

Gray matter

White matter

Fat

Muscle and skin

Skin

Skull

Glial matter

Connective tissue

Lesion

Figure 3. A slice through the tagged data, with each voxel having the 

color of the corresponding maximum-probability tissue.
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Combining the entropy volume and tagged 

voxel information provides a holistic view of the 

data. Figure 4 demonstrates this visualization, 

restricting the number of tissues we’re interested 

in to four: gray matter, white matter, CSF, and 

lesion, and using two-step color mapping. For 

each voxel of the slice, we �nd the maximum-

probability tissue type and take its color tag. 

We then blend this color through white, on the 

basis of that location’s entropy. This encoding of 

entropy and maximum-probability tissue type is 

perceptually meaningful.

A maximal-entropy voxel, with each tissue type 

equally likely, will appear white and not indicate 

a particular tissue type. For a minimal-entropy 

voxel, the color will clearly identify its tissue type. 

Between these two extremes, the entropy depends 

on both the magnitude of the probability mass on 

the likely tissue type and the distribution of the 

remaining probability mass over the other tissues, 

as illustrated in the numerical example we gave 

earlier. In Figure 4, this approach highlights the 

uncertainty of the lesion’s size and position.

Whereas slice-based rendering can be advan-

tageous in understanding tissue interactions re-

stricted to small regions of the data, volume ren-

dering can give insights to contextual information 

in the 3D spatial domain. Figure 5 shows a vol-

ume rendering using a coloring technique similar 

to that of the slice-based method. We’ve selected 

a single tissue type—white matter. All maximum-

probability voxels of that tissue type are red if the 

voxel’s entropy is below a threshold or white if the 

entropy is above the threshold. In this visualiza-

tion, viewers can see the white matter’s relation-

ship to the rest of the brain volume. They can also 

gain an understanding of the location, shape, and 

magnitude of the uncertainty associated with as-

signing the voxel a certain tissue type.

Such approaches to employing entropy might 

not be suitable in other applications or ful�ll other 

speci�c visualization goals. However, we foresee 

that future visualizations will leverage entropy 

to aggregate complex information and expose the 

uncertainty’s location and magnitude.

This use of entropy isn’t novel; geophysics re-

search has employed it extensively. (For a look 

at this and other uses of entropy in visualization, 

see the sidebar.) However, we believe it’s important 

to exemplify entropy as an uncertainty measure 

for visualization. With the increased popularity of 

understanding uncertainty through visualization, 

visualization experts need a variety of uncertainty 

measures, and those measures should be com-

monplace in the visualization vocabulary. Moving 

beyond mean and standard deviation allows for 

more expressive control and greater understanding 

of the nuances of uncertainty quanti�cation and 

visualization. For this reason, we expect entropy 

Gray matter White matter CSF Lesion

Figure 4. A slice through the combined entropy volume and tagged 

voxel information. We color-mapped each voxel on the basis of its 

maximum-probability tissue and the amount of entropy. As a voxel 

tends toward white, the higher the entropy and the less certainty of a 

particular tissue type.

Figure 5. A volume rendering of the combined entropy volume and 

tagged voxel information in which red indicates white matter and white 

indicates high entropy. For more context, the skull and skin appear in 

shadow.
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to become one of a collection of mainstream mea-

sures of uncertainty for visualization. 

References
 1. A. Pang, C. Wittenbrink, and S. Lodha, “Approaches 

to Uncertainty Visualization,” The Visual Computer, 

vol. 13, no. 8, 1997, pp. 370–390.

 2. C.R. Johnson, “Top Scienti�c Visualization Research 

Problems,” IEEE Computer Graphics and Applications, 

vol. 24, no. 4, 2004, pp. 13–17.

 3. C.R. Johnson and A.R. Sanderson, “A Next Step: 

Visualizing Errors and Uncertainty,” IEEE Computer 

Graphics and Applications, vol. 23, no. 5, 2003, pp. 6–10.

 4. K. Brodlie, R.A. Osorio, and A. Lopes, “A Review of 

Uncertainty in Data Visualization,” Expanding the 

Frontiers of Visual Analytics and Visualization, part 2, 

J. Dill et al., eds., Springer, 2011, pp. 81–109.

 5. K. Potter, P. Rosen, and C.R. Johnson, “From 

Quanti�cation to Visualization: A Taxonomy of 

Uncertainty Visualization Approaches,” Uncertainty 

Quanti�cation in Scienti�c Computing, Springer, 

2011, pp. 226–249.

 6. B.N. Taylor and C.E. Kuyatt, “Guidelines for 

Evaluating and Expressing the Uncertainty of NIST 

Measurement Results,” tech. note 1297, US Nat’l 

Inst. of Standards and Technology, 1994.

 7. T.M. Cover and J.A. Thomas, Elements of Information 

Theory, John Wiley & Sons, 1991.

Kristin Potter is a research scientist at the University of 

Utah’s Scienti�c Computing and Imaging Institute. Contact 

her at kpotter@sci.utah.edu.

Samuel Gerber is a visiting assistant professor in Duke 

University’s Mathematics Department. Contact him at 

sgerber@math.duke.edu.

Erik W. Anderson is a postdoctoral research associate at 

the University of Utah’s Scienti�c Computing and Imaging 

Institute. Contact him at eranders@sci.utah.edu.

Contact department editor Theresa-Marie Rhyne at 

theresamarierhyne@gmail.com.

Information theory and, more speci�cally, entropy have 

increasingly been leveraged as a way to make quantitative 

statements about various properties broadly throughout 

the visualization framework.1,2 For example, researchers 

have applied entropy to measure the amount of informa-

tion in the volume rendering of 3D datasets to determine 

the most informative camera viewpoint or a minimal set of 

representative views of a 3D scene.3 Likewise, for large-scale 

time-varying data, researchers have used entropy to pick 

important time steps or subregions with maximal informa-

tion to enable visualization with limited resources or time.4 

Entropy can also serve to measure quality for evaluation 

and comparison of level-of-detail algorithms for multireso-

lution volume rendering.5 Finally, in �ow �eld and vector 

visualization, researchers have employed entropy both to 

quantify the information present to evaluate a visualization’s 

effectiveness6 and to generate noise re�ecting the amount 

of information in texture-based methods.7

The most popular applications of entropy arise in 

geoscience. For example, uncertainties might arise when 

classifying remotely sensed data into vegetation types or 

modeling geological structures and data assimilation. In 

such cases, entropy encompasses uncertainties in these 

systems and can serve as an axis for parallel coordinates8 

or a color-mapping method.9,10
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