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Abstract 
Data visualization techniques are very important for data analysis, 
since the human eye has been frequently advocated as the ultimate 
data-mining tool. However, there has been surprisingly little work 
on visualizing massive time series datasets. To this end, we 
developed VizTree, a time series pattern discovery and 
visualization system based on augmenting suffix trees. VizTree 
visually summarizes both the global and local structures of time 
series data at the same time. In addition, it provides novel 
interactive solutions to many pattern discovery problems, 
including the discovery of frequently occurring patterns (motif 
discovery), surprising patterns (anomaly detection), and query by 
content. VizTree works by transforming the time series into a 
symbolic representation, and encoding the data in a modified 
suffix tree in which the frequency and other properties of patterns 
are mapped onto colors and other visual properties. We 
demonstrate the utility of our system by comparing it with state-of-
the-art batch algorithms on several real and synthetic datasets. 
Based on the tree structure, we further device a coefficient which 
measures the dissimilarity between any two time series. This 
coefficient is shown to be competitive with the well-known 
Euclidean distance. 
 

Keywords: Time Series, Visualization, Motif Discovery, 
Anomaly Detection, Pattern Discovery 

 
Introduction 
The U.S. Department of Defense (DoD) collaborates with 
numerous contractors who help provide the skills and services 
required for U.S. defense. Among these contractors, The 
Aerospace Corp (TAC) has a unique and crucial responsibility.  
The Aerospace Corp has to provide engineering assessments for 
the engineering discipline specialists who make the critical go/no-
go decision moments before the launch of every unmanned space 
vehicle launched by the DoD (Note that Engineering Discipline 
Specialist is the correct term, without disrespect we will use the 
terser term technician throughout this paper). The cost of a false 
positive, allowing a launch in spite of a fault, or a false negative, 
stopping a potentially successful launch, can be measured in the 
tens of millions of dollars, not including the cost in morale and 
other more intangible detriments to the U.S. defense program. 

The launch control rooms at the DoD are similar to the 
familiar Hollywood movie recreations [28]. There are several rows 
of work cells, each with a computer display and a headset. Each 
work cell is devoted to one technician; for example, propulsion, 
guidance, electrical, etc. Each display presents some common data 
(say vehicle location and orientation), as well as data specific to 
that discipline. 

The technician making the go/no-go decision has access to 
data from previous launches and must constantly monitor 
streaming telemetry from the current mission.  

Currently, the technicians use electronic strip charts similar to 
those used to record earthquake shock on paper rolls. However, 



while these charts illustrate the recent history of each sensor, they 
do not provide any useful higher-level information that might be 
valuable to the technician.    

To reduce the possibility of wrong go/no-go decisions, TAC 
is continually investing in research. There are two major directions 
of research in this area. 
• Producing better techniques to mine the archival launch data 

from previous missions. Finding rules, patterns, and 
regularities from past data can help us “know what to expect” 
for future missions, and allow more accurate and targeted 
monitoring, contingency planning, etc [28]. 

• Producing better techniques to visualize the streaming 
telemetry data in the hours before launch. This is particularly 
challenging because one may have to monitor as many as 
dozens of rapidly changing sensors [28]. 

Although these two tasks are quite distinct, and are usually tackled 
separately, the contribution of this work is to introduce a single 
framework that can address both. Having a single tool for both 
tasks allows knowledge gleaned in the mining stage to be 
represented in the same visual language of the monitoring stage, 
thus allowing a more natural and intuitive transfer of knowledge. 

More concretely, we propose VizTree, a time series pattern 
discovery and visualization system based on augmenting suffix 
trees.  VizTree simultaneously visually summarizes both the 
global and local structures of time series data. In addition, it 
provides novel interactive solutions to many pattern discovery 
problems, including the discovery of frequently occurring patterns 
(motif discovery) [8, 31, 41], surprising patterns (anomaly 
detection) [10, 26, 39], and query by content [12, 17, 23, 37].  The 
user interactive paradigm allows users to visually explore the time 
series, and perform real-time hypotheses testing [1, 21]. 

Perhaps the best-known and most referenced researcher in 
information visualization and user interfaces is Dr. Ben 
Shneiderman of the University of Maryland. He has championed a 
set of principles for designing usable and informative scientific 
data visualization systems [40]. The shortest summary of these 
principles is known as the Visual Information Seeking Mantra: 
“Overview, zoom & filter, details-on-demand”. As we will show in 
this paper, our work fits neatly into these principles. We give an 
overview of the global structure of an arbitrarily long time series in 
constant space, while we allow the user to zoom in on particular 
local structures and patterns, and provide details on demand for 
patterns and regularities that the user has tentatively identified. 

While there are several systems for visualizing time series in 
the literature, our approach is unique in several respects. First, 
almost all other approaches assume highly periodic time series [43, 
45], whereas ours makes no such assumption. Other methods 
typically require space (both memory space, and pixel space) that 
grows at least linearly with the length of the time series, making 
them untenable for mining massive datasets. Finally, our approach 
allows us to visualize a much richer sets of features, including 
global summaries of the differences between two time series, 
locally repeated patterns, anomalies, etc.  

While the evaluation of visualization systems is often 
subjective, we will evaluate our system with objective experiments 
by comparing our system with state-of-the-art batch algorithms on 
several real and synthetic datasets. 

 

Background and related work 
We begin this section by briefly reviewing the most important time 
series data mining tasks. We will then consider current 
visualization techniques and explain why they are unsuited to the 
problem at hand.   
 
Time series data mining tasks 
For lack of space, this brief introduction to the important time 
series data mining tasks is necessarily subjective and somewhat 
domain driven.  Nevertheless, these three tasks cover the majority 
of time series data mining research [7, 8, 10, 12, 17, 20, 24, 26, 31, 
33, 34, 41]. 
Subsequence matching 
Sequence matching is perhaps the most widely studied area of time 
series data mining [12, 17].  The task has long been divided into 
two categories: whole matching and subsequence matching [12, 
23].  
• Whole Matching: a query time series is matched against a 

database of individual time series to identify the ones similar 
to the query. 

• Subsequence Matching: a short query subsequence time 
series is matched against longer time series by sliding it along 
the longer sequence, looking for the best matching location. 

While there are literally hundreds of methods proposed for whole 
sequence matching (see, e.g., [24] and references therein), in 
practice, its application is limited to cases where some information 
about the data is known a priori.  

Subsequence matching can be generalized to whole matching 
by dividing sequences into non-overlapping sections. For example, 
we may wish to take a long electrocardiogram and extract the 
individual heartbeats. This informal idea has been used by many 
researchers and is also an optional feature of VizTree. We will 
therefore formally name this transformation chunking, and define 
it below. 

Definition 1 Chunking: the process where a time series is 
broken into individual time series by either a specific period or, 
more arbitrarily, by its shape.  
The former usually applies to periodic data, for example consider 
power usage data provided by a Dutch research facility (this 
dataset is used as a running example in this work, see Figure 3 and 
Figure 17): the data can be chunked by days, weeks, etc.  The 
latter applies to data having regular structure or repetitive shape, 
but not necessarily having the same length for each occurrence. 
Electrocardiogram data are such an example, and they can be 
separated into individual heartbeats. 

There is increasing awareness that for many data mining and 
information retrieval tasks, very fast approximate search is 
preferable to slower exact search [6]. This is particularly true for 
exploratory purposes and hypotheses testing.  Consider the stock 
market data. While it makes sense to look for approximate 
patterns, for example, “a pattern that rapidly decreases after a 
long plateau,” it seems pedantic to insist on exact matches. As we 
will demonstrate later, our application allows rapid approximate 
subsequence matching. 

 
Anomaly detection 
In time series data mining and monitoring, the problem of 
detecting anomalous/surprising/novel patterns has attracted much 
attention [10, 33, 39].  In contrast to subsequence matching, 



anomaly detection is identification of previously unknown 
patterns. The problem is particularly difficult because what 
constitutes an anomaly can greatly differ depending on the task at 
hand.   In a general sense, an anomalous behavior is one that 
deviates from “normal” behavior.  While there have been 
numerous definitions given for anomalous or surprising behaviors, 
the one given by Keogh et. al. [26] is unique in that it requires no 
explicit formulation of what is anomalous. Instead, they simply 
defined an anomalous pattern as one “whose frequency of 
occurrences differs substantially from that expected, given 
previously seen data”. Their definition was implemented in an 
algorithm (called “Tarzan”) that was singled out by NASA as an 
algorithm that has “great promise in the long term” [19]. As it will 
become clearer later, a subset of the system that we propose here 
includes what may be considered a visual encoding of Tarzan. 
 
Time Series Motif Discovery 
In bioinformatics, it is well documented that overrepresented DNA 
sequences often have biological significance [3, 11, 38]. Other 
applications that rely heavily on overrepresented (and 
underrepresented) pattern discovery include intrusion detection, 
fraud detection, web usage prediction, financial analysis, etc. 

A substantial body of literature has been devoted to 
techniques to discover such overrepresented patterns in time 
series; however, each work considered a different definition of 
pattern [4, 35].  In previous work, we unified and formalized the 
problem by defining the concept of “time series motif” [31].  Time 
series motifs are close analogues of their discrete cousins, although 
the definitions must be augmented to prevent certain degenerating 
solutions. This definition is gaining acceptance, and now being 
used in animation [5], mining human motion data [41], and several 
other applications. The naïve algorithm to discover motifs is 
quadratic in the length of the time series.  In [31], we demonstrated 
a simple technique to mitigate the quadratic complexity by a large 
constant factor; nevertheless this time complexity is clearly 
untenable for most real datasets. As we shall demonstrate, VizTree 
allows users to visually discover approximate motifs in real time.  
 
Visualizing Time Series 
Time series is perhaps the most common data type encountered in 
data mining, touching as it does, almost every aspect of human 
life, including medicine (ECG, EEG data), finance (stock market 
data, credit card usage data), aerospace (launch telemetry, satellite 
sensor data), entertainment (music, movies) [5], etc. Because time 
series datasets are often massive (in gigabytes or even terabytes), 
time- and space-complexity is of paramount importance. 

Surprisingly, although the human eye is often advocated as 
the ultimate data-mining tool [21, 40, 42], there has been relatively 
little work on visualizing massive time series datasets. Below, we 
will briefly review the three most referenced approaches in the 
literature and explain why they are not suited to the task at hand. 

 
TimeSearcher 
TimeSearcher [15] is a time series exploratory and visualization 
tool that allows users to retrieve time series by creating queries. 
This is achieved by use of “TimeBoxes”, which are rectangular 
query locators that specify the region(s) in which the users are 
interested within any given time series. In Figure 1, three 
TimeBoxes have been drawn to specify time series that start low, 
increase, then fall once more. The authors further extended 

TimeSearcher to provide additional expressitivity which include 
support to queries with variability in the time interval, and angular 
queries, which search for ranges of differentials rather than 
absolute values [16].  

The main advantage of this tool is its flexibility.  In 
particular, unlike conventional query-by-content similarity search 
algorithms, TimeSearcher allows users to specify different regions 
of interest from a query time series, rather than feeding the entire 
query for matching. This is useful when users are interested in 
finding time series that exhibit similar behavior as the query time 
series in only specific regions.  

While TimeSearcher and VizTree proposed here both serve as 
visualization and exploratory tools for time series, their 
functionalities are fundamentally different.  For example, 
TimeSearcher is a query-by-example tool for multiple time series 
data.  Even with its flexibility, users still need to specify the query 
regions in order to find similar patterns.  In other words, some 
knowledge about the datasets may be needed in advance and users 
need to have a general idea of what is interesting.  On the other 
hand, VizTree serves as a true pattern discovery tool for a long 
time series that tentatively identifies and isolates interesting 
patterns and invites further inspection by the technician.   

The functionality of TimeSearcher for similarity search is 
implicit in the design of our system: similar patterns are 
automatically grouped together.  Furthermore, TimeSearcher 
suffers from its limited scalability, which restricts its utility to 
smaller datasets, and is impractical for the task at hand. 

 
Figure 1: The TimeSearcher visual query interface. A user can filter away 
sequences that are not interesting by insisting that all sequences have at 
least one data point within the query boxes. 
 
Cluster and calendar-based visualization 
Another time series visualization system is cluster and calendar-
based, developed by [43]. The time series data are chunked into 
sequences of day patterns, and these day patterns are in turn 
clustered using a bottom-up clustering algorithm.  This 
visualization system displays patterns represented by cluster 
averages, as well as a calendar with each day color-coded by the 
cluster that it belongs to. Figure 2 shows just one view of this 
visualization scheme. 



 
Figure 2: The cluster and calendar-based visualization on employee 
working hours data.  It shows six clusters, representing different working-
day patterns. 

While the calendar-based approach provides a good overview of 
the data, its application is limited to calendar-based data, that is to 
say, data which has some regularity imposed on it by social or 
financial dependence on the calendar. This approach is of little 
utility for data without obvious daily/weekly patterns and/or a 
priori knowledge about such patterns.  In short, this system works 
well to find patterns within a specific, known time scale, while our 
system aims to discover previously unknown patterns with little or 
no knowledge about the data. 
 
Spiral  
Weber et. al developed a tool that visualizes time series on spirals 
[45]. Each periodic section of time series is mapped onto one 
“ring” and attributes such as color and line thickness are used to 
characterize the data values.  The main use of this approach is the 
identification of periodic structures in the data. However, the 
utility of this tool is limited for time series that do not exhibit 
periodic behaviors, or when the period is unknown. 

We re-implemented the spiral approach and ran it on the 
power consumption dataset. A screenshot of the resulting spiral is 
shown in Figure 3 
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Figure 3: The Spiral visualization approach of Weber et al. applied to the 
power usage dataset. 

Note that one can clearly visualize the normal “9-to-5” working 
week pattern. In addition, one can see several other interesting 
events.  For example, while it is apparent that no one works during 
weekends in general, on one Saturday in late summer, there was a 
power demand suggestive of a full days shift. Surprisingly, this 
idea for visualizing time series predates computers, with elegant 
hand drawn examples dating back to at least the 1880’s [13, 42].  

While the Spiral approach is elegant, it does not meet our 
requirements for several reasons. As mentioned, it works well only 
for periodic data (based on the original authors’ claims and our 
own experiments).  More importantly, it requires pixel space linear 
in the length of the time series; this is simply untenable for our 
purposes. 
 
To sum up, the time series visualization tools described above 
provide various functionalities, and they were designed under 
different considerations, with separate objectives in mind. 
Therefore, there is no easy way to fairly compare and measure 
their performances quantitatively. However, we can summarize 
their shortcomings in terms of functionality, conditions on the 
input datasets, and scalability: 

• Functionality: TimeSearcher offers query-by-content 
capability, but it does not provide any information on the 
structures of the data itself. Calendar-based approach 
finds clusters of subsequences, while the spiral approach 
displays periodic structures in data. The functionalities 
offered are limited. 

• Conditions: With TimeSearcher, users need to know 
what they are looking for. The calendar-based approach 
requires calendar data. The spiral approach only works 
for periodic data, and the periodicity of the data needs to 
be known in advance. 

• Scalability: All three approaches suffer from limited 
scalability; the pixel space grows linearly with the size 
of the input. 

On the other hand, VizTree is the first visualization tool that 
provides the capability of discovering non-trivial patterns, while 
using constant space, without imposing any constraints on the 
input data. 

Our approach: VizTree 
Our visualization approach works by transforming the time series 
into a symbolic representation, and encoding the data in a 
modified suffix tree in which the frequency and other properties of 
patterns are mapped onto colors and other visual properties. Before 
explaining our approach in detail, we will present a simple 
problem that motivates our work.  

Two sets of binary sequences of length 200 were generated: 
the first set by the pseudo-random-number generator by the 
computer, and the second set by hand by a group of volunteers.  
The volunteers were asked to try and make the bit strings as 
random as possible, and were offered a prize to motivate them. 
Figure 4 shows one sample sequence from each set.   

By simply looking at the original bit strings, it’s difficult, if 
not impossible, to distinguish the computer-generated from the 
human-constructed numbers.  However, if we represent them with 
a tree structure where the frequencies of subsequences are encoded 
in the thickness of branches, the distinction becomes clear. For 
clarity, the trees are pruned at depth three.  Each tree represents 
one sequence from each set, and each node in the tree has exactly 
two branches: the upper branch represents 1, and the lower branch 
represents 0. The tree is constructed as follows: starting from the 
beginning of each sequence, subsequences of length three are 
extracted with a sliding window that slides across the sequence 
one bit at a time. So for the first sequence we get a set of 
subsequences {(0,1,0), (1,0,1), (0,1,1), …}.   



Sequence 1 Sequence 2 
0101100101111001101001000010001010
0110110101110000101010111011111000
1101101101111110100110010010001101
0001111001101101000101111000101101
0011011001101000000100110001001110
000011101001100101100001010010 

1000100010100100010101010000101010
0010101110111101011010010111010010
1010011101010101001010010101011101
0101001010101011010101001011001011
1011110100011100001010000100111010
100011100001010101100101110101 

  

Figure 4: (Left) Computer-generated random bits presented as an 
augmented suffix tree (Right) Human-constructed bits presented as an 
augmented suffix tree. 

For the tree shown on the left in Figure 4, the branches at any 
given level have approximately the same thickness, which means 
that the probabilities of subsequences at any given level are 
approximately evenly distributed.  In contrast, the tree on the right 
shows that subsequences of alternating 0’s and 1’s dominate the 
whole sequence. The “motifs” for the sequence, 101 and 010, can 
be easily identified, since they appear more frequently than the 
other subsequences.  

The non-randomness, which can be seen very clearly in this 
example, implies that humans usually try to “fake” randomness by 
alternating patterns [18].  Undoubtedly, there exist other solutions 
to uncover these “patterns” (entropy, Hidden Markov models, 
etc.).  Nonetheless, what this visualization scheme provides is a 
straightforward solution that allows users to easily identify and 
view the patterns in a way intuitive to human perception. 

The simple experiment demonstrates how visualizing 
augmented suffix trees can provide an overall visual summary, and 
potentially reveal hidden structures in the data.  Since the strings 
represented in the tree are in fact “subsequences” rather than 
“suffixes,” we call such trees subsequence trees.  

This simple experiment motivates our work. Although time 
series are not discrete, they can be discretized with little loss of 
information, thus allowing the use of suffix/subsequence trees. 

Our system is partly inspired by Visualysis [27], a 
visualization tool for biological sequences.  Visualysis uses a 
suffix tree to store the biological sequences and, through the 
properties of the tree, such as bushiness, branch distribution, etc, 
and user navigation, interesting biological information can be 
discovered [27].  Visualysis incorporates algorithms that utilize 
suffix trees in computational biology; more specifically, exact 
sequence matching and tandem repeat algorithms.  At a first 
glance, our visualization system is similar to Visualysis in the 
sense that it also has the objective of pattern discovery using a tree 
structure. However, several characteristics that are unique to our 
application make it more diversely functional than its 
computational-biology counterpart.  First, although the tree 
structure needs the data to be discrete, the original time series data 
is not.  Using a time-series discretization method that we 
introduced in an earlier work [29], continuous data can be 
transformed into discrete domain, with certain desirable properties 
such as lower-bounding distance, dimensionality reduction, etc.  
Second, instead of using a suffix tree, we use a subsequence tree 
that maps all subsequences onto the branches of the tree.  Thus, 

given the same parameters, the trees have the same overall shape 
for any dataset.  This approach makes comparing two time series 
easy and anomaly detection possible. 
The utility of discretizing time series 
In [29], we introduced Symbolic Aggregate approximation (SAX), 
a novel symbolic representation for time series.  It is ideal for this 
application since, unlike all previously proposed discretization 
methods for time series, SAX allows lower-bounding distance 
measures to be defined on the symbolic space.  In addition, its 
dimensionality reduction feature makes approximating large 
dataset feasible, and its ability to convert the data using merely the 
local information, without having to access the entire dataset, is 
especially desirable for streaming time series.  The utility of SAX 
has been demonstrated in [29], and the adaptation or extension of 
SAX by other researchers further shows its impact in diverse fields 
such as medical and video [7, 36].  For these reasons, we choose to 
use SAX as the discretization method for the input time series 
data. 

Before converting a time series to symbols, it should be 
normalized. The importance of normalization has been extensively 
documented in the past [24]. Without normalization, many time 
series data mining tasks have little meaning [24].  Therefore, by 
default, all subsequences are normalized before converting to 
symbols by SAX. In the unusual event where it might be more 
appropriate not to normalize, for example, when offset and 
amplitude changes are important, VizTree provides an option to 
skip the normalization step. SAX performs the discretization in 
two steps.  First, a time series C of length n is divided into w 
equal-sized segments; the values in each segment are then 
approximated and replaced by a single coefficient, which is their 
average. Aggregating these w coefficients form the Piecewise 
Aggregate Approximation (PAA) representation of C. 

Next, to convert the PAA coefficients to symbols, we 
determine the breakpoints that divide the distribution space into α 
equiprobable regions, where α is the alphabet size specified by the 
user. In other words, the breakpoints are determined such that the 
probability of a segment falling into any of the regions is 
approximately the same.  If the symbols were not equi-probable, 
some of the substrings would be more probable than others.  As a 
consequence, we would inject a probabilistic bias in the process.  
In [9], Crochemore et. al. showed that a suffix tree automation 
algorithm is optimal if the letters are equiprobable. Table 1 
summarizes the major notation used in this and the subsequent 
sections of the paper. 

 
Table 1: A summarization of the notation used in this paper 

     C 
A time series C = c1,…,cn  (in VizTree, C is a 
subsequence extracted by a sliding window of 
length n) 

     n Length of the time series to be converted to string 
(in VizTree, this is the sliding window length) 

w The number of PAA segments representing time 
series C 

α Alphabet size (e.g., for the alphabet = {a,b,c},  α = 
3) 

 
Once the breakpoints are determined, each region is assigned 

a symbol.  The PAA coefficients can then be easily mapped to the 
symbols corresponding to the regions in which they reside.  In 



[29], the symbols are assigned in a bottom-up fashion so the PAA 
coefficient that falls in the lowest region is converted to “a,” in the 
one above to “b,” and so forth.  In this paper, for reason that will 
become clear in the next section, we reverse the assigning order, so 
the regions will be labeled top-down instead (i.e. the top-most 
region is labeled “a,” the one below it “b,” and so forth).  Figure 5 
shows an example of a time series being converted to string 
acdcbdba.  Note the general shape of the time series is preserved, 
in spite of the massive amount of dimensionality reduction, and the 
symbols are approximately equiprobable. 

The discretization technique can be applied to VizTree by 
calling SAX repeatedly for each subsequence.  More specifically, 
subsequences of specified lengths are extracted from the input time 
series and normalized to have a mean of zero and a standard 
deviation of one. Applying SAX on these subsequences, we obtain 
a set of strings.  From this point on, the steps are identical to the 
motivating example shown in the beginning of Section 3: the 
strings are inserted into the subsequence tree one by one.   
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Figure 5: A time series dataset of electrical consumption (of length 1024) 
is converted into an eight-symbol string “acdcbdba.” Note that the general 
shape of the time series is preserved, in spite of the massive amount of 
dimensionality reduction. 

We believe that in order to visualize anomalies, one must have a 
representation that is capable of expressing similarities. The 
connection between similarity and anomalies is inherent in the 
English idiom. When confronted with an anomalous object or 
occurrence, people usually exclaim "I have never seen anything 
like it!" or "It is like nothing you have ever seen before".  We have 
shown in [29] that the SAX representation is capable of 
representing similarities. In short, we showed that SAX is as good 
as, or better than, the other classic representations of time series, 
including DFT and DWT. Furthermore, we demonstrated the 
following unintuitive finding: SAX is generally better at 
discovering similarities than the original data! We refer interested 
readers to [29] for full detail. 
 
A first look at VizTree 
Figure 6 shows a screen shot of VizTree.  When the program is 
executed, four blank panels and a parameter-setting area are 
displayed. To load a time series dataset, the user selects the input 
file using a familiar dropdown menu.  The input time series is 
plotted in the top left-hand panel.  The ruler drawn in the bottom 
of the panel shows the scale of the time series. The zoom-in and 
zoom-out buttons allow the user to view the time series in different 
scales; and the scrolling buttons allow the user to view different 
regions of the time series. 

Next to the time series plotting window is the parameter 
setting area; the technician can enter the sliding window length, 
the number of SAX segments per window, and select alphabet size 
from a dropdown menu.  Once the parameters are entered, the user 

can click on the “Show Tree” button to display the subsequence 
tree on the bottom left panel. 

 
Figure 6: A screenshot of Viztree. The top panel is the input time series.  
The bottom left panel shows the subsequence tree for the time series.  On 
the right, the very top is the parameter setting area.  Next to the 
subsequence tree panel, the top window shows the zoom-in of the tree, and 
the bottom window plots the actual subsequences when the technician 
clicks on a branch. 

The time series used for this example is a real, industrial dataset of 
smog emissions from a motor vehicle.  The length of the time 
series is 2478. The length of the sliding window (i.e. n as in Table 
1) is set to 53; the number of segments (i.e., the depth of the tree, 
or w as in Table 1) is four, and the alphabet size (i.e., the number 
of children for each node, or α as in Table 1) is four.   

Each branch represents one pattern.  As mentioned in the 
previous section, we reverse the assigning order of the symbols 
from bottom-up to top-down. The reason is that when the symbols 
are arranged this way, it is more consistent with the natural shape 
of the tree.  For example, for any given node, a branch at a higher 
position denotes segments with higher values. Traversing breadth-
first from the top-most branch of any given node, the symbols that 
represent the branches are a, b, c, and d, respectively.  Each level 
of the tree represents one segment (i.e. one symbol).  To retrieve 
any string, we simply traverse down the appropriate path. 

Definition 2 Pattern: a pattern p is the SAX representation of 
a subsequence in the time series, denoted by the string s formed by 
following any path down the subsequence tree.   

Definition 3 Frequency: The frequency of p in time series A 
is denoted by f(pA), which is the number of occurrences of p over 
the number of all occurrences in A. 
The frequency of a pattern is encoded in the thickness of the 
branch.  For clarity, the full tree is drawn.  Branches with zero 
frequency are drawn in light gray, while others are drawn in red 
with varying thicknesses.   

On the right hand side of VizTree, there are two panels.  The 
upper one shows the zoom-in of the tree shown in the left panel.  
This is very useful especially for deep and bushy trees.  The user 
can click on any node (on the subsequence tree window, or 
recursively, on the zoom-in window itself) and the sub-tree rooted 
at this node will be displayed in this upper panel.  The sub-tree 
shown in Figure 6 is rooted at the node representing the string 
“abxx,” where the “xx” denotes don’t-care since we are not at the 
leaf level.  If the user clicks on any branch, then the actual 



subsequences having the string represented by this particular 
branch will be displayed in the bottom panel and highlighted in the 
time series plot window.  In the figure, subsequences encoded to 
“abdb” are shown. 
Parameter Selection 
Three parameters need to be determined: the length of the sliding 
window, the number of segments, and the alphabet size.  In [31] 
we showed the trade-off between the number of segments and the 
alphabet size.  In general, VizTree works very well even with 
massive dimensionality reduction, as we will demonstrate later (in 
the experiments we used no more than 5 segments).  The length of 
the sliding window is data-dependent; however, the ruler in the 
bottom of the time series window can offer some suggestion on the 
scale of patterns that might seem interesting to the user. 
 
Subsequence Matching 
Subsequence matching can be done very efficiently with VizTree.  
Instead of feeding another time series as query, the user provides 
the query in an intuitive way.  Recall that each branch for any 
given node corresponds to one of the equiprobable regions that are 
used to convert the PAA coefficients to symbols.  The top branch 
corresponds to the region with the highest values, and the bottom 
branch corresponds to the region with the lowest values.  
Therefore, any path can be easily translated into a general shape 
and can be used as a query.  For example, the top-most branch at 
depth one (i.e., string “axxx”) represents all subsequences that start 
with high values, or more precisely, whose values in the first 
segment have the mean value that resides in the highest region.  In 
the previous example, the user is interested in finding a concave-
down pattern (i.e., a U-shape).  This particular pattern, according 
to the domain experts, corresponds to a change of gears in the 
motor vehicle during the smog emission test. From the U shape, 
the user can approximate the query to be something that goes 
down and comes up, or a path that starts and ends with high 
branches, with low branches in the middle. As a result, clicking on 
the branch representing “abdb” as shown in the figure uncovers 
the pattern of interest. 
 
Motif Discovery & Simple Anomaly Detection 
VizTree provides a straightforward way to identify motifs.  Since 
the thickness of a branch denotes the frequency of the 
subsequences that are encoded to the given string, we can identify 
approximate motifs by examining the subsequences represented by 
thick tree paths.  A feature unique to VizTree is that it allows users 
to visually evaluate and inspect the patterns returned. This 
interactive feature is important since different strings can also 
represent similar subsequences, such as those that differ by only 
one symbol.  In addition, the user can prune off uninteresting or 
expected patterns to improve the efficiency of the system and 
reduce false positives.  For example, for ECG data, the motif 
algorithm will mostly likely return normal heart beats as the most 
important motif, which is correct but non-useful.  Allowing user to 
manually prune off this dominant pattern, secondary yet more 
interesting patterns may be revealed.   

Figure 7 shows such an example.  The dataset used here is a 
real, industrial dataset, “winding,” which records the angular 
speed of a reel.  The subsequences retrieved in the lower right 
panel have the string representation “dacb.” Examining the motifs 
in this dataset allowed us to discover an interesting fact: while the 
dataset was advertised as real, we noted that repeated patterns 

occur at every 1000 points.  For example, in Figure 7, the two 
nearly identical subsequences retrieved are located at offsets 729 
and 1729, exactly 1000 points apart.  We checked with the original 
author and discovered that this is actually a “fake” dataset 
synthesized from parts of a real dataset, a fact that is not obvious 
from inspection of the original data. 

 
Figure 7: Example of motif discovery on the winding dataset.  Two nearly 
identical subsequences are identified, among the other motifs. 

The complementary problem of motif discovery is anomaly 
detection.  While frequently occurring patterns can be detected by 
thick branches in the Viztree, simple anomalous patterns can be 
detected by unusually thin branches. Figure 8 demonstrates both 
motif discovery and simple anomaly detection on an MIT-BIH 
Noise Stress Test Dataset (ECG recordings) obtained from 
PhyioBank [14].  Here, motifs can be identified very easily from 
the thick branches; more remarkably, there is one very thin line 
straying off on its own (the path that starts with “a”).  This line 
turns out to be an anomalous heart beat, independently annotated 
by a cardiologist as a premature ventricular contraction. 

While anomalies can be detected this way for trivial cases, in 
more complex cases, the anomalies are usually detected by 
comparing the time series against a normal, reference time series.  
Anything that differs substantially from this reference time series 
can signal anomalies.  This is exactly the objective of the Diff-
Tree, as described in the next section. 



 
Figure 8: Heart-beat data with anomaly is shown. While the subsequence 
tree can be used to identify motifs, it can be used for simple anomaly 
detection as well. 

Diff-Tree and anomaly detection 
We have described how global structures, motifs, and simple 
anomalies can be identified by a subsequence tree.  In this section, 
we extend these ideas to further allow the comparison of two time 
series by means of a “Diff-Tree.”  A Diff-Tree is short for 
“difference tree.” As the name implies, it shows the distinction 
between two subsequence trees built for different time series.  The 
construction of a Diff-Tree is fairly straightforward with the use of 
subsequence tree, since the overall tree shape is the same 
regardless of the strings, provided that the parameters selected 
(i.e., alphabet size, number of segment, etc) are the same.  The 
Diff-Tree is constructed by computing the difference in thickness 
(i.e., frequency of occurrence) for each branch. Intuitively, time 
series data with similar structures can be expected to have similar 
subsequence trees, and in turn, a sparse Diff-Tree.  In contrast, 
those with dissimilar structures will result in distinctively different 
subsequence trees and therefore a relatively dense Diff-Tree.   

One or two datasets can be loaded to VizTree simultaneously.  
If only one is loaded, then its subsequence tree will be shown.  If 
two datasets are loaded, the user has the option of viewing the 
subsequence tree of either one, or their diff-tree.  The branches in 
the difference tree are color-coded to distinguish between the 
overrepresented and underrepresented patterns.  Given two time 
series A and B, where A is the basis for comparison (the reference 
time series), and B is the second time series, we can define the 
following terms: 

Definition 4 Overrepresented pattern: a pattern is 
overrepresented in B if it occurs more frequently in B than it does 
in A. 

Definition 5 Underrepresented pattern: a pattern is 
underrepresented in B if it occurs more frequently in A than it does 
in B. 
Two physical properties of the tree are used to denote the 
similarity/dissimilarity between two patterns: 

• Thickness of a branch: denotes how different the 
given pattern is between time series A and B. 

• Color intensity of a branch: denotes how significant 
the difference is. 

We formally define the encoding schemes for these two properties 
below: 

Definition 6    Support: the support of the difference for any 
pattern p between A and B, encoded as the thickness of a branch, 
is defined as follows: 
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Simply stated, Supp measures how a pattern (i.e. branch) differs 
from one time series to another, by computing the percentage of 
non-overlap of  p between A and B. It is encoded in Diff-Tree as 
the thickness of a branch. 

If a pattern p occurs less frequently in B than in A, then the 
pattern is underrepresented and Supp < 0, otherwise it is 
overrepresented and Supp > 0. 

As an example, suppose the frequency of a pattern p1 in A is 
0.3 in A and 0.4 in B, then the support of difference for p1 in A 
and B is 
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The lengths of the time series are implicitly taken into 
consideration as well, since f is scaled by the length of the data. 
For example, suppose |A| = 100, and suppose B is created by 
concatenating two copies of A, i.e. |B| = 200. Then by definition of 
f, any pattern will have the same frequency in A and B. 

However, if there is another pattern p2 in the same datasets 
such that f(p2A) = 0.03 and f(p2B) = 0.04, the formula will arrive at 
the same identical measure for both p1 and p2!  Logically, we 
would want to place more weight on p1 since 30% occurrences is 
definitely more significant than 3% occurrences.  Therefore, we 
define confp, the confidence of the difference for pattern p. 

Definition 7 Confidence: the confidence of a pattern p 
describes how interesting or significant p is in each time series. 
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The measure conf takes on values between 0 and 1 -- 1 denotes the 
most significant and 0 being the least significant.  Suppose the 
maximum frequency for both A and B is 0.45 (i.e. the most 
frequent pattern comprises 45% of all subsequences). Continuing 
with the previous examples, the first case ({0.3, 0.4}) will yield 
(0.3/0.45 + 0.4/0.45) / 2 = 0.9877, while the second case ({0.03, 
0.04}) will yield (0.03/0.45 + 0.04/0.45) / 2 = 0.09877.  

Note the measures support and confidence defined here are 
fundamentally different from, and thus should not be confused 
with those in the literature such as in association rule mining [2]. 

In the earlier version of VizTree [30], discrete colors are used 
to distinguish between overrepresented patterns and 
underrepresented patterns. We now add the confidence measures, 
encoded as the color intensity of a branch by varying the green and 
blue components of the RGB color value, to highlight the 
significance of pattern.  So the overrepresented patterns will be 
drawn in different shades of green, whereas underrepresented 
patterns will be drawn in different shades of blue. When a pattern 
is neither overrepresented nor underrepresented (i.e. equal 
frequency in the test and reference time series), a neutral greenish-
blue color is used.  

Of course, alternative ways of computing the support and 
confidence are possible (e.g. for support, it’s also possible to 



compute just the absolute difference in frequencies rather than the 
percentage of the difference). For example, we might want to 
modify the definitions above for health surveillance applications, 
where we want to focus on overrepresented patterns that have a 
sudden increase in frequencies, since it could be indicative of a 
disease outbreak.  However, from our experiments, we can safely 
say that in most cases, the choices of the formulas do not make 
much difference in the outcome, as long as they adhere to the 
general definitions of support and confidence: support measures 
how much non-overlap a pattern is between two time series, and 
confidence measures how significant the pattern is.   

Diff-Tree shows all the differences between the reference and 
the test time series. However, in most anomaly detection 
applications, the user is interested in finding the most anomalous 
patterns. One way to prune off the insignificant differences is to 
display only the most surprising patterns. However, a better 
alternative is to display all of the differences, and rank the top, say 
ten, surprising patterns to aid user in the browsing process. Having 
defined the support and the confidence of the difference, we can 
now combine these two measures to define our ranking scheme, 
the measure of surprisingness. It is simply the support of a pattern 
weighted by its significance (confidence) to prevent two patterns 
of distinctive occurrence counts arriving at identical support 
measure (as described in the example provided before Definition 
7).  

 
Definition 8 Surprisingness: the degree of difference for pattern p, 
weighted by the confidence of the pattern, in two time series. 

ppp confSurprise ×= sup   (3) 

 
Predicting the frequency of a pattern 
If a pattern does not exist in the reference time series (i.e. f(pA) = 
0), then its frequency can be predicted by using a Hidden Markov 
Model (HMM). A Markov model is a stochastic process over a set 
of finite states. Each state is associated with a specific probability 
distribution that governs the transition from one state to another. A 
Markov model of order M uses M previous states to determine the 
probabilities of possible outcomes of the next state [26]. 

When the true model is unknown, we have a Hidden Markov 
Model (HMM). A HMM is simply a Markov model where only 
the observations are known and the hidden state sequence is 
inferred. In our case, the expected frequency of any substring can 
be estimated from the observed sequence. Let y be a substring of x, 
and m = |y| ≥ M+2, where M is the order of the model. A 
frequently used choice for the order of the chain is M = m-2, of 
which the model is called the maximal model. The expected 
frequency of y, )(ˆ

yZE , can be estimated as follows: 
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Once the first time series is loaded, the tree is annotated with the 
expected frequencies in the breadth-first order. The expected 
frequency for a pattern (or a partial pattern, if we are at the non-
leaf level of the tree) is either the actual frequency if the pattern 
exists or the frequency predicted by HMM otherwise. 

When predicting the frequency for a pattern, the appropriate 
order of the model needs to be determined. We start with the 
maximal model M, and if any of the substrings in Eq. 4 does not 

exist, then we fall back to the lower order until all the information 
needed to compute the estimate is sufficient. In other words, we 
look for the Markov model M in the interval [1, m-2] such that all 
the substrings y[i…i+M] occur in the reference time series, for all 1 
<= i <= m-M.  

Having annotated the tree, we can discretize the subsequences 
and simply update the frequencies of the corresponding patterns in 
the existing tree when the second time series is loaded,  
 
Diff-Tree example 
The datasets used to demonstrate anomaly detection, constructed 
independently of the current authors and provided by the 
Aerospace Corporation for sanity check, are shown in Figure 9.  
The one on the top is the normal time series, and the one below is 
similar to a normal time series, except it has a gap in the middle as 
anomaly.  Figure 10 shows a screenshot of the anomaly detection 
by diff-tree.  The tree panel shows the Diff-Tree between the two 
datasets.  The top two thick paths denote the beginning and the end 
of the anomaly, respectively. The last path denotes the normal 
pattern that occurs in both time series. Note that this pattern is not 
ranked since it is not an anomaly (i.e. equal occurrences in both 
time series).  
This is a very trivial example for demonstration purpose.  
However, the effect is similar for more complex cases. 

 
Figure 9 The input files used for anomaly detection by diff-tree. (Top) 
Normal time series. (Bottom) Anomaly is introduced as a gap in the middle 
of the dataset. 

 
Figure 10: Diff-tree on the datasets shown in the previous figure.  The gap 
is successfully identified. 
 

Diff-Tree dissimilarity coefficient 
Eq. 3 defines the surprisingness of each pattern. An intuitive 
question to ask is, can we quantify a Diff-Tree by combining the 
surprise measures of all patterns? We formalize this idea as 
follows: 
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Simply stated, DSimA,B measures the dissimilarity between time 
series A and B. Before continuing with the implication of this 
measurement, we will demonstrate how well the coefficient 
captures the dissimilarity between two time series by applying it 
on time series clustering.  

The choice of clustering algorithm for demonstration of the 
coefficient is hierarchical clustering, since its great visualization 
power helps for the validation purpose. As a quick review, 
hierarchical clustering produces a nested hierarchy of similar 
groups of objects, according to a pairwise distance matrix of the 
objects. Table 2 outlines the basic hierarchical clustering 
algorithm.  In our case, we’ll use the similarity measures (i.e. 1–
DSim) for the matrix instead of the actual distances. 

Table 2: An outline of hierarchical clustering. 
Algorithm Hierarchical Clustering 

1. Calculate the distance between all objects. Store the results in a distance 
matrix. 

2. Search through the distance matrix and find the two most similar 
clusters/objects. 

3. Join the two clusters/objects to produce a cluster that now has at least 2 
objects. 

4. Update the matrix by calculating the distances between this new cluster 
and all other clusters. 

5. Repeat step 2 until all cases are in one cluster. 

Figure 11 shows the dendrogram of clustering result using the 
Diff-Tree (dis)similarity coefficient. It clearly demonstrates that 
the coefficient captures the dissimilarity very well and that all 
clusters are separated perfectly. 

 
Figure 11: Clustering result using the Diff-Tree dissimilarity coefficient 

 
As a reference, we ran the same clustering algorithm using the 
widely-used Euclidean distance.  The result is shown in Figure 12. 

 
Figure 12: Clustering result using Euclidean distance. 

While we are not claiming that the coefficient is the best measure 
for clustering time series, the demonstration shows that it is at least 
competitive with one of the most popular distance measure. In 
addition, it indirectly validates the correctness of the measures 
used in Diff-Tree. 
 
Experimental evaluation 
We have done an intensive empirical evaluation on VizTree. It 
would make little sense for us to test our approach on datasets 
where we have little expertise or intuition. We have therefore 
chosen to evaluate (and demonstrate) our approach on datasets 
which are either very intuitive to the average person or have been 
extensively annotated by domain experts. In particular, we will 
evaluate our work on human motion data, the power demand data, 
and the ECG data Note that all datasets used here are available for 
free from the UCR archive [22]. 
 
Subsequence matching 
This experiment incorporates both subsequence matching and 
motif discovery.  The dataset used is the human motion data of 
yoga postures.  A model postured yoga routines in front of a green 
screen, and her motion was captured by various sensors.  The 
motion capture is transformed into a time series by computing the 
aspect ratio of the minimum-bounding rectangle formed around 
her body.  The length of the time series is approximately 26,000 
(i.e. there are approximately this many frames in the original 
video).   

Suppose we are interested in finding a yoga sequence like the 
one in Figure 13: 

 
Figure 13: A sample yoga sequence for approximate subsequence 
matching. 

Then we would expect the shape of the query to descend rapidly 
after the first position (the width-to-height-ratio decreases), ascend 



slowly after the second position, descend again, and finally ascend 
once more.  Assume that we set the number of segments to be five 
(an arbitrary choice), then a reasonable start would be the branch 
“adxxx.” Since there are only two paths extending from the node 
“ad,” the matches are found very quickly without much refinement 
in the search space.  The result is shown in Figure 14 and the 
actual yoga sequences for the matches are outlined in Figure 15.  
The subsequence length is 400 (i.e. about 6.5 seconds). As the 
figure shows, the two sequences are very similar with only very 
minor distinction. 
 

 
Figure 14: Matches for the yoga sequence in Figure 11.  The bottom right 
corner shows how similar these two subsequences are. 
 

 
Figure 15: Outline of the actual yoga sequences that match the query. 

There are several advantages of the approximate subsequence 
matching by VizTree.  One is that this feature is built-in to the 
application, and it is relatively easy to specify the query without 
explicitly providing it.  More importantly, the system retrieves the 
results very efficiently since the information is already stored in 
the tree.  With the current state-of-the-art exact subsequence 
matching algorithms, retrieval is much too slow for a real time 
interaction. 
 
Motif Discovery 
For the motif discovery experiment, we will continue with the 
previous human-motion example.  There are obviously some 
noticeable motifs such as the long spikes that occur throughout the 
sequence (see the time series plot in Figure 14).  They denote the 
posture where the model is lying flat on the ground, when the 
aspect ratio is at its maximum.  However, one of the desirable 
features of VizTree is that it allows users to visually identify 
secondary yet more interesting motifs.  The matches found in the 
previous section are such example.  We can zoom-in on these 
subsequences and examine their similarity. 

From Figure 16 we can see that these two subsequences are 
indeed very similar to each other.  Note that they both have a small 
dip towards the end of the sequence.  However, there is a slight 
difference there – the dip for the first sequence occurs before that 
for the second sequence, and is followed by a plateau.  Examining 
the motion captures we discover that the dip corresponds to the 6th 
position shown in Figure 15, right before the model stretched her 
arms straight in front of her.  In addition, for the first sequence, the 
model held that last position for a longer period of time, thus the 
plateau following the dip.  These subtle differences are difficult to 
notice without the motif discovery and/or the subsequence 
matching features in VizTree. 
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Figure 16  Zoom-ins of the two matches found in the yoga subsequence 
match example.  Note that they both have a dip towards the end of the 
sequences. 

For comparison, we ran the fastest known exact motif discovery 
algorithm [31] .  Although the same motif can also be successfully 
identified, it takes minutes to compute, while VizTree gives instant 
(less than one second) feedback on the results.  Even with the 
approximate motif discovery algorithm [8], it takes tens of seconds 
to complete.  In addition, the visualization power of VizTree 
allows the user to see exactly where the motif occurs and how it 
maps to the original time series. 

 
Anomaly detection 
For anomaly detection, we used the power demand data that was 
also used in Figure 3. Electricity consumption is recorded every 15 
minutes; therefore, for the year of 1997, there are 35,040 data 
points.  Figure 17 shows the resulting tree with the sliding window 
length set to 672 (exactly one week of data), and both alphabet 
size and number of segments to 3.  The majority of the weeks 
follow the regular Monday-Friday, 5-working-day pattern, as 
shown by the thick branches.  The thin branches denote the 
anomalies (anomalies in the sense that the electricity consumption 
is abnormal given the day of the week).  The one circled is from 
the branch “bab.” The zoom-in shows the beginning of the three-
day week during Christmas (Thursday and Friday off).  The other 
thin branches denote other anomalies such as New Year’s Day, 
Good Friday, Queen’s Birthday, etc.  

While other anomaly detection algorithms such as the TSA-
Tree Wavelet-based algorithm by Shahabi et. al. [39] and the 
Immunology-based algorithm (IMM) by Dasgupta and Forrest [10] 
can potentially find these anomalies as well given the right 
parameters, both are much more computationally intensive.  While 
VizTree requires input of parameters, the results are almost instant.  
In the contrary, the TSA-Tree takes tens of seconds, and IMM 
needs re-training its data with every adjustment of parameters, 
with each training session taking several minutes.  This is clearly 
untenable for massive datasets. 

In addition to the fast computational time, anomaly detection 
by VizTree does not always require a training dataset.  As 



demonstrated, simple anomalies can be identified as an inverse to 
the motifs. 

 
Figure 17 Anomaly detection on power consumption data.  The anomaly 
shown here is a short week during Christmas. 
 

Anomaly detection by Diff-Tree 
In Figure 18, two ECG datasets are loaded to the application. The 
reference time series is a normal heartbeat dataset, and the test 
time series has an anomalous heartbeat. The top ten surprising 
patterns, ranked by their levels of surprisingness, are shown, and 
red lines are drawn on top of the surprising branches to make them 
more easily spotted. Clicking on the number-one ranking pattern 
displays the anomalous heartbeat in the test time series. 

 
Figure 18: An abnormal heartbeat dataset is compared against a normal 
heartbeat dataset, and the anomaly is successfully identified. 

 
Complexity and scalability 
VizTree is very efficient in terms of both time and space. The 
discretization step and the construction [26] of the tree both take 
linear time. The pixel space of the tree is determined solely by the 
number of segments and alphabet size.  In particular, we note that 
the pixel size of the tree is constant and independent of the length 
of time series.  We have already shown that large amounts of 
dimensionality reduction do not greatly affect the accuracy of our 
results (in Section 5.3, the dimensionality is reduced from 672 to 

3, a compression ratio of 224-to-1).  However, the size of the 
dataset plays a role in memory space, since each node in the tree 
stores the offsets of its subsequences.  However, SAX allows 
efficient numerosity reduction to reduce the number of 
subsequences being included into the tree, in addition to 
alleviating the problem associated with trivial matches (see below) 
[25, 31]. 
 
Numerosity Reduction 
In [31] we showed that the best matches for a subsequence tend to 
be its immediate neighbors: the subsequence one point to the right 
and the subsequence one point to the left.  We defined these 
matches to be the “trivial matches.”  In the smooth regions of the 
time series, the amount of trivial matches might be large.  If we 
include them in any sliding-window algorithms, the trivial matches 
will dominate over the true patterns due to over-counting, and the 
results will likely be distorted, or worse, become meaningless [25].  
Therefore, when extracting subsequences from the time series by a 
sliding window, the trivial matches should be excluded. 

Different definitions can be used to identify trivial matches.  
The easiest way is to compare the SAX strings and only record a 
subsequence if its string is different from the last one recorded.  In 
other words, no two consecutive strings should be the same.    

Additionally, we can also check two consecutive strings 
symbol-by-symbol and consider them trivial matches of one 
another if no pair of symbols is more than one alphabet apart.  This 
extra check is based on the same idea as the previous numerosity 
reduction option, that similar subsequences have the same SAX 
representation.  However, it is also likely that similar 
subsequences do not have exactly the same SAX representations; 
rather, they might have alphabets that differ by at most one at any 
given position (i.e. the values could be very close but reside on 
different sides of a breakpoint). 

Furthermore, the second option can be extended to also 
exclude non-monotonic strings.  Depending on the nature of the 
datasets, users might only be interested in finding patterns with ups 
and downs.   

Finally, the ultimate numerosity reduction can be achieved by 
chunking, which allows no overlapping subsequences.  This has 
been used for many approaches; however, we note that it is only 
useful if the dataset exhibits regular patterns, either by shape or by 
period.  For example, if we use chunking for the power 
consumption data, then we get an even more distinctive tree. 
 
Conclusions and future work 
We proposed VizTree, a novel visualization framework for time 
series that summarizes the global and local structures of the data.  
We demonstrated how pattern discovery can be achieved very 
efficiently with VizTree. 

While we mainly focus on the “mining” aspect in major part 
of this paper, we mentioned that VizTree can potentially be used 
for monitoring purposes. There are typically two types of 
streaming algorithms: append-only and amnesic. The former 
maintains some global statistics or information about the overall 
data as new data arrive, while for the latter, more recent data are 
treated with higher weights. For the append-only case, the tree can 
be updated very easily in constant time (of course, discretization 
still takes linear-time, although some optimization can be achieved 
by updating the PAA values instead of re-computing the whole 
thing). For the amnesic case, information on older data needs to be 



stored in order to update the tree. We defer this part for future 
research. 
We believe that researchers from other sectors of the industry can 
greatly benefit from our system as well.  For example, it could 
potentially be used for indexing and editing video sequences.  

Currently, we are working on extending VizTree/Diff-Tree 
for epidemic outbreak detection [44] on a collaborative effort with 
AT&T Research. Most outbreaks can be noticed in the late stage 
of the epidemic; however, the goal is to detect the outbreak in its 
early stage and mitigate its effect. In addition, it is also useful for 
bioterrorism detection [32], public health surveillance, and 
learning disease patterns. 
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