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Abstract 

The chemical sciences are producing an unprecedented amount of large, high-dimensional data sets containing 

chemical structures and associated properties. However, there are currently no algorithms to visualize such data while 

preserving both global and local features with a sufficient level of detail to allow for human inspection and interpreta-

tion. Here, we propose a solution to this problem with a new data visualization method, TMAP, capable of represent-

ing data sets of up to millions of data points and arbitrary high dimensionality as a two-dimensional tree (http://tmap.

gdb.tools ). Visualizations based on TMAP are better suited than t-SNE or UMAP for the exploration and interpretation 

of large data sets due to their tree-like nature, increased local and global neighborhood and structure preservation, 

and the transparency of the methods the algorithm is based on. We apply TMAP to the most used chemistry data sets 

including databases of molecules such as ChEMBL, FDB17, the Natural Products Atlas, DSSTox, as well as to the Mol-

eculeNet benchmark collection of data sets. We also show its broad applicability with further examples from biology, 

particle physics, and literature.
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Introduction
�e recent development of new and often very accessi-

ble frameworks and powerful hardware has enabled the 

implementation of computational methods to generate 

and collect large high dimensional data sets and cre-

ated an ever increasing need to explore as well as under-

stand these data [1–9]. Generally, large high-dimensional 

data sets are matrices where rows are samples and col-

umns are measured variables, each column defining a 

dimension of the space which contains the data. Visual-

izing such data sets is challenging because reducing the 

dimensionality, which is required in order to make the 

data visually interpretable for humans, is both lossy and 

computationally expensive [10].

Large high-dimensional data sets are frequently used 

in the chemical sciences. For instance the ChEMBL 

database ( n = 1, 159, 881 ) of bioactive molecules from 

the scientific literature and their associated biologi-

cal assay data are used daily in the area of drug discov-

ery [11]. Further examples of large databases containing 

molecules include FDB17 (n = 10, 101, 204) ), a fragment-

like subset of the enumerated database GDB17 listing 

theoretically possible molecules up to 17 atoms [12–14], 

and DSSTox ( n = 848, 816 ), containing molecules inves-

tigated for toxicity [15]. Examples of smaller data sets 

include the Natural Products Atlas ( n = 24, 594 ), collect-

ing microbially-derived natural products; [16] Drugbank 

( n = 9300 ), listing molecules marketed or investigated as 

drugs; [17] and the MoleculeNet benchmark, containing 

a collection of 16 data sets of small organic molecules 

[18].

To visualize such databases, simple linear dimension-

ality reduction methods such as principal component 

analysis and similarity mapping readily produce 2D- or 

3D-representations of global features [19–25]. However, 

local features defining the relationships between close or 

even nearest neighbor (NN) molecules, which are very 
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important to understand the structure of data, are mostly 

lost, limiting the applicability of linear dimensionality 

reduction methods for visualization. �e important NN 

relationships are much better preserved using non-linear 

manifold learning algorithms, which assume that the data 

lies on a lower-dimensional manifold embedded within 

the high-dimensional space. Algorithms such as nonlin-

ear principal component analysis (NLPCA), t-distrib-

uted stochastic neighbor embedding (t-SNE), and more 

recently uniform manifold approximation and projection 

(UMAP) are based on this assumption [26–28]. Other 

techniques used are probabilistic generative topographic 

maps (GTM) and self-organizing maps (SOM), which 

are based on artificial neural networks [29, 30]. However, 

these algorithms have time complexities between at least 

O
(

n
1.14

)

 and O
(

n
5
)

 , limiting the size of to be visualized 

data sets [31]. �e same limitations in terms of data set 

size apply when distributing data in a tree by implement-

ing the neighbor joining algorithm or similar methods 

used to create phylogenetic trees [32, 33]. �is limiting 

behavior has been documented by the ChemTreeMap 

tool, which can only visualize up to approximately 10,000 

data points (molecules or clusters of molecules) [34]. Due 

to the described challenges, large scientific data sets are 

generally visualized in aggregated or reduced form [35, 

36].

Here we present an algorithm, named TMAP (Tree 

MAP), to generate and distribute intuitive visualizations 

of large data sets in the order of up to 107 with arbi-

trary dimensionality in a tree. Our method is based on a 

combination of locality sensitive hashing, graph theory, 

and modern web technology which also integrates into 

established data analysis and plotting workflows. �is 

tree-based layout facilitates visual inspection of the data 

with a high resolution by explicitly visualizing the closest 

distance between clusters and the detailed structure of 

clusters through branches and sub-branches. We demon-

strate the performance of TMAP with toy data sets from 

computer graphics and with ChEMBL subsets of different 

size and composition, and show that it surpasses compa-

rable algorithms such as t-SNE and UMAP in terms of 

time and space complexity. We further exemplify the use 

of TMAP for visualizing large high-dimensional data sets 

from chemistry as well as from further scientific fields 

(Table 1).

Methods
Given an arbitrary data set as an input, TMAP encom-

passes four phases: (I) LSH forest indexing [37, 38], 

(II) construction of a c-approximate k-nearest neigh-

bor graph, (III) calculation of a minimum spanning tree 

(MST) of the c-approximate k-nearest neighbor graph 

[39], and (IV) generation of a layout for the resulting 

MST [40].

During phase I, the input data are indexed in an LSH 

forest data structure, enabling c-approximate k-nearest 

neighbor (k-NN) searches with a time complexity sub-

linear in n . Text and binary data are encoded using the 

MinHash algorithm, while integer and floating-point data 

are encoded using a weighted variation of the algorithm 

[41–43]. �e LSH Forest data structure for both Min-

Hash and weighted MinHash data is initialized with the 

number of hash functions d used in encoding the data, 

and the number of prefix trees l . An increase in the val-

ues of both parameters led to an increase in main mem-

ory usage; however, higher values for l also decrease 

query speed. �e effect of parameters d and l on the final 

visualization is shown in Additional file 1: Fig. S1. �e use 

of a combination of (weighted) MinHash and LSH Forest, 

which supports fast estimation of the Jaccard distance 

between two binary sets, has been shown to perform 

very well for molecules [44]. Note that other data struc-

tures and algorithms implementing a variety of different 

distance metrics may show better performance on other 

data and can be used as drop-in replacements of phase I.

In phase II, an undirected weighted c-approximate k

-nearest neighbor graph ( c–k-NNG) is constructed 

from the data points indexed in the LSH forest, where 

an augmented variant of the LSH forest query algorithm 

we previously introduced for virtual screening tasks is 

used to increase efficiency [45]. �e c–k-NNG construc-

tion phase takes two arguments, namely k , the number 

of nearest-neighbors to be searched for, and kc , the fac-

tor used by the augmented query algorithm. �e variant 

of the query algorithm increases the time complexity of 

a single query from O
(

log n
)

 to O
(

k · kc + log n
)

 , result-

ing in an overall time complexity of O
(

n
(

k · kc + log n
))

 , 

where practically k · kc > log n , for the c–k-NNG con-

struction. �e edges of the c–k-NNG are assigned 

the Jaccard distance of their incident vertices as their 

weight. Depending on the distribution and the hash-

ing of the data, the c–k-NNG can be disconnected (1) if 

outliers exist which have a Jaccard distance of 1.0 to all 

other data points and are therefore not connected to any 

other nodes or (2) if, due to highly connected clusters 

of size ≥ k in the Jaccard space, connected components 

are created. However, the following phases are agnostic 

to whether this phase yields a disconnected graph. �e 

effect of parameters k and kc on the final visualization is 

shown in Additional file 1: Fig. S2. Alternatively, an arbi-

trary undirected graph can be supplied to the algorithm 

as a (weighted) edge list.

During phase III, a minimum spanning tree (MST) 

is constructed on the weighted c–k-NNG using 

Kruskal’s algorithm, which represents the central 
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and differentiating phase of the described algorithm. 

Whereas comparable algorithms such as UMAP 

or t-SNE attempt to embed pruned graphs, TMAP 

removes all cycles from the initial graph using the MST 

algorithm, significantly lowering the computational 

complexity of a low dimensional embedding. �e algo-

rithm reaches a globally optimal solution by applying a 

greedy approach of selecting locally optimal solutions 

at each stage—properties which are also desirable in 

data visualization. �e time complexity of Kruskal’s 

algorithm is O
(

E + logV
)

 , rendering this phase negligi-

ble compared to phase II in terms of execution time. In 

the case of a disconnected c–k-NNG, a minimum span-

ning forest is created.

Phase IV lays out the tree on the Euclidean plane. As 

the MST is unrooted and to keep the drawing compact, 

the tree is not visualized by applying a tree but a graph 

layout algorithm. In order to draw MSTs of consider-

able size (millions of vertices), a spring-electrical model 

layout algorithm with multilevel multipole-based force 

approximation is applied. �is algorithm is provided by 

the open graph drawing framework (OGDF), a modu-

lar C++ library [40]. In addition, the use of the OGDF 

allows for effortless adjustments to the graph layout 

Table 1 Data sets visualized using TMAP

Data set Description Data type Size

Toy data sets

 COIL20 Gray-scale images of 20 objects, each rotated 72 × at 5° intervals Images 1440

 MNIST Gray-scale images of handwritten digits Images 70,000

 Fashion MNIST Gray-scale images of fashion items from 10 classes Images 70,000

Chemical compound databases and PDB

 ChEMBL Bioactive molecules with drug-like properties SMILES 1,159,881

 FDB17 and ChEMBL Fragment database (up to 17 atoms) and ChEMBL SMILES 11,261,085

 Natural products atlas Bacterial and fungal natural products SMILES 24,594

 DSSTox U.S. EPA information on toxicity of chemicals SMILES 848,816

 PDB Information on the 3D structures of proteins and nucleic acids Atomic coordinates 131,236

 Drugbank Approved, investigational, experimental, and withdrawn drugs SMILES 9300

MoleculeNet benchmark data sets

 QM8 Subset of GDB-13 with associated QM properties SMILES 21,786

 QM9 Subset of GDB-13 with associated QM properties SMILES 133,885

 ESOL Common organic small molecules with solubility information SMILES 1128

 FreeSolv Calculated and experimental hydration free energy of molecules SMILES 642

 Lipophilicity Experimental results of logD for organic small molecules SMILES 4200

 PCBA PubChem subset with biological activities SMILES 437,929

 MUV PubChem subset for virtual screening validation SMILES 93,087

 HIV Experimental results for HIV replication inhibition SMILES 41,127

 PDBind Binding affinities for ligands in biomolecular complexes SMILES 11,908

 BACE IC50 values against BACE-1 (human β-secretase 1) SMILES 1513

 BBBP Ability of organic molecules to cross the blood–brain barrier SMILES 2039

 Tox21 Toxicity measurements on 12 targets SMILES 7831

 ToxCast Toxicity measurements on more than 600 targets SMILES 8575

 SIDER Adverse drug reactions of a selection of marketed drugs. SMILES 1427

 ClinTox FDA approved drugs that failed clinical trials for toxicity reasons SMILES 1478

Other data sets

 PubMed central Full-text archive of biomedical and life sciences journal literature Text 327,628

 Gutenberg A subset of public domain Project Gutenberg eBooks. Text 3036

 NIPS Abstracts of NIPS conference papers from 1987 to 2015 Text 7241

 RNA sequencing A subset of the PANCAN database Gene expression 801

 ProteomeHD Human proteome co-regulation data Co-regulation scores 5013

 Flowcytometry Data gathered from a flow cytometry experiment Signal intensity 436,877

 MiniBooNE Data gathered by the MiniBooNE particle physics experiment Particle ID 130,065
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algorithm in terms of both aesthetics and computational 

time requirements. Whereas several parameters can be 

configured for the layout phase, only parameter p must 

be adjusted based on the size of the input data set (Addi-

tional file  1: Fig. S3). �is phase constitutes the bottle-

neck regarding computational complexity.

Results and discussion
TMAP performance assessment with toy data sets 

and ChEMBL subsets

�e quality of our TMAP algorithm is first assessed by 

comparing TMAP and UMAP to visualize the common 

benchmarking data sets MNIST, FMNIST, and COIL20 

(Fig.  1). UMAP generally represents clusters as tightly 

packed patches and tries to reach maximal separation 

between them. On the other hand, TMAP visualizes the 

relations between, as well as within, clusters as branches 

and sub-branches. While UMAP can represent the cir-

cular nature of the COIL20 subsets, TMAP cuts the cir-

cular clusters at the edge of largest difference and joins 

subsets through one or more edges of smallest difference 

(Fig. 1a, b). However, the plot shows that this removal of 

local connectivity leads to an untangling of highly similar 

data (shown in dark green, orange, dark red, dark purple, 

and light blue). �is behavior has been assessed and com-

pared to UMAP in Additional file  1: Figures  S4 and S5, 

where it is shown that both TMAP and UMAP have to 

sacrifice locality preservation for more complex exam-

ples. For the MNIST and FMNIST data sets, the tree 

structure results in a higher resolution of both variances 

and errors within clusters as it becomes apparent how 

sub clusters (branches within clusters) are linked and 

which true positives connect to false positives (Fig. 1c–f).

In a second, more applied comparison example, we 

visualize data from ChEMBL using TMAP and UMAP. 

For this analysis molecular structures are encoded using 

ECFP4 (extended connectivity fingerprint up to 4 bonds, 

512-D binary vector), a molecular fingerprint encoding 

circular substructures and which performs well in vir-

tual screening and target prediction [46–48]. We con-

sider a subset St of the top 10,000 ChEMBL compounds 

by insertion date, as well as a random subset Sr of 10,000 

ChEMBL molecules.

Taking the more homogeneous set St as an input, the 

2D-maps produced by each representation, plotted using 

the Python library matplotlib, illustrate that TMAP, 

which distributes clusters in branches and subbranches 

of the MST, produces a much more even distribution of 

compounds on the canvas compared to UMAP, thus ena-

bling better visual resolution (Fig. 2a, b). Furthermore, in 

a visualization of the heterogeneous set Sr , nearest neigh-

bor relationships (locality) are better preserved in TMAP 

compared to UMAP, as illustrated by the positioning 

of the 20 structurally nearest neighbors of compound 

CHEMBL370160 [2, 49] reported as a potent inhibitor 

of human tyrosine-protein kinase SYK. �e 20 structur-

ally similar nearest neighbors are defined as 20 nearest 

neighbors in the original 512-dimensional fingerprint 

space. TMAP directly connects the query compound to 

three of the 20 nearest neighbors, CHEMBL3701630, 

CHEMBL3701611, and CHEMBL38911457, its near-

est, second nearest, and 15th nearest neighbor respec-

tively. �e nearest neighbors 1 through 7 are all within 

a topological distance of 3 around the query (Fig. 2c). In 

contrast, UMAP has positioned nearest neighbors 2, 3, 

9, and 18, among several even more distant data points, 

closer to the query than the nearest neighbor from the 

original space (Fig.  2d). Indeed, TMAP preserves local-

ity in terms of retaining 1-nearest neighbor relationships 

much better than UMAP, applying both topological and 

Euclidean metrics (Fig.  2e, f; Additional file  1: Fig. S6). 

�e quality of the preservation of locality largely depends 

on parameter d , with adjustments to parameters k and kc 

only having a minor influence (Additional file 1: Fig. S7). 

Moreover, TMAP yields reproducible results when run-

ning on identical parameters and input data, whereas 

results of comparable algorithms such as UMAP change 

considerably with every run (Additional file  1: Fig. S8) 

[26].

In terms of calculation times, TMAP and UMAP have 

comparable running time t and memory usage a for small 

random subsets of the 512-D ECFP-encoded ChEMBL 

data set with sizes n = 10, 000 and n = 100, 000 , TMAP 

significantly outperforms UMAP for larger random sub-

sets ( n = 500, 000 and n = 1, 000, 000 ) (Fig. 2h, i). Further 

insight into the computational behavior of TMAP is pro-

vided by analyzing running times for the different phases 

based on a larger subset ( n = 1, 000, 000 ) of the ECFP4-

encoded ChEMBL data set (Fig.  2g). During phase I of 

the algorithm, which accounts for 180s of the execution 

time and approximately 5GB of main memory usage, data 

is loaded and indexed in the LSH Forest data structure in 

chunks of 100,000, as expressed by 10 distinct jumps in 

memory consumption. �e construction of the c–k-NNG 

during phase II requires a negligible amount of main 

memory and takes approximately 110s . During 10  s of 

execution time, MST creation (phase III) occupies a fur-

ther 2GB of main memory of which approximately 1GB is 

retained to store the tree data structure. �e graph layout 

algorithm (phase IV) requires 2GB throughout 55s , after 

which the algorithm completes with a total wall clock run 

time of 355s and peak main memory usage of 8.553GB.

Note that TMAP supports Jaccard similarity esti-

mation through MinHash and weighted MinHash for 

binary and weighted sets, respectively. While the Jac-

card metric is very suitable for chemical similarity 
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Fig. 1 Comparison between TMAP and UMAP on benchmark data sets. Please use the interactive versions of the TMAP visualizations at http://

tmap.gdb.tools  to see images associated with each point on the map. TMAP explicitly visualizes the relations between as well as within clusters. a, b 

While UMAP represents the circular nature of the COIL20 subsets, TMAP cuts the circular clusters at the edge of largest difference and joins clusters 

through an edge of smallest difference. c–f For the MNIST and FMNIST data sets, the tree structure allows for a higher resolution of both variances 

and errors within clusters as it becomes apparent how sub clusters (branches within clusters) are linked and which true positives connect to false 

positives. The image data of all three sets was binarized using the average intensity per image as a threshold

http://tmap.gdb.tools
http://tmap.gdb.tools
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calculations based on molecular fingerprints, the met-

ric may not be the best option available to problems 

presented by other data sets. However, there exists a 

wide range of LSH families supporting distance and 

similarity metrics such as Hamming distance, lp dis-

tance, Levenshtein distance, or cosine similarity, which 

are compatible with TMAP [50, 51]. Furthermore, the 

modularity of TMAP allows to plug in arbitrary near-

est-neighbor-graph creation techniques or load existing 

graphs from files.

TMAPs of small molecule data sets: ChEMBL, FDB17, 

DSSTox, and the Natural Products Atlas

�e high performance and relatively low memory usage 

of TMAP, as well as the ability to generate highly detailed 

and interpretable representations of high-dimensional 

data sets, is illustrated here by interactive visualization of 

a series of small molecule data sets available in the public 

domain. In these examples we use MHFP6 (512 MinHash 

permutations), a molecular fingerprint related to ECFP4 

but with better performance for virtual screening tasks 

Fig. 2 Comparing TMAP and UMAP for visualizing ChEMBL. The first n compounds St (a, b, e) and a random sample Sr (c, d, f), each of size 

n = 10, 000 , were drawn from the 512-D ECFP-encoded ChEMBL data set to visualize the distribution of biological entity classes and k-nearest 

neighbors respectively. a TMAP lays out the data as a single connected tree, whereas (b) UMAP draws what appears to be a highly disconnected 

graph, with the connection between components becoming impossible to assert. TMAP keeps the intra- and inter-cluster distances at the same 

magnitude, increasing the visual resolution of the plot. c, d The 20 nearest neighbors of a randomly selected compound from a random sample. 

c TMAP directly connects the query compound to three of the 20 nearest neighbors (1, 2, 15); nearest neighbors 1 through 7 are all within a 

topological distance of 3 around the query compound. d The closest nearest neighbors of the same query compound in the UMAP visualization 

are true nearest neighbors 2, 3, 18, 9, and 1, with 1 being the farthest of the five. e, f Ranked distances from true nearest neighbor in original high 

dimensional space after embedding based on topological and Euclidean distance for data sets St and Sr respectively. g Computing the coordinates 

for a random sample ( n = 1, 000, 000 ) highlights the running time behavior of TMAP and allows an inspection of the time and space requirements 

of the different phases of the algorithm. Four random samples increasing in size ( n = 10, 000 , n = 100, 000 , n = 500, 000 , and n = 1, 000, 000 ) 

detail the differences in memory usage (h) and running time (i) between TMAP and UMAP ( tTMAP = 4.865s , aTMAP = 0.223GB ; tUMAP = 20.985s , 

aUMAP = 0.383GB and tTMAP = 33.485s , aTMAP = 1.12GB ; tUMAP = 115.661s , aUMAP = 2.488GB respectively) ( tTMAP = 175.89s , aTMAP = 4.521GB ; 

tUMAP = 3, 577.768s , aUMAP = 18.854GB and tTMAP = 354.682s , aTMAP = 8.553GB ; tUMAP = 41, 325.944s , aUMAP = 48.507GB respectively)
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and the ability to be directly indexed in an LSH Forest 

data structure, which considerably speeds up computa-

tion for large data sets [45].

As a first example, we discuss the TMAP of the full data 

set of the ChEMBL database containing the 1.13 million 

ChEMBL compounds associated with biological assay 

data. TMAP completes the calculation within 613 s with 

a peak memory usage of 20.562  GB. Note that approxi-

mately half of the main memory usage is accounted for 

by SMILES, activities, and biological entity classes which 

are loaded for later use in the visualization. To facili-

tate data analysis, the coordinates computed by TMAP 

are exported as an interactive portable HTML file using 

Faerun, where molecules are displayed using the JavaS-

cript library SmilesDrawer (Fig. 3a) [25, 52].

Analyzing the distribution of molecules on the tree 

shows that TMAP groups molecules according to their 

structure and their biological activity, accurately reflect-

ing similarities calculated in the high-dimensional 

MHFP6 space. �is is well illustrated for a subset of the 

map (Fig. 3a, insert). In this area of the map, data points 

in cyan indicate molecules with a high binding affin-

ity for serotonin, norepinephrine, and dopamine neu-

rotransmitters in two connected branches (right side of 

inset), while data points in orange show inhibitors of the 

phenylethanolamine N-methyltransferase (PNMT) (left 

side of inset), and red and dark blue data points indicate 

nicotinic acetylcholine receptor (nAChRs) ligands and 

cytochrome p450s (CYPs) inhibitors, respectively.

As a second example, we visualize the ChEMBL set 

merged with FDB17 ( n = 10, 101, 204 ) into a superset of 

size n = 11, 261, 085 (Fig. 3b), which corresponds to the 

largest data set that TMAP can successfully handle. As 

above, the TMAP 2D-layout accurately reflects structural 

and functional similarities computed in the high-dimen-

sional MHFP6 space. In this TMAP visualization, the 

majority of ChEMBL compounds accumulate in closely 

connected clusters (branches) due to the prevalence of 

aromatic carbocycles. A notable exception is a relatively 

sizable branch of steroids and steroid-like compounds, 

which is connected to a branch of FDB17 molecules 

containing non-aromatic 5-membered carbocycles and 

ketones (Fig. 3b, insert). Many more detailed insights can 

be gained by inspecting the interactive map in Faerun 

(http://tmap-fdb.gdb.tools ).

Further examples include MHFP6-encoded com-

pounds from the Distributed Structure-Searchable Tox-

icity (DSSTox) Database ( n = 848, 816 ) and the Natural 

Products Atlas ( n = 24, 594 ). Visualizing DSSTox and 

coloring the resulting tree by toxicity rating, TMAP 

creates several subtrees and branches representing 

structural regions with a high incidence of highly toxic 

compounds (shown in red, Fig. 3c). An example of such 

a subtree contains naphthalenes and other polycyclic 

aromatic hydrocarbons (Fig. 3c, insert). �e TMAP tree 

of the Natural Products Atlas was colored according to 

origin genus and reveals that branches and subbranches 

containing distinct substructures usually correlate with 

a certain genus such as various combinations of phenols, 

fused cyclopentanes, lactones and steroids produced by 

the fungi genus Ganoderma (colored purple in Fig.  3d, 

inset).

Visualization of the MoleculeNet benchmark data sets

We further illustrate TMAP to visualize the Molecu-

leNet, a benchmark for molecular machine learning 

which has found wide adaption in cheminformatics and 

encompasses 16 data sets ranging in size and composition 

(Table 1) [18]. As for the other small molecule data sets 

above, we computed MHFP6 fingerprints of the associ-

ated molecules and the corresponding TMAPs, which we 

then color-coded according to various numerical values 

available in the benchmarks. �e procedure was applied 

with all MoleculeNet data sets except for QM7/b, where 

no SMILES have been provided.

�e resulting TMAP representations, accessible at 

the TMAP website (http://tmap.gdb.tools ), reveal the 

detailed structure of the data sets as well as the behav-

iour of methods applied to these data sets as a func-

tion of the chemical structures of the molecules. For 

(See figure on next page.)

Fig. 3 TMAP visualization of ChEMBL, FDB17, DSSTox, and the Natural Products Atlas in the MHFP6 chemical space. Please use the interactive 

versions at https ://tmap.gdb.tools  to visualize molecular structures associated with each point. a Visualization of all ChEMBL compounds 

associated with biological assay data ( n = 1, 159, 881 ) colored by target class. The inset shows molecules with a high binding affinity for serotonin, 

norepinephrine, and dopamine neurotransmitters (cyan); inhibitors of the phenylethanolamine N-methyltransferase (orange); and structurally 

related compounds with high binding affinities for nicotinic acetylcholine receptors and inhibitory effects on cytochrome p450s (red, dark blue). 

b The ChEMBL data set was merged with fragment database (FDB17) compounds ( n = 11, 261, 085 ) and visualized. FDB17 molecules are shown 

in light gray. The inset shows a branch of steroid and steroid-like ChEMBL compounds, as well as dominantly FDB17 branches which are sparsely 

populated by ChEMBL molecules. c Visualization of DSSTox compounds colored by reported toxicity level. The inset shows a subtree containing 

a high number of toxic compounds structurally similar or related to naphthalenes and other polycyclic aromatic hydrocarbons. d The Natural 

Products Atlas chemical space colored by origin genus of the 9 largest groups. The inset shows that structurally similar compounds are grouped 

into distinct branches and subbranches and are usually produced by plants and fungi from the same genus

http://tmap-fdb.gdb.tools
http://tmap.gdb.tools
https://tmap.gdb.tools
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example, TMAPs of the QM8 and QM9 ( n = 21, 786 

and n = 133, 885 ), which contain small molecules and 

DFT-modelled parameters, reveal relationships between 

molecular structures and the various computed phys-

ico-chemical values. For instance the TMAP of the 

QM8 data set color-coded by the oscillator strengths of 

the lowest two singlet electronic states reveals how the 

value correlates with molecular structure and explains 

the performance differences in machine learning mod-

els trained on Coulomb matrices versus those trained 
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on structure-sensitive molecular fingerprints [53]. In 

the case of the ESOL data set containing measured and 

calculated water solubility values of common small mol-

ecules ( n = 1128 ), its TMAP color-coded with the differ-

ence between computed and measured values reveals the 

limitation of the ESOL model when estimating solubil-

ity of polycyclic aromatic hydrocarbons and compounds 

containing pyridines. For the FreeSolv data set ( n = 642 ) 

containing small molecules and their measured and cal-

culated hydration free energy in water, the TMAP visu-

alization hints at possible limitations of the method when 

calculating hydration free energies of sugars. Finally, for 

the MUV data set ( n = 93, 087 ), which contains active 

small drug-like molecules against 17 different protein tar-

gets mixed in each case with inactive decoy molecules, 

the various TMAPs reveal differences in the structural 

distribution of actives among decoys. Actives are usu-

ally well distributed but appear to form clusters in certain 

subsets (e.g. MUV-548 and MUV-846), explaining the 

generally higher performance of fingerprint benchmarks 

for these subsets [47].

Application to other scienti�c data sets

We further illustrate the general applicability of TMAP 

to visualize data sets from the fields of linguistics, biol-

ogy, and particle physics. All produced maps are available 

as interactive Faerun plots on the TMAP website (http://

tmap.gdb.tools ).

Our first example concerns visualization of the 

RCSB Protein Data Bank, which contains experimental 

3D-structures of proteins and nucleic acids ( n = 131, 236 ) 

[54]. �e PDB files were extracted from the Protein Data 

Bank and encoded using the protein shape fingerprint 

3DP (136-D integer vector, 256 weighted MinHash sam-

ples) 3DP encodes the structural shape of large molecules 

stored as PDB files based on through-space distances of 

atoms [22]. Processing data extracted from the PDB and 

indexed using a weighted variant of MinHash, demon-

strates the ability of TMAP to visualize both global and 

local structure, improving on previous efforts on the vis-

ualization of the database [22, 55]. �e global structure 

of the 3DP-encoded PDB data is dominated by the size 

(heavy atom count) of the proteins (Fig. 4a), on the other 

hand, the local structure is defined by properties such as 

the fraction of negative charges (Fig. 4b).

As an additional example from biology, we consider the 

PANCAN data set ( n = 800 , d = 20, 531 ), which consists 

of gene expressions of patients having different types of 

tumors (PRAD, KIRC, LUAD, COAD, and BRCA), ran-

domly extracted from the cancer genome atlas database 

[56]. Here we index the PANCAN data directly using 

the LSH Forest data structure and weighted MinHash. 

�e output produced by processing the PANCAN data 

set displays the successful differentiation of tumor types 

based on RNA sequencing data by the algorithm (Fig. 4c). 

We also visualize the ProteomeHD data set using TMAP 

[57]. �is data set consists of co-regulation scores of 5013 

proteins, annotated with their respective cellular loca-

tion. In addition to the ProteomeHD data set, Kustat-

scher et  al. also released an R script to create a map of 

the set using t-SNE which took a total of 400 s to com-

plete; in contrast, TMAP visualized the data set within 

32 s (Fig. 4d), successfully clustering proteins by their cel-

lular location based on co-regulation scores. As a further 

biology example, our TMAP webpage also features flow 

cytometry measurements ( n = 436, 877, d = 14 ), exem-

plifying the methods application for the visualization of 

relatively low dimensional data [17, 58].

As an example from physics, we represent the Mini-

BooNE data set ( n = 130, 065 , d = 50 ), which consists 

of measurements extracted from Fermilab’s MiniBooNE 

experiment and contains the detection of signal (electron 

neutrinos) and background (muon neutrinos) events [59]. 

As the attributes in MiniBooNE are real numbers, we use 

the Annoy indexing library which supports the cosine 

metric in phase I of the algorithm to index the data for k

-NNG construction, which demonstrates the modularity 

of TMAP [60]. �is example reflects the independence 

of the MST and layout phases of the algorithm from the 

input data, displaying the distribution of the signal over 

the background data (Fig. 5a).

Outside of the natural sciences, we exemplify TMAP 

to visualize the GUTENBERG set as an example of a 

data set from linguistics. �is data set features a selec-

tion of n = 3036 books by 142 authors written in English 

[61]. To analyze this data, we define a book fingerprint 

as a dense-form binary vector indicating which words 

from the universe of all words extracted from all books 

occurred at least once in a given book (yielding a dimen-

sionality of d = 1, 217, 078 ), and index this book finger-

print using the LSH Forest data structure with MinHash. 

�e visualization of the GUTENBERG data set exempli-

fies the ability of TMAP to handle input with extremely 

high dimensionality ( d = 1, 217, 078) efficiently (Fig. 5b). 

�e works of different authors tend to populate specific 

branches, with notable expected exceptions such as the 

autobiography of Charles Darwin, which does not lie on 

the same branch as all his other works. Meanwhile, the 

works of Alfred Russel Wallace are found on subbranches 

of the Darwin branch.

Related to linguistics, the TMAP webpage further 

features a map of the distribution of different scien-

tific journals (Nature, Cell, Angewandte Chemie, Sci-

ence, the Journal of the American Chemical Society, 

and Demography) over the entire PubMed article space 

( n = 327, 628, d = 1, 633, 762 ), perceiving specialization, 

http://tmap.gdb.tools
http://tmap.gdb.tools


Page 10 of 13Probst and Reymond  J Cheminform           (2020) 12:12 

Fig. 4 TMAP visualizations of the RCSB Protein Data Bank (PDB), PANCAN, and ProteomeHD data. For a and b, please use the interactive versions 

at http://pdb-tmap.gdb.tools  to visualize protein structures associated with each point. 3DP-encoded PDB entries visualized using TMAP with 

weighted MinHash indexing, the color bars show the log–log distribution of the property values. a Colored according to the macromolecular size 

(heavy atom count). The resulting map reflects the size-sensitivity of the 3DP fingerprint. b Colored according to the fraction of negative charges 

in the molecules. Macromolecules with a high fraction of negatively charged atoms, predominantly nucleic acids, are visible as clusters of red 

branches. c The PANCAN data set (n = 801, d = 20,531) consists of gene expressions data of five types of tumors (PRAD, KIRC, LUAD, COAD, and 

BRCA) and was indexed using a weighted variant of the MinHash algorithm. d Visualization of the ProteomeHD data set (n = 5013, d = 5013) based 

on co-regulation scores of proteins. The data points have been colored according to the associated cellular location

http://pdb-tmap.gdb.tools
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diversification, and overlaps; as well as a TMAP of the 

NeurIPS conference papers ( n = 7, 241, d = 225, 423 ), 

visualizing the increase in occurrence of the word “deep” 

in conference paper abstracts over time (1987–2016).

Conclusion
In this study, we introduced TMAP as a visualization 

method for very large, high-dimensional data sets ena-

bling high data interpretability by preserving and visual-

izing both global and local features. By using TMAP in 

combination with the MHFP6 fingerprint, we can visual-

ize databases of millions of organic small molecules and 

the associated property data with a high degree of reso-

lution, which was not possible with previous methods. 

TMAP is also well-suited to visualize arbitrary data sets 

such as images, text, or RNA-seq data, hinting at its use-

fulness in a wide range of fields including computational 

linguistics or biology.

TMAP excels with its low memory usage and running 

time, with performance superior to other visualization 

algorithms such as t-SNE, UMAP or PCA. By adjusting 

the available parameters and leveraging output quality 

and memory usage, TMAP does not require specialized 

hardware for high-quality visualizations of data sets con-

taining millions of data points. Most importantly, TMAP 

generates visualizations with an empirical sub-linear time 

complexity of O
(

n
0.931

)

 , allowing to visualize much larger 

high dimensional data sets than previous methods.

All the TMAP visualizations presented, including 

installation and usage instructions, are available as inter-

active online versions (http://tmap.gdb.tools ). �e source 

code for TMAP is available on GitHub (https ://githu 

b.com/reymo nd-group /tmap) and a Python package can 

be obtained using the conda package manager.

Supplementary information
Supplementary information accompanies this paper at https ://doi.

org/10.1186/s1332 1-020-0416-x.

Additional �le 1. Additional figures.
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Fig. 5 Visualizing linguistics, RNA sequencing, and particle physics data sets. a The MiniBooNE data set ( n = 130, 065 , d = 50 ) consists of 

measurements extracted from Fermilab’s MiniBooNE experiment. TMAP visualizes the distribution of the signal data among the background. b The 

GUTENBERG data set is a selection of books by 142 authors ( n = 3036, d = 1, 217, 078) . The works of five different authors are shown to occupy 

distinct branches. Interactive version of these maps and further examples can be found at http://tmap.gdb.tools 
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