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Abstract

Visual data mining techniques have proven to be of high value in exploratory data analysis and they also have a

high potential for mining large databases. In this article, we describe and evaluate a new visualization-based ap-

proach to mining large databases. The basic idea of our visual data mining techniques is to represent as many data

items as possible on the screen at the same time by mapping each data value to a pixel of the screen and arranging

the pixels adequately. The major goal of this article is to evaluate our visual data mining techniques and to compare

them to other well-known visualization techniques for multidimensional data: the parallel coordinate and stick fig-

ure visualization techniques. For the evaluation of visual data mining techniques, in the first place the perception

of properties of the data counts, and only in the second place the CPU time and the number of secondary storage

accesses are important. In addition to testing the visualization techniques using real data, we developed a testing

environment for database visualizations similar to the benchmark approach used for comparing the performance of

database systems. The testing environment allows the generation of test data sets with predefined data characteristics

which are important for comparing the perceptual abilities of visual data mining techniques.

Keywords: Data Mining, Explorative Data Analysis, Visualizing Large Databases, Visualizing Multidimensional

and Multivariate Data

1. Introduction

Having the right information at the right time is crucial for making the right decisions. Because of the fast tech-

nological progress, the amount of information which may be of interest for making decisions increases very fast.

One reason for the ever increasing stream of data is the automation of activities in all areas, including business,

engineering, science, and government. Today, even simple transactions, such as paying by credit card or using the

telephone, are typically recorded by using computers. Test series in physics, chemistry, and medicine generate

large amounts of data which are collected automatically via sensors and monitoring systems. Even larger amounts

of data are collected by satellite observation systems which are expected to generate one terabyte of data every

day in the near future. But finding the valuable information hidden in them, is like searching a pin in a haystack.

Very large amounts of data are an important resource, but most of the time it is very hard to find the relevant infor-

mation.

‘Data Mining’ may be defined as the (non-trivial) process of searching and analyzing data in order to find implicit

but potentially useful information [1]. Let D ={d1, ..., dn} be the data set to be analyzed. Then, the data mining process

may be described as the process of finding
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• a subset D’ of D and

• hypotheses HU (D’, C) about D’

that a user U considers useful in an application context C.

Note that D’ may not only have fewer data elements than D, but it may also have a lower dimensionality (m’).

Since in databases the data is often partitioned into relations or object classes, D may be considered as a union of re-

lations R1, ..., Rk ( ), each having its own dimensionality (m1, ..., mk). The hypotheses expressing inter-

esting aspects of the data may deal with the whole database or with a single relation (D’ = D or D’ = Ri); they may

deal with real subsets of the database (  and ) or with single exceptional

data items, so-called hot spots (  or sufficiently small when compared to |D| ). Among others,

hypotheses may be

• properties that hold for all or most ei ∈  D’, ( ),

• classifications of D’ into classes Ci with different properties Pi

[ Pi(e1) ≠ Pj(e2) ⇒  e1 ∈ Ci ∧  e2 ∈ Cj ∧  i ≠ j ],

• functional dependencies F or relationships R between two or more dimensions

[ di1 = F(di2, ..., dil) or  R(di1, ..., dil) , l ≤ m ].

The definition of data mining can be further formalized, e.g. by defining a hypothesis description language, a

context description formalism and so on. The users and their notion of ‘usefulness’, however, can hardly be formal-

ized since ‘usefulness’ not only depends on the changing knowledge of the user and the application domain, but it

also includes some notion of creativity and users may not be able to define their usefulness criteria. On the other

hand, if a data mining tool helps the user to find useful D’ and to find and verify hypotheses, then it may not be

important to have the hypothesis, the context and so on formally specified. All these aspects are present in the us-

ers’ minds who will also be able to express and communicate their ideas towards other humans.

Our definition of data mining is a quite broad definition which does not only include the work done in the area

of data mining and knowledge discovery, but also relates to a wide range of other research areas including multi-

variate statistics (principal component analysis, cluster analysis, and multidimensional scaling [2]), database inter-

faces (cooperative database interfaces [3], interfaces for imprecise querying [4], intelligent data browsing [5]), and

information retrieval (approximate matching algorithms [6] [7]). The work done in data mining focuses on the

semi-automatic extraction of knowledge. In all mentioned areas, important advances have been made over the last

years. Many novel data mining techniques have been developed and several advanced data mining systems have

been implemented [1] [8]. Nowadays, however, only a limited number of approaches work for very large amounts

of data (millions of data items) and little interest has been given to noisy data [8]. Examples for techniques that

work for very large data sets are DHP [9], Apriori [10], and DBLearn [11], and examples for techniques that also

work for noisy data are DBLearn [11] and CLARANS [12].

An interesting observation is that all mentioned techniques work fully automatically but need to have a-priori de-

fined tasks. The tasks are a specific type of hypothesis and the goal of the algorithms is to find quantitative rules

D Ri
i 1=

k

∪=

D ′ D⊂ with D ′ D« D ′ sufficiently large

D ′ D⊂ and D ′ 1=

D ′ D⊆
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that make the hypotheses more specific and allow the user to confirm or reject them. Task-oriented data mining is

important but it is also important to develop techniques for data-driven hypotheses generation. For this purpose, it

is necessary to include the human in the data mining process and combine the flexibility, creativity, and general

knowledge of the human with the enormous storage capacity and the computational power of today’s computers.

In particular, the human’s unmatched abilities of perception enable the users to analyze complex events within a

short time, to recognize important information, and to make decisions. The human perceptual system processes dif-

ferent types of data in a very flexible way, automatically recognizing unusual properties while at the same time ig-

noring well-known properties. The human handles vague descriptions and imprecise knowledge easier and better

than today’s computer systems and, using general knowledge, easily draws complex conclusions.

Our approach to data mining therefore aims at integrating the human in the data mining process and applying its

abilities to the large data sets available in today’s computer systems. For this purpose, techniques which provide a

good overview of the data and use the possibilities of visual representation for displaying large amounts of multi-

dimensional data are especially important. The basic idea of our new visual data mining techniques for multidi-

mensional data is to represent as many data items as possible on the display at the same time by mapping each data

value to one pixel of the screen and arranging the pixels adequately. The color of the pixel corresponds to the data

value or the distance between the data value and a given query value. Different visual data mining techniques are

available for the different stages of the data mining process. In using our visual data mining techniques, the possi-

bility to directly interact with the visualizations is important. In the process of hypotheses generation, the user is

guided by the visual feedback of the visualizations and quickly learns more about the properties of the data in the

database.

Since the reader is not assumed to be familiar with visual data mining techniques, in section 2 we give a brief

general survey of visualization techniques for multidimensional multivariate data. We classify the existing tech-

niques into five groups: pixel-oriented, geometric, icon-based, hierarchical, and graph-based techniques. In

section 3, we provide a detailed evaluation and comparison of several visual data mining techniques including pixel-

oriented, geometric and icon-based techniques. In addition to testing the techniques using real data

(cf. subsection 3.1), we developed a testing environment for database visualizations similar to the benchmark ap-

proach used for comparing the performance of databases (cf. subsections 3.2 and 3.3). For the evaluation of visual

data mining techniques, the perception of properties and correlations of the data is more important than the CPU

times or the number of secondary storage accesses. Still, the interactivity of the system is essential and therefore,

in section 4, we analyze the time performance of our algorithms. Section 5 summarizes our work and points out

some of the open problems for future work.

For our considerations, we assume a simple structure of the database as we may find it in the relational model.

This is adequate for most of the considered applications, because very large amounts of data are typically managed

with the aid of relational systems. Our visual data mining techniques, however, can also be used for visually mining

large amounts of data stored in object-oriented or other types of databases.
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2. Techniques for Visualizing Large Amounts of Multidimensional Data

Visualization of data which have some inherent two- or three-dimensional semantics has been done even before

computers were used to create visualizations. In the well-known books [13] [14], Edward R. Tufte provides many

examples of visualization techniques that have been used for many years. Since computers are used to create visu-

alizations, many novel visualization techniques have been developed and existing techniques have been extended

to work for larger data sets and make the displays interactive. For most of the data stored in databases, however,

there is no standard mapping into the Cartesian coordinate system, since the data has no inherent two- or three-

dimensional semantics. In general, relational databases can be seen as multidimensional data sets with the attributes

of the database corresponding to the dimensions. There are several well-known techniques for visualizing multidi-

mensional data sets: scatterplot matrices and coplots [15] [16], prosection matrices [17], parallel coordinates [18]

[19], projection pursuit [20], and other geometric projection techniques (e.g., hyperbox [21] and hyperslice [22]),

icon-based techniques (e.g., [23] [24]), hierarchical techniques (e.g., [25] [26] [27]), graph-based techniques (e.g.,

[28] [29] [30]), dynamic techniques (e.g., [31] [32] [33]), pixel-oriented techniques (e.g., [34] [35] [36]), and com-

binations hereof (e.g., [37] [38]). The research also resulted in data exploration and analysis systems which imple-

ment some of the mentioned techniques. Examples include statistical data analysis packages such as S Plus/Trellis

[39], XGobi [40], and Data Desk [41], visualization oriented systems such as ExVis [42], XmdvTool [42], and IBM’s

Parallel Visual Explorer, as well as database oriented systems such as TreeViz [27], the Information Visualization

and Exploration Environment (IVEE)[44], and the VisDB system [45]. In the following, we briefly classify and

describe some important techniques which are suitable for visually mining large databases.

2.1 Pixel-oriented Techniques

The basic idea of pixel-oriented techniques is to map each data value to a colored pixel and present the data val-

ues belonging to one attribute in separate windows (cf. Figure 1). Since in general our techniques use only one pix-

el per data value, the techniques allow us to visualize the largest amount of data, which is possible on current dis-

plays (up to about 1,000,000 data values). If each data value is represented by one pixel, the main question is how

to arrange the pixels on the screen. Our pixel-oriented techniques use different arrangements for different purposes.

If a user wants to visualize a large data set, the user may use a query-independent visualization technique which

sorts the data according to some attribute(s) and uses a screen-filling pattern to arrange the data values on the dis-

play. The query-independent visualization techniques are especially useful for data with a natural ordering accord-

ing to one attribute (e.g., time series data). However, if there is no natural ordering of the data and the main goal is

an interactive exploration of the database, the user will be more interested in feedback to some query. In this case,

the user may turn to the query-dependent visualization techniques which visualize the relevance of the data items

with respect to a query. Instead of directly mapping the data values to color, the query-dependent visualization

techniques calculate the distances between data and query values, combine the distances for each data item into an

overall distance, and visualize the distances for the attributes and the overall distance sorted according to the over-

all distance. The arrangement of the data items centers the most relevant data items in the middle of the window,

and less relevant data items are arranged in a spiral-shape to the outside of the window.
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All pixel-oriented techniques partition the screen into multiple windows. For data sets with m attributes (dimen-

sions), the screen is partitioned into m windows — one for each of the attributes. In case of the query-dependent

techniques, an additional (m+1)th window is provided for the overall distance. Inside the windows, the data values

are arranged according to the given overall sorting which may be data-driven for the query-independent techniques

or query-driven for the query-dependent techniques. Correlations, functional dependencies, and other interesting

relationships between attributes may be detected by relating corresponding regions in the multiple windows.

Query-Independent Pixel-oriented Techniques

Simple query-independent arrangements are to arrange the data from left to right in a line-by-line fashion or top-

down in a column-by-column fashion. If these arrangements are done pixelwise, in general, the resulting visualiza-

tions do not provide useful results. More useful are techniques which provide a better clustering of closely related

data items such as space-filling curves (e.g., the well-known curves by Peano & Hilbert [46] [47] and Morton [48]).

For data mining even more important are techniques that provide nice clustering properties as well as an arrange-

ment which is semantically meaningful. An example for a technique which has these properties is the recursive pat-

tern technique. The recursive pattern is based on a generic recursive scheme which allows the user to influence the

arrangement of data items.

It is based on a simple back and forth arrangement: First, a certain number of elements is arranged from left to

right, then below backwards from right to left, then again forward from left to right, and so on. The same basic

arrangement is done on all recursion levels with the only difference that the basic elements which are arranged on

level i are the patterns resulting from level(i-1)-arrangements. Let wi be the number of elements arranged in the left-

right direction on recursion level i and hi be the number of rows on recursion level i. On recursion level i (i ≥ 1),

the algorithm draws wi level(i-1)-patterns hi times alternately to the right and to the left. The pattern on recursion

level i consists of  level(i-1)-patterns, and the maximum number of pixels that can be presented on recursion

level k is given by . An example for a recursive pattern visualization of a database containing the 100

stocks of the FAZ index (Frankfurt Stock Index) from 20 years of stock price data (altogether 532,900 data values)

can be found in [36].

Query-Dependent Pixel-oriented Techniques

The idea of the query-dependent visualization techniques is to visualize the data in the context of a specific user

query to give the users feedback on their queries and direct their search. Instead of directly mapping attribute values

to colors, the distances of attribute values to the query are mapped to colors. To describe the idea of the query-de-

pendent techniques, we view the relations of a relational database as sets of tuples (a1, a2, ..., ak) with a1, a2, ..., ak

denoting the attribute values of a data item. Simple queries against the database can be described as regions in the

k-dimensional space defined by the k attributes of the relation. If exactly one query value is specified for each at-

tribute, the query corresponds to a point in k-dimensional space; if a query range is specified for each attribute, the

query corresponds to a region in k-dimensional space. The data items which are within the query region form the

result of the query. In most cases, the number of results cannot be determined a priori; the resulting data set may

wi hi×

wi hi×
i 1=

k∏
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be quite large, or it may even be empty. In both cases, it is difficult for the user to understand the result and modify

the query accordingly. To give the user more feedback on the query, our visual data mining techniques do not only

present the data items which are within the query region, but also those which are ‘close’ to the query region and

only approximately fulfill the query. For determining the approximate results, distances between the data and query

values are calculated. The distance functions are data type and application dependent. For numeric types such as

integer or real and other metric types such as date, the distance of two values is easily determined by their numerical

difference. For other types such as strings, multiple distance functions such as the lexicographical difference, char-

acter-wise difference, substring difference, or even some kind of phonetic difference may be useful. The distance

calculation yields distance tuples (d1, d2, ..., dk) which denote the distances of the data to the query. We extend the

distance tuples by a distance value dk+1, denoting the overall distance of a data item to the query. The value of dk+1

is zero if the data item is within the query region; otherwise dk+1 provides the distance of the data item to the query

region. In combining the distance values (d1, d2, ..., dk) into the overall distance value dk+1, user-provided weighting

factors (w1, w2, ..., wk) are used to weight the distance values according to their importance. The distance tuples

(d1, d2, ..., dk, dk+1) are sorted according to the overall distance dk+1. Then the distance tuples are mapped to color.

In this step, the value ranges for each of the attributes and for the overall distance are mapped to a colorscale which

has been specifically designed for our visual data mining techniques. Note that the human visual system has a non

linear response to luminance and spectral content. Incorrect use of color can hide existing relations between vari-

ables, and introduce artifacts. It is therefore important to use a colorscale which is perceptually equally spaced [49].

Our colorscale uses yellow to depict the distance ‘zero’ and a decreasing lightness to depict increasing distance

values. The colors for approximate results range from green over blue and red to almost black. For details about

our color mapping, the reader is referred to [50].

Since the focus of the query-dependent techniques is on the relevance of the data items with respect to the query,

different arrangements of the pixels are appropriate. In developing the system, we experimented with several ar-

rangements such as the left-right or top-down arrangements. We found that for visualizing the results for a database

query, it seems to be most natural to present the data items with highest relevance to the query in the center of the

display. Our first approach described in [35] [51] was to arrange the data items with lower relevances in a rectan-

gular spiral shape around the center. The generalized spiral and axes techniques presented in this paper are a gen-

eralization of those techniques. Instead of arranging the data in a rectangular spiral shape, the curve is extended to

a generic spiral form which may have a Snake-, Peano-Hilbert-, or Morton-like local pattern (cf. Figure 2) of a cer-

tain degree (1, 2, 4, 8, 16). The advantage of the generalized spiral and axes techniques is that the degree of clus-

tering is higher. In case of the generalized spiral technique, the one hundred percent correct answers are presented

in the middle of the window and the approximate answers sorted according to their overall distance (or relevance)

in a generalized spiral form around this region. As for the query-independent visualization techniques, a separate

visualization for each of the selection predicates (attributes) is generated (cf. Figure 1). An additional window

shows the overall distances. In all of the windows, we place the pixels for each data item at the same position as

the overall distance for the data item in the overall distance window is located. By relating corresponding regions
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in the different windows, the user is able to perceive data characteristics such as multidimensional clusters or cor-

relations. Additionally, the separate windows for each of the selection predicates provide important feedback to the

user; for example, on the restrictiveness of each of the selection predicates and on single exceptional data items.

Examples of spiral visualizations are provided in section 3. The axes technique improves the spiral technique by

including some feedback on the direction of the distance into the visualization. The basic idea is to assign two at-

tributes to the axes and to arrange the data items according to the direction of the distance; for one attribute negative

distances are arranged to the left, positive ones to the right and for the other attribute negative distances are ar-

ranged to the bottom, positive ones to the top (cf. Figure 3). As in case of the spiral, different local patterns (Snake,

Peano-Hilbert, Morton) of different degree (1, 2, 4, 8, 16) may be used. The partitioning of the data into four sub-

sets provides additional information on the position of data items with respect to the attributes assigned to the axes.

Since the quadrants which correspond to the four subsets are not equally filled, the number of data items which may

be visualized is slightly lower. This, however, is the price for the higher expressiveness of the resulting visualiza-

tions. An example of an axes visualization is provided in subsection 3.1.

Note that all variants (Snake, Peano-Hilbert, Morton) reduce to a simple spiral for a degree of one. A degree of

one means that the local pattern consists of only 1x1 = 1 pixel, and in this case the original spiral and axes tech-

niques [35] [51] are identical to the generalized techniques. A detailed comparison of the possible variants (Snake-

Spiral, Peano-Hilbert-Spiral, Morton-Spiral, Snake-Axes, Peano-Hilbert-Axes, Morton-Axes) with different de-

grees (1, 2, 4, 8, 16) is provided in [52]. The formulas for calculating the distances and their combination into the

overall distance as well as all aspects related to the handling of complex queries (conditions with nested ANDs and

ORs, multiple table and nested queries) are presented in [35]. The focus of this paper is on the data mining capa-

bilities of the various visualization techniques.

2.2 Geometric Projection Techniques

Geometric projection techniques aim at finding ‘interesting’ projections of multidimensional data sets. The class

of geometric projection techniques includes techniques of exploratory statistics such as principal component anal-

ysis, factor analysis and multidimensional scaling, many of which are subsumed under the term ‘projection pursuit’

[20] [53]. Since there is an infinite number of possibilities to project high-dimensional data onto the two display

dimensions, ‘projection pursuit’ systems such as the grand tour system [37] aim at automatically finding the inter-

esting projections or at least helping the user to find them.

Another geometric projection technique is the parallel coordinate visualization technique [18] [19]. The parallel

coordinate technique maps the k-dimensional space onto the two display dimensions by using k equidistant axes

which are parallel to one of the display axes. The axes correspond to the dimensions and are linearly scaled from

the minimum to the maximum value of the corresponding dimension. Each data item is presented as a polygonal

line, intersecting each of the axes at that point which corresponds to the value of the considered dimension (cf. Fig-

ure 1a). Although the principle idea of the parallel coordinate visualization technique is quite simple, it is powerful

in revealing a wide range of data characteristics such as different data distributions and functional dependencies.

However, since the polygonal lines may overlap, the number of the data items that can be visualized on the screen
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at the same time is limited to about 1,000 data items. In Figure 4b, an example visualization of three-dimensional

data is presented. Clearly visible in the visualization is that the data consists of several clusters which are restricted

to quite limited ranges for the second dimension but may have much larger ranges for the other dimensions. The

parallel coordinate technique is used in the comparison of subsection 3.3. The reader is therefore referred to sub-

section 3.3 for more details and further examples.

2.3 Icon-based Techniques

Another class of techniques for visual data mining are the icon-based techniques (or iconic display techniques).

The idea is to map each multidimensional data item to an icon. First approaches of iconic displays are the well-

known Chernoff faces [13] [54]. In the Chernoff face visualization, two dimensions are mapped to the two display

dimensions. The remaining dimensions are mapped to the properties of a face icon — the shape of nose, mouth,

eyes, and the shape of the face itself. The Chernoff face visualization capitalizes on the human sensitivity to faces

and facial features. The number of data items that can be visualized using the Chernoff face technique, however, is

quite limited.

An iconic display technique, which allows a visualization of larger amounts of data and is therefore more ade-

quate for data mining, is the stick figure technique [23] [55] [56]. As indicated by the name, the icon is some type

of stick figure. Again, two dimensions are mapped to the display dimensions and the remaining dimensions are

mapped to the angles and/or limb lengths of the stick figure icon (cf. Figure 5a). If the data items are relatively

dense with respect to the display dimensions, the resulting visualization presents texture patterns that vary accord-

ing to the characteristics of the data and are therefore detectable by preattentive perception. Different stick figure

icons with variable dimensionality may be used (cf. Figure 5b). Figure 6 shows a stick figure visualization of five-

dimensional census data of 1980 US census. In addition to income and age, the attributes occupation, education

level, marital status, and sex are visualized by the stick figures. Interesting is the clear shift in texture over the

screen which indicates the functional dependency of the attributes from income and age. More examples of the

stick figure visualizations are provided in the comparison of subsection 3.3. Note that in both, the stick figure and

the Chernoff face technique, the number of dimensions that can be visualized is limited.

Many other ideas for iconic displays have been developed in recent years. An approach which allows the visual-

ization of an arbitrary number of dimensions is the shape-coding approach [24]. The icon used in the shape coding

approach maps each dimension to a small array of pixels and arranges the pixel arrays of each data item into a square

or rectangle. The pixels corresponding to each of the dimensions are mapped to grey scale or color according to the

data value of the dimension. The small squares or rectangles corresponding to the data items are then arranged suc-

cessively in a line-by-line fashion.

2.4 Hierarchical and Graph-based Techniques

In addition to the geometric projections and iconic displays, there are two more classes of visualization tech-

niques - hierarchical and graph-based techniques. Well-known representatives of hierarchical techniques are the n-

Vision technique (also known as ‘worlds within worlds’) [57], the dimensional stacking [25], and treemaps [27].
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The hierarchical techniques subdivide the k-dimensional space and present the subspaces in a hierarchical fashion.

The dimensional stacking technique, for example, subdivides the k-dimensional space into 2D-subspaces. With the

exception of treemap, the hierarchical techniques mainly focus on visualizing multivariate functions and are there-

fore not particularly interesting for data mining. The basic idea of the graph-based techniques is to effectively

present a large graph using specific layout algorithms, query languages, and abstraction techniques. Examples of

graph-based techniques are Hy+ [28], Margritte [29], and SeeNet [30].

3. Evaluation and Comparison of Visual Data Mining Techniques

A central goal of this article is to evaluate and compare the techniques which may be used for visualizing large

databases. An evaluation of visualizations is different from evaluating the time performance of a system. In princi-

ple, measuring the time performance of a system is relatively easy compared to measuring the expressiveness of

visualizations, i.e. the perceptibility of data characteristics. The reason is that evaluating the perception necessarily

involves humans, and therefore the results do not only depend on the potential of the visual data mining technique

but also on the human performing the analysis.

Before presenting our evaluations, in the following we briefly introduce how data characteristics such as corre-

lations, functional dependencies, and clusters may be identified in our visualizations generated by the generalized

spiral and axes techniques. The following description may be used as a guideline for discovering data characteris-

tics by interpreting the visualizations generated by the VisDB system. Note, that many of the data mining tech-

niques we developed in working with the VisDB system are interactive in nature and are therefore difficult to de-

scribe in written form. Nevertheless, in the following we try to present the basic ideas.

Properties that hold for all or most of the data can be deduced from the overall brightness and color distribution

of the visualizations. The size of the yellow portion of the visualization indicates the number of data items fulfilling

the query predicate for the corresponding attribute. The brightness of the visualization of some attribute indicates

the degree of fulfilling the corresponding query predicate, and the overall color distribution shows the distribution

of distance values for the corresponding attribute. Interesting are especially sharp borders between colors, which

indicate discontinuities in the value range of an attribute.

Usually the visualizations of the attributes are not independent. Using our visual data mining techniques, corre-

lations and functional dependencies between attributes may be identified by the similarity of their visualizations.

The more the visualizations of two attributes are similar, the stronger is the correlation or functional dependency.

An example is provided in Figure 7 (Footnote 1). From the similarity of the visualization windows, it becomes

clear that there is a strong correlation between the attributes MinAngle and RightAngle. Slightly less similar and

therefore less correlated are MinAngle and MidAngle, and even weaker is the correlation between MinAngle and

MaxAngle. A bit problematic are visualizations that do not show any structure. The human perceptual system may

consider such visualizations as being similar although the pixels of the visualizations do not correspond to each

other and no correlation between the attributes exists. In experimenting with various data sets, we found that the

problem of misleading similarity of visualizations only occurs in visualizations without structure. In cases where

existing structure in the data is not revealed by the visualization, the structure can usually be made visible by
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changing the weighting factors of some attributes. Changing the weighting factors makes it easier to perceive sim-

ilarities in the visualizations and to determine the corresponding correlations and functional dependencies

(cf. Figure 8b).

Another important group of interesting data characteristics are clusters of data items with similar properties. In

our visualizations, clusters usually appear as rectangular regions (possibly partial rectangles) which may have dif-

ferent colors for different attributes. Clusters may have a lower dimensionality than the whole data set. Therefore,

the clustering may appear only in the visualizations of certain attributes. Figure 8 shows an example of four-dimen-

sional clusters in six-dimensional data.

Note that the visualizations generated by the generalized spiral and axes techniques in general depend on the cho-

sen query region. If the data shall be visualized in a query-independent way, the origin of multidimensional space

has to be used as a query region. In this case, only the actual data values are visualized. Changing the query region

has a major impact on the resulting visualizations. For example, if the query region is moved away from a cluster,

the cluster becomes less visible in the visualization (cf. Figure 9). By interactively changing the query region, dif-

ferent clusters can be made visible. A strategy for varying the query region which has proven useful in our experi-

ments is to start with the full range [min, max] for an attribute and successively restrict the range until the visual-

izations reveal some interesting properties. In some cases, the inverse of this technique — starting at the minimum

value for some attribute and extending the range to the maximum (or vice versa) — is more appropriate. Another

possibility is to use a range with a constant extension for some attribute and move it between minimum and maxi-

mum value of the attribute. This technique is especially helpful for finding the value range of an attribute, which

corresponds to an already discovered cluster in some other dimensions - if such a range exists.

In the remaining portion of this section, we take a twofold approach towards evaluating the perception of visual data

mining techniques. The first, more conventional approach is to demonstrate the potential of visualization techniques

by using a real application (cf. subsection 3.1). The second, more general approach is a step towards a more applica-

tion-independent evaluation of visualization techniques. By using test data sets which are generated according to

user-provided specifications (cf. subsection 3.2), it becomes possible to perform controlled tests for evaluating the

strengths and weaknesses of visualization techniques.

3.1 Real Data

The VisDB system has proven useful for exploration tasks in several real databases including a large database of

geographical data, a large environmental database, and a large NASA earth observation database. The VisDB sys-

tem has also been used in our molecular biology project for finding possible docking regions by identifying sets of

surface points with distinct characteristics, and we will use this example to exemplify the usefulness of the system.

In our strategy for finding possible docking regions, one important step is to partition the molecular surfaces ac-

cording to geometric properties. For this purpose, we use the properties of the triangulation of the molecular sur-

face, e.g. minimum and maximum angle, minimum and maximum side length, right angle and so on. In partition-

ing the molecules into regions, it is difficult to find the right combination of value ranges that leads to a meaningful

partitioning of the molecule. The VisDB system has been successfully used for determining interesting value rang-
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es and combinations of parameters. The VisDB system allows the interactive variation of the parameters and pro-

vides feedback on the resulting data in the region. In Figure 7, we provide two snapshots from a session with the

VisDB system. The snapshot shows eleven parameters (X_triangle, Y_triangle, Z_triangle, MinAngle, MidAngle,

MaxAngle, RightAngle, Surface, MinSide, MidSide, MaxSide) and the overall result generated from the surface

data of the molecule complex ‘subtilisin carlsberg with eglin’. Since data exploration is inherently interactive, the

provided snapshots reflect the usefulness of the VisDB system only to a very limited extent. In the following, we

briefly describe some of the interesting aspects that we learned from the visualization.

By the different colors dominating the different portions of the visualization, it can be easily seen that each of the

selection predicates has a distinct impact on the overall result. The visualization of MaxAngle, for example, is dom-

inated by darker colors, which means that in general the distances to the specified range for MaxAngle (80°-153°)

are quite high. The visualizations of Y_triangle and Z_triangle are much brighter, which means that the specified

query ranges for these attributes are less restrictive. Interesting is the partitioning which results in the case of the

axes technique (Surface and MaxSide are assigned to the axes). For example, the data items which have high dis-

tances (dark colors) for MinSide, MidSide, and MaxSide cluster in the bottom left quadrant, which means that their

Surface and MaxSide are smaller than the chosen query ranges. Also easily visible is the correlation between the

distances for MinSide, MidSide, and MaxSide, which corresponds to the Pythagorean theorem . Al-

though the quantitative relationship between MinSide, MidSide, and MaxSide is not deductible from the visualiza-

tion, the similarity of the visualizations indicates that there is some relationship. More interesting, however, are data-

dependent correlations which may not be predicted a priori. An example is the correlation between the data items

that fulfill all query ranges, resulting in the yellow region in the middle of the visualization. The region in the vi-

sualization corresponds to surface regions of the molecule, which consist of triangles with similar properties, i.e. a

certain combination of value ranges for the parameters.

If the same triangles are visualized in the 3D-representation of the molecule, the triangles form a double-horn

region. Other interesting regions found in the molecular biology application include several types of domes, ar-

cades, caves, and tripods (for details see [51]). The 3D-representation of molecules is very important (e.g., for visu-

alizing the final result), but its usefulness for exploring more than 5 dimensions (3 dimensions of the coordinate

system plus one or two additional dimensions denoted by color) is quite restricted. In contrast, our visual data min-

ing techniques are able to present a virtually arbitrary number of parameters, allowing an easy discovery of correla-

tions between them and avoiding the possibly confusing 3D-representation which may occur in case of large mole-

cules due to the high overlap of surface points.

Note that for determining the properties that lead to interesting regions of the molecule, the interactivity of the

VisDB system is very important. Besides the options which provide values for specific data items and color ranges

(for details see [51]), the user may get important additional information by varying the query ranges and weighting

factors using the sliders.

3.2 Artificial Data

Many visualization techniques and their potential have been demonstrated by using data from certain application

areas. Lacking in all this activity is any quantitative evidence of how effective the techniques are. To get beyond
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the current demonstrational stage, a basis for evaluation needs to be developed. To progress, we need to know with

certainty what is working and which adjustments are leading to an improvement.

Evaluations of the time performance are usually done by using canonical test data sets and standardized testing

procedures, so-called benchmarks. Instead of establishing a fixed test data set for evaluating the perception, we use

a general test data generation model which can be used for a standardized and quantitative testing of visualization

techniques [58]. The model allows the generation of test data sets with characteristics similar to those of real data

sets. Unlike real data sets, however, the characteristics of the artificially generated data sets may be varied arbitrari-

ly. We may, for example, vary the correlation coefficient of two dimensions, the mean and variance of some of the

dimensions, the location, size, and shape of clusters, etc. Varying the data characteristics in a controlled manner is

crucial for evaluating the perceptibility of data characteristics in the visualizations. Controlled test series allow, for

example, finding the point where certain data characteristics are perceptible for the first time, or the point where

they are no longer perceptible.

The TestVis test data generation tool developed at the University of Munich partially implements the test data

generation model described in [58] and allows the specification of a wide range of data characteristics. The main

focus is on database like test data sets which in general are best described by statistical parameters such as distri-

butions, correlations, functional dependencies, and clusters. The TestVis tool allows the specification of data with

an arbitrary dimensionality and an arbitrary number of clusters. For each dimension, the user may specify the dis-

tribution function or the functional dependency. Also the size and shape of the clusters as well as the properties for

each of the cluster dimensions can be specified. The functional dependencies that may be specified using the TestVis

tool are of the form

with

-  being the functional dependent dimension

-  being the data dimensions on which the dimension  is functionally dependent,

-  being a randomly generated variable in the range of [-1,1],

-  and  being user-specified constants, and

-  being a user-specified factor which induces a certain randomness of the data.

To avoid cyclic dependencies, without loss of generality, we assume that dimension  only depends on dimensions

. A detailed description of the TestVis system can be found in [51].

In the following, we provide examples for generated test data sets and the corresponding visualizations. First,

we evaluate the perceptibility of data characteristics in visualizations generated by our techniques. Due to space

limitations, in this step we only use visualizations generated by using the generalized spiral technique of degree 1.

Then, we compare our techniques to the parallel coordinate and stick figure visualization techniques which have

been introduced in section 2. In general, the test data sets used in this article consist of a large randomly generated
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base data set which makes up about two thirds of the data, and one or multiple clusters which have a different di-

mensionality or are defined by using different distributions and functional dependencies.

Cluster with Different Dimensionality

In Figure 8, we present visualizations of four-dimensional clusters in six-dimensional data. The data set used to

generate the visualizations consists of 15,000 data items. Two thirds of the data is generated randomly in the range

of [0, 100] for each of the dimensions, and the remaining one third of the data defines three clusters which are

generated by inserting additional data items in specific value ranges of the cluster dimensions. As a query region,

we use the range [0, 10] for all six dimensions. In the resulting visualization (cf. Figure 8a), the four-dimensional

clusters are only vaguely visible. By changing the weighting factors, however, the clusters can be made clearly

perceptible (cf. Figure 8b). In general, clusters with lower dimensionality can be made perceptible by setting the

weighting factor of one dimension to a significantly higher value than the weighting factors of the other dimen-

sions. The dimension which is chosen to have the higher weight is arbitrary. The clustering in the visualization,

however, is much better if a cluster dimension is chosen.

In experimenting with similar test data sets, we found that the extension of the cluster in multidimensional space

has only a minor effect on the visualization. More important is the percentage of data items that form the cluster.

Small clusters are only perceivable if they are close to the query region and have characteristics which are distinctly

different from the remaining data items. The percentage of data items that need to be part of the cluster for the clus-

ter to be perceptible depends on the distinctness between base data and cluster, on the dimensionality of the data,

and on the distance between cluster and query region. The latter problem can be resolved, for example, by inverting

the ordering of data items in the visualizations, which causes data items with larger distances to be closer to the

center and therefore to be more visible.

Cluster with Different Data Distributions

In Figure 9, we present visualizations which are generated by using different data distributions for defining a

cluster. The base data set consists of 10,000 data items, uniformly distributed in the range [-10000, 10000] for each

of the dimensions. The cluster consists of 1,000 data items and the cluster dimensions differ in the distribution

functions used and in their parameters. The parameters of the distribution functions for the cluster dimensions are

given in the following table:

As a query region, we use the range [0, 10] for each dimension. Since the query region and the cluster overlap in

dimensions one, two, four and five, the cluster is easily visible in the center of the corresponding windows (cf.

uniform distribution Gaussian distribution

attribute 1 2 3 4 5 6 7 8 9

lower limit
or mean

-100 -1000 -10000 0 0 0 100 1000 5000

upper limit  or
standard deviation

100 1000 10000 10 100 1000 1000 1000 5000
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Figure 9a). If another query region is used, it is much more difficult to perceive the cluster (cf. Figure 9b). It is in-

teresting that in the visualization there is no clustering visible for the dimension with a large range uniform distri-

bution (dimension three) and only minor clustering occurs for the dimensions with a high standard deviation (di-

mensions six and nine). This effect becomes even more obvious if the weighting factor is varied (cf. Figure 9c).

Cluster with Functional Dependencies

In Figure 10, we present visualizations of test data which are generated by using different functional dependen-

cies for defining a cluster. The base data set again consists of 10,000 data items, uniformly distributed in different

ranges: [0, 1000] for dimensions one to three, [0, 2000] for dimensions four to six and [0, 1000000] for dimensions

seven to nine. The cluster consists of 2,000 data items. Dimensions one to three of the cluster are the independent

dimensions which are uniformly distributed in the range of [0, 1000]. The functional dependencies of the other di-

mensions are given in the following table:

As a query region, we use the origin of the nine-dimensional space. In Figure 10a-c, three visualizations of the

data are provided which were produced using different weighting factors and an additional technique which we call

‘color inversion’. Color inversion means that the coloring of pixels is inverted with respect to the color scale. Note

that the cluster dimensions which depend on multiple other dimensions are much better perceptible. This is due to

the fact that differences of the independent dimensions sum up to higher differences for the dependent dimension,

which are then better visible.

To use the described data exploration and visualization techniques as effectively as possible, it is necessary to

have a global data exploration strategy. Some of our experiences, derived from an intensive use of our system, are

briefly described in the following: If a user has no information about the data, it is best to start with the origin of

the coordinate system as a query region and all attributes having the same weighting factor. The following steps are

largely guided by the visual feedback the user gets from the visualizations. If the user gets hints for correlations,

functional dependencies, or any kind of clustering, the user will try to verify the hypotheses. For this purpose, the

user may change, for example, the query region and/or the weighting factors. If there are no hints for interesting

data properties in the visualizations, the user may use a higher weighting factor for an arbitrary dimension, use the

color inversion option, change the percentage of displayed data items or use different query regions. In this enu-

meration, the possibilities which according to our experience are most effective are mentioned first.

3.3 Comparison with other Multidimensional Visualization Techniques

In this subsection, we compare our techniques with other visualization techniques for multidimensional data. For

the comparison, we use two well-known techniques that have proven useful for database-like data — parallel co-

attribute 1 2 3 4 5 6 7 8 9

functional
dependency

uniform distribution

in the range [0, 1000]

linear dependency
of attribute(s)

quadratic dependency
of attribute(s)

1 2, 3 1, 2, 3 1 2, 3 1, 2, 3
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ordinates and stick figures (cf. section 2). We extended both techniques for the purpose of querying large databases

by coloring the stick figure icon and the line segments of the parallel coordinate technique using the overall dis-

tance. Additionally, in case of overlapping stick figures or line segments, we draw the most relevant data items on

top of the less relevant data. Drawing and coloring the data items according to their overall distances allows the

most relevant data items to be easily located and compared. This is especially important in dealing with larger data

volumes. We compare the techniques with respect to the number of data items, the number of dimensions, the vis-

ibility of certain types of clusters, etc. We also provide examples of visualizations of the real data sets from our

molecular biology application.

In Figure 11, we present parallel coordinate visualizations of the test data set containing 15,000 six-dimensional

data items with three four-dimensional clusters. In the visualization (cf. Figure 11a), only one cluster is visible. The

other two clusters are not visible due to the overlap of data items. By using different query ranges, it is possible to

make the other clusters visible. Since the clusters are at different locations of the six-dimensional space, it is im-

possible to generate parallel coordinate visualizations that show more than one cluster at a time.

With the stick figure visualization, we also have the problem that overlapping data may prevent the visualizations

from being useful. If all 15,000 data items are visualized (cf. Figure 11b), it is not possible to find structure in the

data. A reduction of the amount of data to 10% makes the visualization more useful (cf. Figure 11c), allowing pat-

terns created by stick figures with similar shapes and colors to become perceptible. Note that many of the displayed

stick figures have a similar shape, which means that they are similar with respect to the dimensions that are assigned

to the limbs of the stick figure icon. The similarity suggests that these dimensions belong to a cluster. In case of the

stick figure technique, it is important which dimensions are assigned to the axes. If the right dimensions (e.g., the

cluster dimensions) are chosen to be assigned to the axes, clusters may become visible due to the high density of

stick figures in certain regions. In this case, however, the density of stick figures at certain locations, and not the

multidimensionality of the stick figure icon, allows the user to find the clusters, which means that the same effect

can be achieved by using scatterplot diagrams. To be able to use the multidimensionality of the stick figure icon,

the overlap of data items needs to be avoided by reducing the number of data items.

In Figure 12, we present parallel coordinate and stick figure visualizations of the test data set where the cluster

is defined using different distribution functions (cf. Figure 9). As in Figure 9, we use the origin of the coordinate

system as a query region. Since the cluster is defined symmetrically around the origin, the cluster and its properties

are easily visible in the parallel coordinate visualization (cf. Figure 12a). Interesting are the effects of the different

distributions. To recall, the cluster is defined such that dimensions one to three have uniform distributions with dif-

ferent ranges, dimensions four to six have Gaussian distributions with different standard deviations, and dimensions

seven to nine have Gaussian distributions with different means. Note that for dimensions six and nine the value range

of the cluster is larger than the value range of the base data set. Again, the visibility of a cluster and its properties

largely depends on the closeness of cluster and query region.

The appearance of the stick figure visualization largely depends on the dimensions which are assigned to the ax-

es. For the visualization presented in Figure 12b, dimensions five and six are assigned to the axes. Since for both
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dimensions the cluster is defined as Gaussian distribution with different standard deviations, the shape of the clus-

ter is oval in the visualization. The cluster, however, is only visible since the query region is in the middle of the

cluster and since the more relevant data items are overlaid and colored differently. Note that most of the data items

which are light green have a similar shape. This means that they are similar with respect to the dimensions that are

assigned to the limbs of the stick figure icon.

We also used real data sets to compare our visual data mining techniques with the parallel coordinate and stick

figure techniques. In the following, we provide parallel coordinate and stick figure visualizations of our molecular

surface data. In the parallel coordinate visualization (cf. Figure 13), hot spots such as data items with negative dis-

tances (cf. dimensions five, six, and seven) are easily perceptible. Also easily observable are the range and distri-

bution of distance values relative to the query region. The distances from the query region for dimensions one to

seven are in their majority either positive (1 and 4-7) or negative (2 and 3). The visualization further reveals that

dimensions four to seven are discrete in nature, which is most easily observable for dimension six. Note that even

for relatively small numbers of data items (the considered molecule consists of 2,560 triangles), there is a high de-

gree of overlap in the visualization.

In case of the stick figure visualization (cf. Figure 14), the expressiveness of the visualization largely depends on

the assignment of dimensions to the axes. In cases of high overlay, the information that can be deduced from the

visualization is mainly restricted to the distribution of data items with respect to the dimensions that are assigned

to the axes. The direct mapping of two dimensions to the axes, however, also has a great advantage. For all data sets

which have dimensions with inherent 2D- or 3D-semantics, the mapping is of great help to relate the visualizations

to the real world entities. In case of the molecule surface data, there are inherent 3D-semantics defined by the first

three dimensions. If two of those dimensions are mapped to the axes, the resulting visualization is a projection of

the 3D-surface of the molecule onto those two dimensions. In Figure 14, we provide example visualizations of XZ-,

YZ, and XZ-projections of the data.

In Table 1, we summarize the results of comparing our techniques to the parallel coordinate and stick figure vi-

sualization techniques and its colored derivatives. Our generalized spiral and axes techniques turn out to be the most

useful techniques for visualizing very large amounts of data. Both techniques avoid overlapping data items and pro-

vide good results for most types of data characteristics. The only exceptions are data sets which have inherent 2D-

or 3D-semantics. The stick figure technique is best suited for data sets which have a limited dimensionality and

inherent 2D- or 3D-semantics, or at least a regular distribution of values for the two dimensions that are assigned

to the axes. The stick figure technique helps to discover most types of clusters, but the usefulness of the generated

visualizations largely depends on the choice of the axes dimensions. The parallel coordinate visualization technique

is very useful for relatively small data sets with large dimensionality. It is especially helpful for providing an over-

view of the distribution of distances and for discovering exceptional data items (hot spots). The colored derivatives

of the parallel coordinate and stick figure techniques help to make the data apparent, which are more relevant with

respect to the query. With respect to the task of visualizing the most relevant data, they are therefore an improvement

over the original parallel coordinate and stick figure techniques. At the same time, however, the color may distract

the user’s attention from the multidimensionality of the display, especially in case of the stick figure visualization.
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Since none of the techniques performs best for all different kinds of tasks, we believe that it is important to use

different visual data mining techniques in parallel. This allows the exploitation of the strengths and avoids the weak-

nesses of the techniques. For example, in using the VisDB system for exploring real data sets, it turned out to be

quite effective to use our spiral and axes techniques to reduce the amount of data, and then switch to the stick figure,

and parallel coordinate techniques to further explore the remaining, much smaller data set. Comparing the visual-

izations generated by different visualization techniques is also very interesting, since it allows a correlation of the

specific features of each visualization, providing more information than each of the visualizations independently.

4. Implementation and Performance Evaluation

All visualization techniques presented in the previous sections are implemented as part of the visualization and

data analysis system VisDB. The interactive interface of the VisDB system allows the user to arbitrarily switch be-

tween the techniques, and to interactively modify the query, weighting factors, and percentage of displayed data

items. Additional features include the possibility to select pixels to get the corresponding data values presented in

certain fields. Details about the system are described in [51].

The VisDB system is implemented in C++/MOTIF and runs under X-Windows on HP 7xx machines. In imple-

menting the system, special consideration has been given to two aspects — fast recalculation of the visualizations,

which is crucial for allowing an interactive data exploration, and easy extensibility, which is necessary for adapting

the system to the needs of different applications. Easy extensibility is achieved by implementing the system in a

modular fashion, allowing user-defined distance and combinator functions as well as new display methods (e.g.,

1. Only limited by the number of pixels of the display in the case of the generalized spiral and axes techniques. Limited to
about 1,000 in case of parallel coordinate and stick figure techniques, and to about 5,000 for the remaining techniques.

2. Arbitrary in case of spiral, axes, and parallel coordinate techniques, but limited to a fixed number (ten dimen-
sions for our stick figure icon) in case of the stick figure technique.

3. Due to coloring and overlay, the more relevant data items are visible in the colored derivatives.
4. Due to coloring and overlay, distribution and functional dependency clusters which are close to the query

region are more easily perceptible in the colored derivatives of parallel coordinate and stick figure technique.

Generalized
Spiral

Technique

Generalized
Axes

Technique
Stick Figures

Colored
Stick Figures

 Parallel
Coordinates

Colored
Parallel

Coordinates

max no. of data items1 ++ ++ o + o +

max no. of dimensions2 + + o o + +

overlapping data items ++ ++ -- -3 -- -3

2D-/3D-semantics - - ++ ++ - -

hot spots + + o + + ++

clusters + ++ o o o o

distributions + + o +4 o +4

funct. dependencies + + o +4 o +4

Table 1: Comparing the Generalized Spiral and Axes Techniques with

Parallel Coordinate and Stick Figure Visualization Techniques
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new types of sliders and new visualization techniques) to be easily integrated. Interactivity is achieved by using

efficient algorithms and adapting them for our purposes.

To evaluate the time efficiency of the VisDB system, we performed several test series using artificially generated

test data sets with random distributions. For the test series we used an HP 735 machine with 128 Mbyte of main

memory. In performing the test series, the machine was used exclusively by the VisDB system, and therefore, the

measured CPU-times directly correspond to the elapsed time (reaction time of the system).

The steps in calculating the visualizations are presented in Figure 15. After loading the data into main memory,

the VisDB system calculates the distances, normalizes and combines them, determines the desired percentage of

data items with lowest overall distances, and sorts them according to their overall distance. The steps are executed

one after another (no pipelining is used in our sequential implementation), and therefore the overall time (TCalc) is

the sum of the time for each of the steps. TCalc depends on the number of data items (n), the number of dimensions

(k), and the number of displayed data items (d).

The calculation performed in steps two, three, and four has to be done for each data value and therefore TCalcDist,

TNormAttr, and TCalcComb only depend on the product of the number of data items and the number of dimensions

[O(n*k)]. In steps five, six, and seven, the desired number of displayed data items (d) has to be considered. In

step 5, the d data items with lowest overall distances are determined by computing the (d/n)-quantile which can be

done in linear time using a bottom-up heap with d elements, inserting the remaining (n-d) elements into the heap.

Since the heap contains at most d elements and since d is a constant, the heap can be built in linear time. The actual

time complexity however varies according to the distribution of the data. The worst, average, and best case time

complexities of step 5 are presented graphically in Figure 16. The next step, normalizing the distances [0, 255], de-

pends on the number of data items that need to be normalized, multiplied by the number of dimensions [O(d*k)].

The final sorting step can be performed most efficiently using the bucket sort algorithm. The bucket sort is ideal for

our application since we use a linear mapping of values to colors and since the sorting granularity is limited. For

our purpose, it is sufficient to use a bucket sort where the number of buckets correspond to the number of colors.

The time complexity of the bucket sort algorithm is O(d + b) [59] where b is the number of buckets. Since in our

case b is constant (b = #colors = 256), the complexity is linear [O(d)]. Note that again the complexity is indepen-

dent of the data and their distribution.

The overall time complexity of our algorithm is the sum of the time complexities for each of the steps

, which corresponds to

since d ≤ n. Note that for a large number of data items and constant screen resolution, the worst and best case time

complexity are in the same order of magnitude. The time measurements taken from empirical test series confirm

the linear dependency on n and k (cf. Figure 17). In our empirical tests, we also compared the time portions which

are needed for each of the steps. From their graphical representation (cf. Figure 18), it becomes obvious that cal-

culating the distances (TCalcDist) and calculating the combination (TCalcComb) are the most time-consuming steps

T Calc n k d, ,( ) T CalcDist n k,( ) T NormAttr n k,( ) T CalcComb n k,( )+ += T Cut n d,( )+ T NormResult d k,( ) T Sort d( )+ +

O n k×( ) O n( ) O d k×( ) O d( )+ + +[ ]

O n k⋅( )
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which use more than 80% of the overall time. Fortunately, these steps are ideally suited for parallelization. For de-

tails, the reader is referred to [51].

5. Conclusion

Visual data mining techniques are useful for the exploration and analysis of large databases to find interesting

data clusters and their properties. Our approach to data mining aims at an adequate support of the human by the

computers, and combines database query and information retrieval techniques with new types of visualization tech-

niques. Using our visual data mining techniques, tens to hundreds of thousands of data items with an arbitrary di-

mensionality can be visualized on the screen at the same time. Five different visualization techniques — all imple-

mented as part of the VisDB system —support the user in different phases of the data exploration process. The

results of using our visual data mining techniques in different areas show that visual data mining techniques are of

high importance for a wide range of applications including data mining tasks (finding correlations between at-

tributes, finding groups of similar data, and finding hot spots) and similarity retrieval (finding an adequate combi-

nation of value ranges). For a comparison of our techniques with the parallel coordinate and stick figure techniques,

we use real data from a molecular biology application and artificial test data sets generated according to a systematic

test data model. We show that our techniques are useful for visualizing a wide range of data characteristics and are

superior to the other techniques with respect to the amount of data that can be visualized at one point of time.

Future work includes further evaluations that need to determine which techniques are most appropriate for specific

types of correlations, clusters, and functional dependencies. The evaluations are also necessary as basis for improv-

ing existing visual data mining techniques and for visualizing even larger amounts of data. Also important is to di-

rectly interface our system with commercially available database systems. As first investigations show, current da-

tabase systems are only useful to a limited extend for supporting interactive visualization systems such as the VisDB

system. Database systems support high transaction rates and a fast search of specific data items, but most of them

do not provide a sufficient performance for range queries on multiple attributes which are required by our system.

A possible solution of this problem is the use of multidimensional data structures. Future work needs to determine

which multidimensional data structures are best suited for our application. Another problem of current database

systems is that the queries are executed separately and no support for incrementally changing queries is provided,

which would be needed for real interactivity of the VisDB system in dealing with very large databases containing

millions of data items. This brief enumeration of problems demonstrates that developing a secondary storage based

version of the VisDB system using commercially available database systems poses many interesting research ques-

tions which need to be solved.



- 20 -

Footnotes

Affiliation of authors

Institute for Computer Science, University of Munich

Oettingenstr. 67, D-80538 München, Germany

e-mail: {keim, kriegel}@informatik.uni-muenchen.de

Footnote 1 on page 9

The quality of the B/W version of our visualizations is rather bad compared to the quality of the color visualizations

on the screen. Structures in the visualizations which are easy to perceive in the color version might therefore be

difficult to perceive in the B/W version. A color postscript version of the paper may be obtained from our ftp-server

(URL: ‘ftp://arcadia.informatik.uni-muenchen.de/pub/local/dbs/pubs/TKDE96.ps’). Readers who do not have ac-

cess to the world wide web may obtain a color paper version upon request from the authors.
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Figure 1: Arrangement of Attribute Windows for Data with Six Attributes
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Figure 2: Generalized Spiral Arrangement of one Attribute (degree of local pattern is 8)
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Figure 3: Generalized Axes Arrangement of one Attribute (degree of local pattern is 4)
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Figure 4: Parallel Coordinate Visualization Technique
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Figure 5: Stick Figure Visualization Technique
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Figure 6: Stick Figure Visualization of Census Data

(used by permission of G. Grinstein, Institute of Visualization and Perception Research,
University of Massachusetts at Lowell; cf. [GPW 89])
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Figure 7: Partitioning a Molecule into Regions by using Properties of the Triangulation
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Figure 8: Four-dimensional Cluster in Six-dimensional Data
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Figure 9: Cluster Defined by Different Data Distributions
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Figure 10: Effect of Color Inversion
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Figure 11: Four-dimensional Clusters in Six-dimensional Data
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Figure 12: Clusters Defined by Different Distributions
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Figure 13: Parallel Coordinate Visualization of the Molecule Surface Data

Figure 14: Examples for Clusters in the Molecule Surface Data
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Figure 15: Steps in Calculating the Visualizations
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Figure 16: Graphical Representation of Worst, Average, and Best Case for TCut
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Figure 17: Graphical Representation of TCalc

Figure 18: Time Portions Needed for each of the Steps
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