

Visualizing and Discovering Non-Trivial Patterns In Large
Time Series Databases

Jessica Lin
Eamonn Keogh1
Stefano Lonardi

Computer Science & Engineering Department

University of California, Riverside
Riverside, CA 92521

Correspondence:
Eamonn Keogh

Computer Science & Engineering Department
University of California, Riverside

Tel: +1 951 827 2032
Fax: +1 951 827 4643

E-mail: eamonn@cs.ucr.edu

Short running title:
Time Series Visualization

1 Dr. Eamonn Keogh is supported by NSF Career Award IIS-0237918

Visualizing and Discovering Non-Trivial Patterns In Large
Time Series Databases

Jessica Lin
Eamonn Keogh
Stefano Lonardi

Computer Science & Engineering Department
University of California, Riverside
Riverside, CA 92521

Correspondence:
Eamonn Keogh
Computer Science & Engineering Department
University of California, Riverside
Tel: +1 951 827 2032
Fax: +1 951 827 4643
E-mail: eamonn@cs.ucr.edu

Abstract
Data visualization techniques are very important for data analysis,
since the human eye has been frequently advocated as the ultimate
data-mining tool. However, there has been surprisingly little work
on visualizing massive time series datasets. To this end, we
developed VizTree, a time series pattern discovery and
visualization system based on augmenting suffix trees. VizTree
visually summarizes both the global and local structures of time
series data at the same time. In addition, it provides novel
interactive solutions to many pattern discovery problems,
including the discovery of frequently occurring patterns (motif
discovery), surprising patterns (anomaly detection), and query by
content. VizTree works by transforming the time series into a
symbolic representation, and encoding the data in a modified
suffix tree in which the frequency and other properties of patterns
are mapped onto colors and other visual properties. We
demonstrate the utility of our system by comparing it with state-of-
the-art batch algorithms on several real and synthetic datasets.
Based on the tree structure, we further device a coefficient which
measures the dissimilarity between any two time series. This
coefficient is shown to be competitive with the well-known
Euclidean distance.

Keywords: Time Series, Visualization, Motif Discovery,
Anomaly Detection, Pattern Discovery

Introduction
The U.S. Department of Defense (DoD) collaborates with
numerous contractors who help provide the skills and services
required for U.S. defense. Among these contractors, The
Aerospace Corp (TAC) has a unique and crucial responsibility.
The Aerospace Corp has to provide engineering assessments for
the engineering discipline specialists who make the critical go/no-
go decision moments before the launch of every unmanned space
vehicle launched by the DoD (Note that Engineering Discipline
Specialist is the correct term, without disrespect we will use the
terser term technician throughout this paper). The cost of a false
positive, allowing a launch in spite of a fault, or a false negative,
stopping a potentially successful launch, can be measured in the
tens of millions of dollars, not including the cost in morale and
other more intangible detriments to the U.S. defense program.

The launch control rooms at the DoD are similar to the
familiar Hollywood movie recreations [28]. There are several rows
of work cells, each with a computer display and a headset. Each
work cell is devoted to one technician; for example, propulsion,
guidance, electrical, etc. Each display presents some common data
(say vehicle location and orientation), as well as data specific to
that discipline.

The technician making the go/no-go decision has access to
data from previous launches and must constantly monitor
streaming telemetry from the current mission.

Currently, the technicians use electronic strip charts similar to
those used to record earthquake shock on paper rolls. However,

while these charts illustrate the recent history of each sensor, they
do not provide any useful higher-level information that might be
valuable to the technician.

To reduce the possibility of wrong go/no-go decisions, TAC
is continually investing in research. There are two major directions
of research in this area.
• Producing better techniques to mine the archival launch data

from previous missions. Finding rules, patterns, and
regularities from past data can help us “know what to expect”
for future missions, and allow more accurate and targeted
monitoring, contingency planning, etc [28].

• Producing better techniques to visualize the streaming
telemetry data in the hours before launch. This is particularly
challenging because one may have to monitor as many as
dozens of rapidly changing sensors [28].

Although these two tasks are quite distinct, and are usually tackled
separately, the contribution of this work is to introduce a single
framework that can address both. Having a single tool for both
tasks allows knowledge gleaned in the mining stage to be
represented in the same visual language of the monitoring stage,
thus allowing a more natural and intuitive transfer of knowledge.

More concretely, we propose VizTree, a time series pattern
discovery and visualization system based on augmenting suffix
trees. VizTree simultaneously visually summarizes both the
global and local structures of time series data. In addition, it
provides novel interactive solutions to many pattern discovery
problems, including the discovery of frequently occurring patterns
(motif discovery) [8, 31, 41], surprising patterns (anomaly
detection) [10, 26, 39], and query by content [12, 17, 23, 37]. The
user interactive paradigm allows users to visually explore the time
series, and perform real-time hypotheses testing [1, 21].

Perhaps the best-known and most referenced researcher in
information visualization and user interfaces is Dr. Ben
Shneiderman of the University of Maryland. He has championed a
set of principles for designing usable and informative scientific
data visualization systems [40]. The shortest summary of these
principles is known as the Visual Information Seeking Mantra:
“Overview, zoom & filter, details-on-demand”. As we will show in
this paper, our work fits neatly into these principles. We give an
overview of the global structure of an arbitrarily long time series in
constant space, while we allow the user to zoom in on particular
local structures and patterns, and provide details on demand for
patterns and regularities that the user has tentatively identified.

While there are several systems for visualizing time series in
the literature, our approach is unique in several respects. First,
almost all other approaches assume highly periodic time series [43,
45], whereas ours makes no such assumption. Other methods
typically require space (both memory space, and pixel space) that
grows at least linearly with the length of the time series, making
them untenable for mining massive datasets. Finally, our approach
allows us to visualize a much richer sets of features, including
global summaries of the differences between two time series,
locally repeated patterns, anomalies, etc.

While the evaluation of visualization systems is often
subjective, we will evaluate our system with objective experiments
by comparing our system with state-of-the-art batch algorithms on
several real and synthetic datasets.

Background and related work
We begin this section by briefly reviewing the most important time
series data mining tasks. We will then consider current
visualization techniques and explain why they are unsuited to the
problem at hand.

Time series data mining tasks
For lack of space, this brief introduction to the important time
series data mining tasks is necessarily subjective and somewhat
domain driven. Nevertheless, these three tasks cover the majority
of time series data mining research [7, 8, 10, 12, 17, 20, 24, 26, 31,
33, 34, 41].
Subsequence matching
Sequence matching is perhaps the most widely studied area of time
series data mining [12, 17]. The task has long been divided into
two categories: whole matching and subsequence matching [12,
23].
• Whole Matching: a query time series is matched against a

database of individual time series to identify the ones similar
to the query.

• Subsequence Matching: a short query subsequence time
series is matched against longer time series by sliding it along
the longer sequence, looking for the best matching location.

While there are literally hundreds of methods proposed for whole
sequence matching (see, e.g., [24] and references therein), in
practice, its application is limited to cases where some information
about the data is known a priori.

Subsequence matching can be generalized to whole matching
by dividing sequences into non-overlapping sections. For example,
we may wish to take a long electrocardiogram and extract the
individual heartbeats. This informal idea has been used by many
researchers and is also an optional feature of VizTree. We will
therefore formally name this transformation chunking, and define
it below.

Definition 1 Chunking: the process where a time series is
broken into individual time series by either a specific period or,
more arbitrarily, by its shape.
The former usually applies to periodic data, for example consider
power usage data provided by a Dutch research facility (this
dataset is used as a running example in this work, see Figure 3 and
Figure 17): the data can be chunked by days, weeks, etc. The
latter applies to data having regular structure or repetitive shape,
but not necessarily having the same length for each occurrence.
Electrocardiogram data are such an example, and they can be
separated into individual heartbeats.

There is increasing awareness that for many data mining and
information retrieval tasks, very fast approximate search is
preferable to slower exact search [6]. This is particularly true for
exploratory purposes and hypotheses testing. Consider the stock
market data. While it makes sense to look for approximate
patterns, for example, “a pattern that rapidly decreases after a
long plateau,” it seems pedantic to insist on exact matches. As we
will demonstrate later, our application allows rapid approximate
subsequence matching.

Anomaly detection
In time series data mining and monitoring, the problem of
detecting anomalous/surprising/novel patterns has attracted much
attention [10, 33, 39]. In contrast to subsequence matching,

anomaly detection is identification of previously unknown
patterns. The problem is particularly difficult because what
constitutes an anomaly can greatly differ depending on the task at
hand. In a general sense, an anomalous behavior is one that
deviates from “normal” behavior. While there have been
numerous definitions given for anomalous or surprising behaviors,
the one given by Keogh et. al. [26] is unique in that it requires no
explicit formulation of what is anomalous. Instead, they simply
defined an anomalous pattern as one “whose frequency of
occurrences differs substantially from that expected, given
previously seen data”. Their definition was implemented in an
algorithm (called “Tarzan”) that was singled out by NASA as an
algorithm that has “great promise in the long term” [19]. As it will
become clearer later, a subset of the system that we propose here
includes what may be considered a visual encoding of Tarzan.

Time Series Motif Discovery
In bioinformatics, it is well documented that overrepresented DNA
sequences often have biological significance [3, 11, 38]. Other
applications that rely heavily on overrepresented (and
underrepresented) pattern discovery include intrusion detection,
fraud detection, web usage prediction, financial analysis, etc.

A substantial body of literature has been devoted to
techniques to discover such overrepresented patterns in time
series; however, each work considered a different definition of
pattern [4, 35]. In previous work, we unified and formalized the
problem by defining the concept of “time series motif” [31]. Time
series motifs are close analogues of their discrete cousins, although
the definitions must be augmented to prevent certain degenerating
solutions. This definition is gaining acceptance, and now being
used in animation [5], mining human motion data [41], and several
other applications. The naïve algorithm to discover motifs is
quadratic in the length of the time series. In [31], we demonstrated
a simple technique to mitigate the quadratic complexity by a large
constant factor; nevertheless this time complexity is clearly
untenable for most real datasets. As we shall demonstrate, VizTree
allows users to visually discover approximate motifs in real time.

Visualizing Time Series
Time series is perhaps the most common data type encountered in
data mining, touching as it does, almost every aspect of human
life, including medicine (ECG, EEG data), finance (stock market
data, credit card usage data), aerospace (launch telemetry, satellite
sensor data), entertainment (music, movies) [5], etc. Because time
series datasets are often massive (in gigabytes or even terabytes),
time- and space-complexity is of paramount importance.

Surprisingly, although the human eye is often advocated as
the ultimate data-mining tool [21, 40, 42], there has been relatively
little work on visualizing massive time series datasets. Below, we
will briefly review the three most referenced approaches in the
literature and explain why they are not suited to the task at hand.

TimeSearcher
TimeSearcher [15] is a time series exploratory and visualization
tool that allows users to retrieve time series by creating queries.
This is achieved by use of “TimeBoxes”, which are rectangular
query locators that specify the region(s) in which the users are
interested within any given time series. In Figure 1, three
TimeBoxes have been drawn to specify time series that start low,
increase, then fall once more. The authors further extended

TimeSearcher to provide additional expressitivity which include
support to queries with variability in the time interval, and angular
queries, which search for ranges of differentials rather than
absolute values [16].

The main advantage of this tool is its flexibility. In
particular, unlike conventional query-by-content similarity search
algorithms, TimeSearcher allows users to specify different regions
of interest from a query time series, rather than feeding the entire
query for matching. This is useful when users are interested in
finding time series that exhibit similar behavior as the query time
series in only specific regions.

While TimeSearcher and VizTree proposed here both serve as
visualization and exploratory tools for time series, their
functionalities are fundamentally different. For example,
TimeSearcher is a query-by-example tool for multiple time series
data. Even with its flexibility, users still need to specify the query
regions in order to find similar patterns. In other words, some
knowledge about the datasets may be needed in advance and users
need to have a general idea of what is interesting. On the other
hand, VizTree serves as a true pattern discovery tool for a long
time series that tentatively identifies and isolates interesting
patterns and invites further inspection by the technician.

The functionality of TimeSearcher for similarity search is
implicit in the design of our system: similar patterns are
automatically grouped together. Furthermore, TimeSearcher
suffers from its limited scalability, which restricts its utility to
smaller datasets, and is impractical for the task at hand.

Figure 1: The TimeSearcher visual query interface. A user can filter away
sequences that are not interesting by insisting that all sequences have at
least one data point within the query boxes.

Cluster and calendar-based visualization
Another time series visualization system is cluster and calendar-
based, developed by [43]. The time series data are chunked into
sequences of day patterns, and these day patterns are in turn
clustered using a bottom-up clustering algorithm. This
visualization system displays patterns represented by cluster
averages, as well as a calendar with each day color-coded by the
cluster that it belongs to. Figure 2 shows just one view of this
visualization scheme.

Figure 2: The cluster and calendar-based visualization on employee
working hours data. It shows six clusters, representing different working-
day patterns.

While the calendar-based approach provides a good overview of
the data, its application is limited to calendar-based data, that is to
say, data which has some regularity imposed on it by social or
financial dependence on the calendar. This approach is of little
utility for data without obvious daily/weekly patterns and/or a
priori knowledge about such patterns. In short, this system works
well to find patterns within a specific, known time scale, while our
system aims to discover previously unknown patterns with little or
no knowledge about the data.

Spiral
Weber et. al developed a tool that visualizes time series on spirals
[45]. Each periodic section of time series is mapped onto one
“ring” and attributes such as color and line thickness are used to
characterize the data values. The main use of this approach is the
identification of periodic structures in the data. However, the
utility of this tool is limited for time series that do not exhibit
periodic behaviors, or when the period is unknown.

We re-implemented the spiral approach and ran it on the
power consumption dataset. A screenshot of the resulting spiral is
shown in Figure 3

Jan 1

Dec 23
Monday 00:01

Friday 23:59

Jan 1

Dec 23
Monday 00:01

Friday 23:59

Jan 1

Dec 23
Monday 00:01

Friday 23:59

Figure 3: The Spiral visualization approach of Weber et al. applied to the
power usage dataset.

Note that one can clearly visualize the normal “9-to-5” working
week pattern. In addition, one can see several other interesting
events. For example, while it is apparent that no one works during
weekends in general, on one Saturday in late summer, there was a
power demand suggestive of a full days shift. Surprisingly, this
idea for visualizing time series predates computers, with elegant
hand drawn examples dating back to at least the 1880’s [13, 42].

While the Spiral approach is elegant, it does not meet our
requirements for several reasons. As mentioned, it works well only
for periodic data (based on the original authors’ claims and our
own experiments). More importantly, it requires pixel space linear
in the length of the time series; this is simply untenable for our
purposes.

To sum up, the time series visualization tools described above
provide various functionalities, and they were designed under
different considerations, with separate objectives in mind.
Therefore, there is no easy way to fairly compare and measure
their performances quantitatively. However, we can summarize
their shortcomings in terms of functionality, conditions on the
input datasets, and scalability:

• Functionality: TimeSearcher offers query-by-content
capability, but it does not provide any information on the
structures of the data itself. Calendar-based approach
finds clusters of subsequences, while the spiral approach
displays periodic structures in data. The functionalities
offered are limited.

• Conditions: With TimeSearcher, users need to know
what they are looking for. The calendar-based approach
requires calendar data. The spiral approach only works
for periodic data, and the periodicity of the data needs to
be known in advance.

• Scalability: All three approaches suffer from limited
scalability; the pixel space grows linearly with the size
of the input.

On the other hand, VizTree is the first visualization tool that
provides the capability of discovering non-trivial patterns, while
using constant space, without imposing any constraints on the
input data.

Our approach: VizTree
Our visualization approach works by transforming the time series
into a symbolic representation, and encoding the data in a
modified suffix tree in which the frequency and other properties of
patterns are mapped onto colors and other visual properties. Before
explaining our approach in detail, we will present a simple
problem that motivates our work.

Two sets of binary sequences of length 200 were generated:
the first set by the pseudo-random-number generator by the
computer, and the second set by hand by a group of volunteers.
The volunteers were asked to try and make the bit strings as
random as possible, and were offered a prize to motivate them.
Figure 4 shows one sample sequence from each set.

By simply looking at the original bit strings, it’s difficult, if
not impossible, to distinguish the computer-generated from the
human-constructed numbers. However, if we represent them with
a tree structure where the frequencies of subsequences are encoded
in the thickness of branches, the distinction becomes clear. For
clarity, the trees are pruned at depth three. Each tree represents
one sequence from each set, and each node in the tree has exactly
two branches: the upper branch represents 1, and the lower branch
represents 0. The tree is constructed as follows: starting from the
beginning of each sequence, subsequences of length three are
extracted with a sliding window that slides across the sequence
one bit at a time. So for the first sequence we get a set of
subsequences {(0,1,0), (1,0,1), (0,1,1), …}.

Sequence 1 Sequence 2
0101100101111001101001000010001010
0110110101110000101010111011111000
1101101101111110100110010010001101
0001111001101101000101111000101101
0011011001101000000100110001001110
000011101001100101100001010010

1000100010100100010101010000101010
0010101110111101011010010111010010
1010011101010101001010010101011101
0101001010101011010101001011001011
1011110100011100001010000100111010
100011100001010101100101110101

Figure 4: (Left) Computer-generated random bits presented as an
augmented suffix tree (Right) Human-constructed bits presented as an
augmented suffix tree.

For the tree shown on the left in Figure 4, the branches at any
given level have approximately the same thickness, which means
that the probabilities of subsequences at any given level are
approximately evenly distributed. In contrast, the tree on the right
shows that subsequences of alternating 0’s and 1’s dominate the
whole sequence. The “motifs” for the sequence, 101 and 010, can
be easily identified, since they appear more frequently than the
other subsequences.

The non-randomness, which can be seen very clearly in this
example, implies that humans usually try to “fake” randomness by
alternating patterns [18]. Undoubtedly, there exist other solutions
to uncover these “patterns” (entropy, Hidden Markov models,
etc.). Nonetheless, what this visualization scheme provides is a
straightforward solution that allows users to easily identify and
view the patterns in a way intuitive to human perception.

The simple experiment demonstrates how visualizing
augmented suffix trees can provide an overall visual summary, and
potentially reveal hidden structures in the data. Since the strings
represented in the tree are in fact “subsequences” rather than
“suffixes,” we call such trees subsequence trees.

This simple experiment motivates our work. Although time
series are not discrete, they can be discretized with little loss of
information, thus allowing the use of suffix/subsequence trees.

Our system is partly inspired by Visualysis [27], a
visualization tool for biological sequences. Visualysis uses a
suffix tree to store the biological sequences and, through the
properties of the tree, such as bushiness, branch distribution, etc,
and user navigation, interesting biological information can be
discovered [27]. Visualysis incorporates algorithms that utilize
suffix trees in computational biology; more specifically, exact
sequence matching and tandem repeat algorithms. At a first
glance, our visualization system is similar to Visualysis in the
sense that it also has the objective of pattern discovery using a tree
structure. However, several characteristics that are unique to our
application make it more diversely functional than its
computational-biology counterpart. First, although the tree
structure needs the data to be discrete, the original time series data
is not. Using a time-series discretization method that we
introduced in an earlier work [29], continuous data can be
transformed into discrete domain, with certain desirable properties
such as lower-bounding distance, dimensionality reduction, etc.
Second, instead of using a suffix tree, we use a subsequence tree
that maps all subsequences onto the branches of the tree. Thus,

given the same parameters, the trees have the same overall shape
for any dataset. This approach makes comparing two time series
easy and anomaly detection possible.
The utility of discretizing time series
In [29], we introduced Symbolic Aggregate approximation (SAX),
a novel symbolic representation for time series. It is ideal for this
application since, unlike all previously proposed discretization
methods for time series, SAX allows lower-bounding distance
measures to be defined on the symbolic space. In addition, its
dimensionality reduction feature makes approximating large
dataset feasible, and its ability to convert the data using merely the
local information, without having to access the entire dataset, is
especially desirable for streaming time series. The utility of SAX
has been demonstrated in [29], and the adaptation or extension of
SAX by other researchers further shows its impact in diverse fields
such as medical and video [7, 36]. For these reasons, we choose to
use SAX as the discretization method for the input time series
data.

Before converting a time series to symbols, it should be
normalized. The importance of normalization has been extensively
documented in the past [24]. Without normalization, many time
series data mining tasks have little meaning [24]. Therefore, by
default, all subsequences are normalized before converting to
symbols by SAX. In the unusual event where it might be more
appropriate not to normalize, for example, when offset and
amplitude changes are important, VizTree provides an option to
skip the normalization step. SAX performs the discretization in
two steps. First, a time series C of length n is divided into w
equal-sized segments; the values in each segment are then
approximated and replaced by a single coefficient, which is their
average. Aggregating these w coefficients form the Piecewise
Aggregate Approximation (PAA) representation of C.

Next, to convert the PAA coefficients to symbols, we
determine the breakpoints that divide the distribution space into α
equiprobable regions, where α is the alphabet size specified by the
user. In other words, the breakpoints are determined such that the
probability of a segment falling into any of the regions is
approximately the same. If the symbols were not equi-probable,
some of the substrings would be more probable than others. As a
consequence, we would inject a probabilistic bias in the process.
In [9], Crochemore et. al. showed that a suffix tree automation
algorithm is optimal if the letters are equiprobable. Table 1
summarizes the major notation used in this and the subsequent
sections of the paper.

Table 1: A summarization of the notation used in this paper

 C
A time series C = c1,…,cn (in VizTree, C is a
subsequence extracted by a sliding window of
length n)

 n Length of the time series to be converted to string
(in VizTree, this is the sliding window length)

w The number of PAA segments representing time
series C

α Alphabet size (e.g., for the alphabet = {a,b,c}, α =
3)

Once the breakpoints are determined, each region is assigned

a symbol. The PAA coefficients can then be easily mapped to the
symbols corresponding to the regions in which they reside. In

[29], the symbols are assigned in a bottom-up fashion so the PAA
coefficient that falls in the lowest region is converted to “a,” in the
one above to “b,” and so forth. In this paper, for reason that will
become clear in the next section, we reverse the assigning order, so
the regions will be labeled top-down instead (i.e. the top-most
region is labeled “a,” the one below it “b,” and so forth). Figure 5
shows an example of a time series being converted to string
acdcbdba. Note the general shape of the time series is preserved,
in spite of the massive amount of dimensionality reduction, and the
symbols are approximately equiprobable.

The discretization technique can be applied to VizTree by
calling SAX repeatedly for each subsequence. More specifically,
subsequences of specified lengths are extracted from the input time
series and normalized to have a mean of zero and a standard
deviation of one. Applying SAX on these subsequences, we obtain
a set of strings. From this point on, the steps are identical to the
motivating example shown in the beginning of Section 3: the
strings are inserted into the subsequence tree one by one.

100 200 300 400 500 600 700 800 900 1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

a

c

d

c

b

d

b
a

a
b
c
d

100 200 300 400 500 600 700 800 900 1000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

a

c

d

c

b

d

b
a

a
b
c
d

Figure 5: A time series dataset of electrical consumption (of length 1024)
is converted into an eight-symbol string “acdcbdba.” Note that the general
shape of the time series is preserved, in spite of the massive amount of
dimensionality reduction.

We believe that in order to visualize anomalies, one must have a
representation that is capable of expressing similarities. The
connection between similarity and anomalies is inherent in the
English idiom. When confronted with an anomalous object or
occurrence, people usually exclaim "I have never seen anything
like it!" or "It is like nothing you have ever seen before". We have
shown in [29] that the SAX representation is capable of
representing similarities. In short, we showed that SAX is as good
as, or better than, the other classic representations of time series,
including DFT and DWT. Furthermore, we demonstrated the
following unintuitive finding: SAX is generally better at
discovering similarities than the original data! We refer interested
readers to [29] for full detail.

A first look at VizTree
Figure 6 shows a screen shot of VizTree. When the program is
executed, four blank panels and a parameter-setting area are
displayed. To load a time series dataset, the user selects the input
file using a familiar dropdown menu. The input time series is
plotted in the top left-hand panel. The ruler drawn in the bottom
of the panel shows the scale of the time series. The zoom-in and
zoom-out buttons allow the user to view the time series in different
scales; and the scrolling buttons allow the user to view different
regions of the time series.

Next to the time series plotting window is the parameter
setting area; the technician can enter the sliding window length,
the number of SAX segments per window, and select alphabet size
from a dropdown menu. Once the parameters are entered, the user

can click on the “Show Tree” button to display the subsequence
tree on the bottom left panel.

Figure 6: A screenshot of Viztree. The top panel is the input time series.
The bottom left panel shows the subsequence tree for the time series. On
the right, the very top is the parameter setting area. Next to the
subsequence tree panel, the top window shows the zoom-in of the tree, and
the bottom window plots the actual subsequences when the technician
clicks on a branch.

The time series used for this example is a real, industrial dataset of
smog emissions from a motor vehicle. The length of the time
series is 2478. The length of the sliding window (i.e. n as in Table
1) is set to 53; the number of segments (i.e., the depth of the tree,
or w as in Table 1) is four, and the alphabet size (i.e., the number
of children for each node, or α as in Table 1) is four.

Each branch represents one pattern. As mentioned in the
previous section, we reverse the assigning order of the symbols
from bottom-up to top-down. The reason is that when the symbols
are arranged this way, it is more consistent with the natural shape
of the tree. For example, for any given node, a branch at a higher
position denotes segments with higher values. Traversing breadth-
first from the top-most branch of any given node, the symbols that
represent the branches are a, b, c, and d, respectively. Each level
of the tree represents one segment (i.e. one symbol). To retrieve
any string, we simply traverse down the appropriate path.

Definition 2 Pattern: a pattern p is the SAX representation of
a subsequence in the time series, denoted by the string s formed by
following any path down the subsequence tree.

Definition 3 Frequency: The frequency of p in time series A
is denoted by f(pA), which is the number of occurrences of p over
the number of all occurrences in A.
The frequency of a pattern is encoded in the thickness of the
branch. For clarity, the full tree is drawn. Branches with zero
frequency are drawn in light gray, while others are drawn in red
with varying thicknesses.

On the right hand side of VizTree, there are two panels. The
upper one shows the zoom-in of the tree shown in the left panel.
This is very useful especially for deep and bushy trees. The user
can click on any node (on the subsequence tree window, or
recursively, on the zoom-in window itself) and the sub-tree rooted
at this node will be displayed in this upper panel. The sub-tree
shown in Figure 6 is rooted at the node representing the string
“abxx,” where the “xx” denotes don’t-care since we are not at the
leaf level. If the user clicks on any branch, then the actual

subsequences having the string represented by this particular
branch will be displayed in the bottom panel and highlighted in the
time series plot window. In the figure, subsequences encoded to
“abdb” are shown.
Parameter Selection
Three parameters need to be determined: the length of the sliding
window, the number of segments, and the alphabet size. In [31]
we showed the trade-off between the number of segments and the
alphabet size. In general, VizTree works very well even with
massive dimensionality reduction, as we will demonstrate later (in
the experiments we used no more than 5 segments). The length of
the sliding window is data-dependent; however, the ruler in the
bottom of the time series window can offer some suggestion on the
scale of patterns that might seem interesting to the user.

Subsequence Matching
Subsequence matching can be done very efficiently with VizTree.
Instead of feeding another time series as query, the user provides
the query in an intuitive way. Recall that each branch for any
given node corresponds to one of the equiprobable regions that are
used to convert the PAA coefficients to symbols. The top branch
corresponds to the region with the highest values, and the bottom
branch corresponds to the region with the lowest values.
Therefore, any path can be easily translated into a general shape
and can be used as a query. For example, the top-most branch at
depth one (i.e., string “axxx”) represents all subsequences that start
with high values, or more precisely, whose values in the first
segment have the mean value that resides in the highest region. In
the previous example, the user is interested in finding a concave-
down pattern (i.e., a U-shape). This particular pattern, according
to the domain experts, corresponds to a change of gears in the
motor vehicle during the smog emission test. From the U shape,
the user can approximate the query to be something that goes
down and comes up, or a path that starts and ends with high
branches, with low branches in the middle. As a result, clicking on
the branch representing “abdb” as shown in the figure uncovers
the pattern of interest.

Motif Discovery & Simple Anomaly Detection
VizTree provides a straightforward way to identify motifs. Since
the thickness of a branch denotes the frequency of the
subsequences that are encoded to the given string, we can identify
approximate motifs by examining the subsequences represented by
thick tree paths. A feature unique to VizTree is that it allows users
to visually evaluate and inspect the patterns returned. This
interactive feature is important since different strings can also
represent similar subsequences, such as those that differ by only
one symbol. In addition, the user can prune off uninteresting or
expected patterns to improve the efficiency of the system and
reduce false positives. For example, for ECG data, the motif
algorithm will mostly likely return normal heart beats as the most
important motif, which is correct but non-useful. Allowing user to
manually prune off this dominant pattern, secondary yet more
interesting patterns may be revealed.

Figure 7 shows such an example. The dataset used here is a
real, industrial dataset, “winding,” which records the angular
speed of a reel. The subsequences retrieved in the lower right
panel have the string representation “dacb.” Examining the motifs
in this dataset allowed us to discover an interesting fact: while the
dataset was advertised as real, we noted that repeated patterns

occur at every 1000 points. For example, in Figure 7, the two
nearly identical subsequences retrieved are located at offsets 729
and 1729, exactly 1000 points apart. We checked with the original
author and discovered that this is actually a “fake” dataset
synthesized from parts of a real dataset, a fact that is not obvious
from inspection of the original data.

Figure 7: Example of motif discovery on the winding dataset. Two nearly
identical subsequences are identified, among the other motifs.

The complementary problem of motif discovery is anomaly
detection. While frequently occurring patterns can be detected by
thick branches in the Viztree, simple anomalous patterns can be
detected by unusually thin branches. Figure 8 demonstrates both
motif discovery and simple anomaly detection on an MIT-BIH
Noise Stress Test Dataset (ECG recordings) obtained from
PhyioBank [14]. Here, motifs can be identified very easily from
the thick branches; more remarkably, there is one very thin line
straying off on its own (the path that starts with “a”). This line
turns out to be an anomalous heart beat, independently annotated
by a cardiologist as a premature ventricular contraction.

While anomalies can be detected this way for trivial cases, in
more complex cases, the anomalies are usually detected by
comparing the time series against a normal, reference time series.
Anything that differs substantially from this reference time series
can signal anomalies. This is exactly the objective of the Diff-
Tree, as described in the next section.

Figure 8: Heart-beat data with anomaly is shown. While the subsequence
tree can be used to identify motifs, it can be used for simple anomaly
detection as well.

Diff-Tree and anomaly detection
We have described how global structures, motifs, and simple
anomalies can be identified by a subsequence tree. In this section,
we extend these ideas to further allow the comparison of two time
series by means of a “Diff-Tree.” A Diff-Tree is short for
“difference tree.” As the name implies, it shows the distinction
between two subsequence trees built for different time series. The
construction of a Diff-Tree is fairly straightforward with the use of
subsequence tree, since the overall tree shape is the same
regardless of the strings, provided that the parameters selected
(i.e., alphabet size, number of segment, etc) are the same. The
Diff-Tree is constructed by computing the difference in thickness
(i.e., frequency of occurrence) for each branch. Intuitively, time
series data with similar structures can be expected to have similar
subsequence trees, and in turn, a sparse Diff-Tree. In contrast,
those with dissimilar structures will result in distinctively different
subsequence trees and therefore a relatively dense Diff-Tree.

One or two datasets can be loaded to VizTree simultaneously.
If only one is loaded, then its subsequence tree will be shown. If
two datasets are loaded, the user has the option of viewing the
subsequence tree of either one, or their diff-tree. The branches in
the difference tree are color-coded to distinguish between the
overrepresented and underrepresented patterns. Given two time
series A and B, where A is the basis for comparison (the reference
time series), and B is the second time series, we can define the
following terms:

Definition 4 Overrepresented pattern: a pattern is
overrepresented in B if it occurs more frequently in B than it does
in A.

Definition 5 Underrepresented pattern: a pattern is
underrepresented in B if it occurs more frequently in A than it does
in B.
Two physical properties of the tree are used to denote the
similarity/dissimilarity between two patterns:

• Thickness of a branch: denotes how different the
given pattern is between time series A and B.

• Color intensity of a branch: denotes how significant
the difference is.

We formally define the encoding schemes for these two properties
below:

Definition 6 Support: the support of the difference for any
pattern p between A and B, encoded as the thickness of a branch,
is defined as follows:

))(),(max(
)()(

BA

AB
p pfpf

pfpfSup −
= (1)

Simply stated, Supp measures how a pattern (i.e. branch) differs
from one time series to another, by computing the percentage of
non-overlap of p between A and B. It is encoded in Diff-Tree as
the thickness of a branch.

If a pattern p occurs less frequently in B than in A, then the
pattern is underrepresented and Supp < 0, otherwise it is
overrepresented and Supp > 0.

As an example, suppose the frequency of a pattern p1 in A is
0.3 in A and 0.4 in B, then the support of difference for p1 in A
and B is

25.0
4.0

3.04.0
1 =

−
=pSup

The lengths of the time series are implicitly taken into
consideration as well, since f is scaled by the length of the data.
For example, suppose |A| = 100, and suppose B is created by
concatenating two copies of A, i.e. |B| = 200. Then by definition of
f, any pattern will have the same frequency in A and B.

However, if there is another pattern p2 in the same datasets
such that f(p2A) = 0.03 and f(p2B) = 0.04, the formula will arrive at
the same identical measure for both p1 and p2! Logically, we
would want to place more weight on p1 since 30% occurrences is
definitely more significant than 3% occurrences. Therefore, we
define confp, the confidence of the difference for pattern p.

Definition 7 Confidence: the confidence of a pattern p
describes how interesting or significant p is in each time series.

2/)
max_

)(
max_

)((
B

B

A

A
p f

pf
f

pfconf += (2)

The measure conf takes on values between 0 and 1 -- 1 denotes the
most significant and 0 being the least significant. Suppose the
maximum frequency for both A and B is 0.45 (i.e. the most
frequent pattern comprises 45% of all subsequences). Continuing
with the previous examples, the first case ({0.3, 0.4}) will yield
(0.3/0.45 + 0.4/0.45) / 2 = 0.9877, while the second case ({0.03,
0.04}) will yield (0.03/0.45 + 0.04/0.45) / 2 = 0.09877.

Note the measures support and confidence defined here are
fundamentally different from, and thus should not be confused
with those in the literature such as in association rule mining [2].

In the earlier version of VizTree [30], discrete colors are used
to distinguish between overrepresented patterns and
underrepresented patterns. We now add the confidence measures,
encoded as the color intensity of a branch by varying the green and
blue components of the RGB color value, to highlight the
significance of pattern. So the overrepresented patterns will be
drawn in different shades of green, whereas underrepresented
patterns will be drawn in different shades of blue. When a pattern
is neither overrepresented nor underrepresented (i.e. equal
frequency in the test and reference time series), a neutral greenish-
blue color is used.

Of course, alternative ways of computing the support and
confidence are possible (e.g. for support, it’s also possible to

compute just the absolute difference in frequencies rather than the
percentage of the difference). For example, we might want to
modify the definitions above for health surveillance applications,
where we want to focus on overrepresented patterns that have a
sudden increase in frequencies, since it could be indicative of a
disease outbreak. However, from our experiments, we can safely
say that in most cases, the choices of the formulas do not make
much difference in the outcome, as long as they adhere to the
general definitions of support and confidence: support measures
how much non-overlap a pattern is between two time series, and
confidence measures how significant the pattern is.

Diff-Tree shows all the differences between the reference and
the test time series. However, in most anomaly detection
applications, the user is interested in finding the most anomalous
patterns. One way to prune off the insignificant differences is to
display only the most surprising patterns. However, a better
alternative is to display all of the differences, and rank the top, say
ten, surprising patterns to aid user in the browsing process. Having
defined the support and the confidence of the difference, we can
now combine these two measures to define our ranking scheme,
the measure of surprisingness. It is simply the support of a pattern
weighted by its significance (confidence) to prevent two patterns
of distinctive occurrence counts arriving at identical support
measure (as described in the example provided before Definition
7).

Definition 8 Surprisingness: the degree of difference for pattern p,
weighted by the confidence of the pattern, in two time series.

ppp confSurprise ×= sup (3)

Predicting the frequency of a pattern
If a pattern does not exist in the reference time series (i.e. f(pA) =
0), then its frequency can be predicted by using a Hidden Markov
Model (HMM). A Markov model is a stochastic process over a set
of finite states. Each state is associated with a specific probability
distribution that governs the transition from one state to another. A
Markov model of order M uses M previous states to determine the
probabilities of possible outcomes of the next state [26].

When the true model is unknown, we have a Hidden Markov
Model (HMM). A HMM is simply a Markov model where only
the observations are known and the hidden state sequence is
inferred. In our case, the expected frequency of any substring can
be estimated from the observed sequence. Let y be a substring of x,
and m = |y| ≥ M+2, where M is the order of the model. A
frequently used choice for the order of the chain is M = m-2, of
which the model is called the maximal model. The expected
frequency of y,)(ˆ

yZE , can be estimated as follows:

∏
∏

−

= −+

−

= += Mm

i Miix

Mm

i Miix
y

yf

yf
ZE

2]1...[

1]...[

)(

)(
)(ˆ (4)

Once the first time series is loaded, the tree is annotated with the
expected frequencies in the breadth-first order. The expected
frequency for a pattern (or a partial pattern, if we are at the non-
leaf level of the tree) is either the actual frequency if the pattern
exists or the frequency predicted by HMM otherwise.

When predicting the frequency for a pattern, the appropriate
order of the model needs to be determined. We start with the
maximal model M, and if any of the substrings in Eq. 4 does not

exist, then we fall back to the lower order until all the information
needed to compute the estimate is sufficient. In other words, we
look for the Markov model M in the interval [1, m-2] such that all
the substrings y[i…i+M] occur in the reference time series, for all 1
<= i <= m-M.

Having annotated the tree, we can discretize the subsequences
and simply update the frequencies of the corresponding patterns in
the existing tree when the second time series is loaded,

Diff-Tree example
The datasets used to demonstrate anomaly detection, constructed
independently of the current authors and provided by the
Aerospace Corporation for sanity check, are shown in Figure 9.
The one on the top is the normal time series, and the one below is
similar to a normal time series, except it has a gap in the middle as
anomaly. Figure 10 shows a screenshot of the anomaly detection
by diff-tree. The tree panel shows the Diff-Tree between the two
datasets. The top two thick paths denote the beginning and the end
of the anomaly, respectively. The last path denotes the normal
pattern that occurs in both time series. Note that this pattern is not
ranked since it is not an anomaly (i.e. equal occurrences in both
time series).
This is a very trivial example for demonstration purpose.
However, the effect is similar for more complex cases.

Figure 9 The input files used for anomaly detection by diff-tree. (Top)
Normal time series. (Bottom) Anomaly is introduced as a gap in the middle
of the dataset.

Figure 10: Diff-tree on the datasets shown in the previous figure. The gap
is successfully identified.

Diff-Tree dissimilarity coefficient
Eq. 3 defines the surprisingness of each pattern. An intuitive
question to ask is, can we quantify a Diff-Tree by combining the
surprise measures of all patterns? We formalize this idea as
follows:

BApSurpriseDSim
p

pBA ,,, ∈∀=∑ (5)

Simply stated, DSimA,B measures the dissimilarity between time
series A and B. Before continuing with the implication of this
measurement, we will demonstrate how well the coefficient
captures the dissimilarity between two time series by applying it
on time series clustering.

The choice of clustering algorithm for demonstration of the
coefficient is hierarchical clustering, since its great visualization
power helps for the validation purpose. As a quick review,
hierarchical clustering produces a nested hierarchy of similar
groups of objects, according to a pairwise distance matrix of the
objects. Table 2 outlines the basic hierarchical clustering
algorithm. In our case, we’ll use the similarity measures (i.e. 1–
DSim) for the matrix instead of the actual distances.

Table 2: An outline of hierarchical clustering.
Algorithm Hierarchical Clustering

1. Calculate the distance between all objects. Store the results in a distance
matrix.

2. Search through the distance matrix and find the two most similar
clusters/objects.

3. Join the two clusters/objects to produce a cluster that now has at least 2
objects.

4. Update the matrix by calculating the distances between this new cluster
and all other clusters.

5. Repeat step 2 until all cases are in one cluster.

Figure 11 shows the dendrogram of clustering result using the
Diff-Tree (dis)similarity coefficient. It clearly demonstrates that
the coefficient captures the dissimilarity very well and that all
clusters are separated perfectly.

Figure 11: Clustering result using the Diff-Tree dissimilarity coefficient

As a reference, we ran the same clustering algorithm using the
widely-used Euclidean distance. The result is shown in Figure 12.

Figure 12: Clustering result using Euclidean distance.

While we are not claiming that the coefficient is the best measure
for clustering time series, the demonstration shows that it is at least
competitive with one of the most popular distance measure. In
addition, it indirectly validates the correctness of the measures
used in Diff-Tree.

Experimental evaluation
We have done an intensive empirical evaluation on VizTree. It
would make little sense for us to test our approach on datasets
where we have little expertise or intuition. We have therefore
chosen to evaluate (and demonstrate) our approach on datasets
which are either very intuitive to the average person or have been
extensively annotated by domain experts. In particular, we will
evaluate our work on human motion data, the power demand data,
and the ECG data Note that all datasets used here are available for
free from the UCR archive [22].

Subsequence matching
This experiment incorporates both subsequence matching and
motif discovery. The dataset used is the human motion data of
yoga postures. A model postured yoga routines in front of a green
screen, and her motion was captured by various sensors. The
motion capture is transformed into a time series by computing the
aspect ratio of the minimum-bounding rectangle formed around
her body. The length of the time series is approximately 26,000
(i.e. there are approximately this many frames in the original
video).

Suppose we are interested in finding a yoga sequence like the
one in Figure 13:

Figure 13: A sample yoga sequence for approximate subsequence
matching.

Then we would expect the shape of the query to descend rapidly
after the first position (the width-to-height-ratio decreases), ascend

slowly after the second position, descend again, and finally ascend
once more. Assume that we set the number of segments to be five
(an arbitrary choice), then a reasonable start would be the branch
“adxxx.” Since there are only two paths extending from the node
“ad,” the matches are found very quickly without much refinement
in the search space. The result is shown in Figure 14 and the
actual yoga sequences for the matches are outlined in Figure 15.
The subsequence length is 400 (i.e. about 6.5 seconds). As the
figure shows, the two sequences are very similar with only very
minor distinction.

Figure 14: Matches for the yoga sequence in Figure 11. The bottom right
corner shows how similar these two subsequences are.

Figure 15: Outline of the actual yoga sequences that match the query.

There are several advantages of the approximate subsequence
matching by VizTree. One is that this feature is built-in to the
application, and it is relatively easy to specify the query without
explicitly providing it. More importantly, the system retrieves the
results very efficiently since the information is already stored in
the tree. With the current state-of-the-art exact subsequence
matching algorithms, retrieval is much too slow for a real time
interaction.

Motif Discovery
For the motif discovery experiment, we will continue with the
previous human-motion example. There are obviously some
noticeable motifs such as the long spikes that occur throughout the
sequence (see the time series plot in Figure 14). They denote the
posture where the model is lying flat on the ground, when the
aspect ratio is at its maximum. However, one of the desirable
features of VizTree is that it allows users to visually identify
secondary yet more interesting motifs. The matches found in the
previous section are such example. We can zoom-in on these
subsequences and examine their similarity.

From Figure 16 we can see that these two subsequences are
indeed very similar to each other. Note that they both have a small
dip towards the end of the sequence. However, there is a slight
difference there – the dip for the first sequence occurs before that
for the second sequence, and is followed by a plateau. Examining
the motion captures we discover that the dip corresponds to the 6th
position shown in Figure 15, right before the model stretched her
arms straight in front of her. In addition, for the first sequence, the
model held that last position for a longer period of time, thus the
plateau following the dip. These subtle differences are difficult to
notice without the motif discovery and/or the subsequence
matching features in VizTree.

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

Figure 16 Zoom-ins of the two matches found in the yoga subsequence
match example. Note that they both have a dip towards the end of the
sequences.

For comparison, we ran the fastest known exact motif discovery
algorithm [31] . Although the same motif can also be successfully
identified, it takes minutes to compute, while VizTree gives instant
(less than one second) feedback on the results. Even with the
approximate motif discovery algorithm [8], it takes tens of seconds
to complete. In addition, the visualization power of VizTree
allows the user to see exactly where the motif occurs and how it
maps to the original time series.

Anomaly detection
For anomaly detection, we used the power demand data that was
also used in Figure 3. Electricity consumption is recorded every 15
minutes; therefore, for the year of 1997, there are 35,040 data
points. Figure 17 shows the resulting tree with the sliding window
length set to 672 (exactly one week of data), and both alphabet
size and number of segments to 3. The majority of the weeks
follow the regular Monday-Friday, 5-working-day pattern, as
shown by the thick branches. The thin branches denote the
anomalies (anomalies in the sense that the electricity consumption
is abnormal given the day of the week). The one circled is from
the branch “bab.” The zoom-in shows the beginning of the three-
day week during Christmas (Thursday and Friday off). The other
thin branches denote other anomalies such as New Year’s Day,
Good Friday, Queen’s Birthday, etc.

While other anomaly detection algorithms such as the TSA-
Tree Wavelet-based algorithm by Shahabi et. al. [39] and the
Immunology-based algorithm (IMM) by Dasgupta and Forrest [10]
can potentially find these anomalies as well given the right
parameters, both are much more computationally intensive. While
VizTree requires input of parameters, the results are almost instant.
In the contrary, the TSA-Tree takes tens of seconds, and IMM
needs re-training its data with every adjustment of parameters,
with each training session taking several minutes. This is clearly
untenable for massive datasets.

In addition to the fast computational time, anomaly detection
by VizTree does not always require a training dataset. As

demonstrated, simple anomalies can be identified as an inverse to
the motifs.

Figure 17 Anomaly detection on power consumption data. The anomaly
shown here is a short week during Christmas.

Anomaly detection by Diff-Tree
In Figure 18, two ECG datasets are loaded to the application. The
reference time series is a normal heartbeat dataset, and the test
time series has an anomalous heartbeat. The top ten surprising
patterns, ranked by their levels of surprisingness, are shown, and
red lines are drawn on top of the surprising branches to make them
more easily spotted. Clicking on the number-one ranking pattern
displays the anomalous heartbeat in the test time series.

Figure 18: An abnormal heartbeat dataset is compared against a normal
heartbeat dataset, and the anomaly is successfully identified.

Complexity and scalability
VizTree is very efficient in terms of both time and space. The
discretization step and the construction [26] of the tree both take
linear time. The pixel space of the tree is determined solely by the
number of segments and alphabet size. In particular, we note that
the pixel size of the tree is constant and independent of the length
of time series. We have already shown that large amounts of
dimensionality reduction do not greatly affect the accuracy of our
results (in Section 5.3, the dimensionality is reduced from 672 to

3, a compression ratio of 224-to-1). However, the size of the
dataset plays a role in memory space, since each node in the tree
stores the offsets of its subsequences. However, SAX allows
efficient numerosity reduction to reduce the number of
subsequences being included into the tree, in addition to
alleviating the problem associated with trivial matches (see below)
[25, 31].

Numerosity Reduction
In [31] we showed that the best matches for a subsequence tend to
be its immediate neighbors: the subsequence one point to the right
and the subsequence one point to the left. We defined these
matches to be the “trivial matches.” In the smooth regions of the
time series, the amount of trivial matches might be large. If we
include them in any sliding-window algorithms, the trivial matches
will dominate over the true patterns due to over-counting, and the
results will likely be distorted, or worse, become meaningless [25].
Therefore, when extracting subsequences from the time series by a
sliding window, the trivial matches should be excluded.

Different definitions can be used to identify trivial matches.
The easiest way is to compare the SAX strings and only record a
subsequence if its string is different from the last one recorded. In
other words, no two consecutive strings should be the same.

Additionally, we can also check two consecutive strings
symbol-by-symbol and consider them trivial matches of one
another if no pair of symbols is more than one alphabet apart. This
extra check is based on the same idea as the previous numerosity
reduction option, that similar subsequences have the same SAX
representation. However, it is also likely that similar
subsequences do not have exactly the same SAX representations;
rather, they might have alphabets that differ by at most one at any
given position (i.e. the values could be very close but reside on
different sides of a breakpoint).

Furthermore, the second option can be extended to also
exclude non-monotonic strings. Depending on the nature of the
datasets, users might only be interested in finding patterns with ups
and downs.

Finally, the ultimate numerosity reduction can be achieved by
chunking, which allows no overlapping subsequences. This has
been used for many approaches; however, we note that it is only
useful if the dataset exhibits regular patterns, either by shape or by
period. For example, if we use chunking for the power
consumption data, then we get an even more distinctive tree.

Conclusions and future work
We proposed VizTree, a novel visualization framework for time
series that summarizes the global and local structures of the data.
We demonstrated how pattern discovery can be achieved very
efficiently with VizTree.

While we mainly focus on the “mining” aspect in major part
of this paper, we mentioned that VizTree can potentially be used
for monitoring purposes. There are typically two types of
streaming algorithms: append-only and amnesic. The former
maintains some global statistics or information about the overall
data as new data arrive, while for the latter, more recent data are
treated with higher weights. For the append-only case, the tree can
be updated very easily in constant time (of course, discretization
still takes linear-time, although some optimization can be achieved
by updating the PAA values instead of re-computing the whole
thing). For the amnesic case, information on older data needs to be

stored in order to update the tree. We defer this part for future
research.
We believe that researchers from other sectors of the industry can
greatly benefit from our system as well. For example, it could
potentially be used for indexing and editing video sequences.

Currently, we are working on extending VizTree/Diff-Tree
for epidemic outbreak detection [44] on a collaborative effort with
AT&T Research. Most outbreaks can be noticed in the late stage
of the epidemic; however, the goal is to detect the outbreak in its
early stage and mitigate its effect. In addition, it is also useful for
bioterrorism detection [32], public health surveillance, and
learning disease patterns.

Acknowledgments
Thanks to Victor Zordan and Bhrigu Celly for providing the yoga
postures data.

References

1 Aggarwal C, Towards Effective and Interpretable Data Mining by
Visual Interaction, in SIGKDD Explorations. 2002.

2 Agrawal R, Imielinski T, and Swami A. Mining Association Rules
Between Sets of Items in Large Databases. the 1993 ACM SIGMOD
Int'l Conference on Management of Data 1993 (Washington, D.C.);
207-216.

3 Apostolico A, Bock ME, and Lonardi S. Monotony of Surprise in
Large-Scale Quest for Unusual Words. the 6th Int'l Conference on
Research in Computational Molecular Biology 2002 (Washington,
D.C.); 22-31.

4 Caraca-Valente JP and Lopez-Chavarrias I. Discovering Similar
Patterns in Time Series. the 6th Int'l Conference on Knowledge
Discovery and Data Mining 2000 (Boston, MA); 497-505.

5 Cardle M, Ph.D Thesis, in progress. University of Cambridge, 2004.
6 Chang CLE, Garcia-Molina H, and Wiederhold G. Clustering for

Approximate Similarity Search in High-Dimensional Spaces. IEEE
Transactions on Knowledge and Data Engineering 2002; 14(4): 792-
808.

7 Chen L, Ozsu T, and Oria V, Symbolic Representation and Retrieval
of Moving Object Trajectories. 2003, University of Waterloo.

8 Chiu B, Keogh E, and Lonardi S. Probabilistic Discovery of Time
Series Motifs. the 9th ACM SIGKDD Int'l Conference on Knowledge
Discovery and Data Mining 2003 (Washington DC, USA); 493-498.

9 Crochemore M, et al. Speeding Up Two String-Matching Algorithms.
Algorithmica 1994; 12(4/5): 247-267.

10 Dasgupta D and Forrest S. Novelty Detection in Time Series Data
Using Ideas from Immunology. the 8th Int'l Conference on Intelligent
Systems 1999 (Denver, CO).

11 Durbin R, et al., Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids. Cambridge University Press, 1998.

12 Faloutsos C, Ranganathan M, and Manolopulos Y. Fast Subsequence
Matching in Time-Series Databases. SIGMOD Record 1994; 23(2):
419-429.

13 Gabglio A, Theoria Generale Della Statistica. 2nd ed: Milan, 1888.
14 Goldberger AL, et al. PhysioBank, PhysioToolkit, and PhysioNet:

Componenets of a New Research Resource for Complex Physiologic
Signals. Circulation 2000; 101(23): e215-e220.

15 Hochheiser H and Shneiderman B. Interactive Exploration of Time-
Series Data. the 4th Int'l Conference on Discovery Science 2001
(Washington D.C.), Springer-Verlag; 441-446.

16 Hochheiser H and Shneiderman B. Dynamic Query Tools for Time
Series Data Sets: Timebox widgets for interactive exploration.
Information Visualization 2004; 3: 1-18.

17 Huang YW and Yu PS. Adaptive Query Processing for Time-Series
Data. the 5th ACM SIGKDD Int'l Conference on Knowledge
Discovery and Data Mining 1999 (San Diego, CA); 282-286.

18 Huettel S, Mack PB, and McCarthy G. Perceiving Patterns in Random
Series: Dynamic Processing of Sequence in Prefrontal Cortex. Nature
Neuroscience 2002; 5: 485-490.

19 Isaac D and Lynnes C, Automated Data Quality Assessment in the
Intelligent Archive, White Paper prepared for the Intelligent Data
Understanding program. 2003. p. 17.

20 Jin X, et al. Indexing and Mining of the Local Patterns in Sequence
Database. the 3rd Int'l Conference on Intelligent Data Engineering
and Automated Learning 2002 (Manchester, UK); 68-73.

21 Keim DA. Information Visualization and Visual Data Mining. IEEE
Transactions on Visualization and Computer Graphics 2002; 8(1): 1-
8.

22 Keogh E, The UCR Time Series Data Mining Archive. 2002,
Computer Science & Engineering Department, University of
California: Riverside, CA.

23 Keogh E, Chakrabarti K, and Pazzani M. Locally Adaptive
Dimensionality Reduction for Indexing Large Time Series Databases.
SIGMOD Record 2001; 30(2): 151-162.

24 Keogh E and Kasetty S. On the Need for Time Series Data Mining
Benchmarks: A Survey and Empirical Demonstration. the 8th ACM
SIGKDD Int'l Conference on Knowledge Discovery and Data Mining
2002 (Edmonton, Alberta, Canada); 102-111.

25 Keogh E and Lin J. Clustering of Time Series Subsequences is
Meaningless: Implications for Previous and Future Research.
Knowledge and Information Systems Journal 2004.

26 Keogh E, Lonardi S, and Chiu B. Finding Surprising Patterns in a
Time Series Database in Linear Time and Space. the 8th ACM
SIGKDD Int'l Conference on Knowledge Discovery and Data Mining
2002 (Edmonton, Alberta, Canada); 550-556.

27 Kim S, et al. Visualysis: A Tool for Biological Sequence Analysis.
the 4th Int'l Conference on Computational Molecular Biology 2000
(Tokyo, Japan).

28 Lankford JP and Quan A. Evolution of Knowledge-Based
Applications for Launch Support. Ground System Architecture
Workshop 2002 (El Segundo, CA).

29 Lin J, et al., A Symbolic Representation of Time Series, with
Implications for Streaming Algorithms, in Workshop on Research
Issues in Data Mining and Knowledge Discovery. 2003: San Diego,
CA.

30 Lin J, et al. Visually Mining and Monitoring Massive Time Series. the
10th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining 2004 (Seattle, WA); 460-469.

31 Lin J, et al., Finding Motifs in Time Series, in the 2nd Workshop on
Temporal Data Mining. 2002: Edmonton, Alberta, Canada.

32 Lober WB, et al. Roundtable on Bioterrorism Detection: Information
System-Based Surveillance. J AM Med Inform Assoc 2002; 9(2): 105-
115.

33 Ma J and Perkins S. Online Novelty Detection on Temporal
Sequences. the 9th Int'l Conference on Knowledge Discovery and
Data Mining 2003 (Washington D.C.).

34 Oates T. Identifying Distinctive Subsequences in Multivariate Time
Series by Clustering. the 5th Int'l Conference on Knowledge
Discovery and Data Mining 1999 (San Diego, CA); 322-326.

35 Oates T, Schmill M, and Cohen P. A Method for Clustering the
Experiences of a Mobile Robot that Accords with Human
Judgements. the 17th National Conference on Artificial Intelligence
2000; 846-851.

36 Ohsaki M, et al., A Rule Discovery Support System for Sequential
Medical Data, in the Case Study of a Chronic Hepatitis Dataset, in
Discovery Challenge Workshop. 2003: Cavtat-Dubrovnik, Croatia.

37 Park S, et al. Efficient Searches for Similar Subsequences of Different
Lengths in Sequence Databases. the 16th IEEE Int'l Conference on
Data Engineering 2000 (San Diego, CA); 22-32.

38 Reinert G, Schbath S, and Waterman MS. Probabilistic and Statistical
Properties of Words: An Overview. Journal of Computational
Biology 2000; 7: 1-46.

39 Shahabi C, Tian X, and Zhao W. TSA-Tree: A Wavelet-Based
Approach to Improve the Efficiency of Multi-Level Surprise and
Trend Queries. the 12th Int'l Conference on Scientific and Statistical
Database Management 2000 (Berlin, Germany); 55-68.

40 Shneiderman B. The Eyes Have It: A Task by Data Type Taxonomy
for Information Visualizations. the IEEE Symposium on Visual
Languages 1996 (Boulder, CO), IEEE Computer Society Press; 336-
343.

41 Tanaka Y and Uehara K. Discover Motifs in Multi Dimensional
Time-Series Using the Principal Component Analysis and the MDL
Principle. the 3rd Int'l Conference on Machine Learning and Data
Mining in Pattern Recognition 2003 (Leipzig, Germany); 252-265.

42 Tufte ER, The Visual Display of Quantitative Information. Graphics
Press: Cheshire, CT, 1983.

43 van Wijk JJ and van Selow ER. Cluster and Calendar Based
Visualization of Time Series Data. 1999 IEEE Symposium on
Information Visualization 1999 (San Francisco, CA); 4-9.

44 Wagner MM, et al., Syndrome and Outbreak Detection Using Chief-
Complaint Data - Experience of the Real-Time Outbreak and Disease
Surveillance Project, in Morbidity and Mortality Weekly Report.
2004, Center for Disease Control and Prevention. p. 28-31.

45 Weber M, Alexa M, and Muller W. Visualizing Time Series on
Spirals. 2001 IEEE Symposium on Information Visualization 2001
(San Diego, CA); 7-14.

