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ABSTRACT 28 
Background: All cancers harbor somatic mutations in their genomes. In principle, mutations 29 

affecting between one and fifty base pairs are generally classified as small mutational events. 30 

Conversely, large mutational events affect more than fifty base pairs, and, in most cases, they 31 

encompass copy-number and structural variants affecting many thousands of base pairs. Prior 32 

studies have demonstrated that examining patterns of somatic mutations can be leveraged to 33 

provide both biological and clinical insights, thus, resulting in an extensive repertoire of tools for 34 

evaluating small mutational events. Recently, classification schemas for examining large-scale 35 

mutational events have emerged and shown their utility across the spectrum of human cancers. 36 

However, there has been no standard bioinformatics tool that allows visualizing and exploring 37 

these large-scale mutational events 38 

Results: Here, we present a new version of SigProfilerMatrixGenerator that now delivers 39 

integrated capabilities for examining large mutational events. The tool provides support for 40 

examining copy-number variants and structural variants under two previously developed 41 

classification schemas and it supports data from numerous algorithms and data modalities. 42 

SigProfilerMatrixGenerator is written in Python with an R wrapper package provided for users 43 

that prefer working in an R environment.  44 

Conclusions: The new version of SigProfilerMatrixGenerator provides the first standardized 45 

bioinformatics tool for optimized exploration and visualization of two previously developed 46 

classification schemas for copy number and structural variants. The tool is freely available at 47 

https://github.com/AlexandrovLab/SigProfilerMatrixGenerator with an extensive documentation 48 

at https://osf.io/s93d5/wiki/home/. 49 

  50 

51 
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BACKGROUND 52 

Large-scale cancer genomics projects have comprehensively surveyed the molecular landscapes 53 

of most types of human cancer [1, 2]. These studies have provided a compendium of somatic 54 

mutations for each examined cancer genome and revealed both the mutations driving cancer 55 

development and the processes generating most somatic mutations within each cancer [1-3]. One 56 

commonly performed type of genomics analysis is the examination of mutational patterns within 57 

a set of cancer genomes and the extraction of mutational signatures that have given rise to these 58 

patterns [3, 4]. Historically, mutational patterns have been predominately examined in the 59 

context of small mutational events, which include single base substitutions (SBS), doublet base 60 

substitutions (DBS), and small insertions and deletions (IDs) [3, 5]. Recent studies have also 61 

started exploring the patterns of large mutational events, including ones due to copy-number 62 

alterations and/or structural variations [6, 7]. Previously, we developed a computational tool, 63 

termed, SigProfilerMatrixGenerator, designed exclusively for examining the mutational patterns 64 

of all types of small mutational events [8]. Here, we present a new version of 65 

SigProfilerMatrixGenerator that now provides the capabilities for optimized exploration and 66 

visualization of large mutational events. 67 

 68 

Large mutational events, generally defined as genomic alterations greater than 50 base pairs, are 69 

an important class of somatic aberrations in human cancer [6]. In principle, there are two 70 

commonly examined and closely interrelated types of large mutational events: (i) a structural 71 

variation (SV, also known as a genomic rearrangement), where a large-scale genomic segment 72 

gets altered; and (ii) a copy number variation (CNV), where the number of DNA copies of a 73 

genomic segment gets modified. Not all structural variations are related to CNVs, as SVs do not 74 
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necessarily alter the copy number of a genomic segment; examples include copy neutral events 75 

such as inversions and reciprocal translocations. Similarly, not all changes in copy number 76 

require prior SVs, as is the case of chromosomal duplications and whole-genome doubling. 77 

Importantly, SVs and CNVs also differ in the types of genomics approaches that can detect them. 78 

In most cases, comprehensive detection of SVs requires whole-genome sequencing (WGS) data 79 

as it relies on either read alignment [9] or genome assembly methods [10]. In contrast, in 80 

addition to WGS data, CNVs can be detected from whole-exome sequencing, RNA-sequencing, 81 

single-cell sequencings approaches, and genotyping microarrays [11-13].  82 

 83 

Deciphering mutational signatures from catalogues of somatic mutations, a process known as de 84 

novo signature extraction, relies on a biologically meaningful classification of mutational events 85 

[5]. We previously created the mathematical concept of mutational signatures and provided a set 86 

of tools for deciphering signatures of small mutational [4, 8]. Mutational patterns of SBSs, 87 

DBSs, IDs, have been extensively explored with more than 100 distinct mutational signatures 88 

published in the literature [3, 14]. These signatures reflect the activities of endogenous and/or 89 

exogenous mutational processes with an approximately half of all signatures being, at least 90 

putatively, linked with a proposed etiology [15-18]. Recently, mutational signature analyses of 91 

larger copy number alterations and structural alterations have emerged [6, 7, 19, 20]. A crucial 92 

first step in extracting mutational signatures is the derivation of features according to a 93 

predefined schema for mutational classification. This step involves transforming the mutational 94 

catalogues of a set of cancer genomes into a matrix, which is then amenable to subsequent matrix 95 

decomposition techniques [8]. Here, we present a computational package for classification of 96 

large-scale alterations and the generation of mutational matrices for signature decomposition. 97 
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Two separate classification schemas are implemented: one for copy number variations and one 98 

for structural variations. Both schemas were previously developed and applied to large cohorts of 99 

cancer samples [7, 19, 21]. To the best of our knowledge, there is currently no tool that allows 100 

matrix generation and visualization of SVs and CNVs classified under these schemas. 101 

SigProfilerMatrixGenerator’s capabilities for analyzing SVs and CNVs are implemented in 102 

Python and the tool allows using multiple input formats, including segmentation and browser 103 

extensible data paired-end (BEDPE) files generated by commonly used algorithms for detecting 104 

copy number variations and structural variations, respectively. Additionally, 105 

SigProfilerMatrixGenerator provides a comprehensive visualization of mutational patterns of 106 

large mutational events and an R wrapper package for users that prefer working within the R 107 

environment. 108 

109 
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IMPLEMENTATION 110 

Classification of Copy Number Variations 111 

The schema for classifying copy number variations is based on Steele et al. [7] and it utilizes 112 

allele-specific copy number, which quantifies the number of segments for each allele at each 113 

variant loci rather than the total number of chromosome copies. In this schema, the copy-number 114 

profile of a sample can be represented by a mutational vector with 48 dimensions. Specifically, 115 

copy number segments are categorized into three heterozygosity states: heterozygous segments 116 

with total copy number (TCN) of A>0, B>0 (numbers reflect the counts for major allele A and 117 

minor allele B; Figure 1a), segments with loss of heterozygosity (LOH) with total copy number 118 

of A>0, B=0 (Figure 1b), and segments with homozygous deletions and TCN of A=0, B=0 119 

(Figure 1c). Segments are further subclassified into 5 categories based on total copy number, 120 

which reflects the sum of the copies on the major allele A and the copies on the minor allele B: 121 

TCN=0, TCN=1, TCN=2, TCN=3 or 4, TCN=5 to 8, and TCN>=9. Each of these total copy 122 

number states accounts for the phenomenon of whole-genome duplication, for example a diploid 123 

(TCN=2) state transitioning to a doubled state (TCN=4), and a subsequent doubling of this state 124 

to TCN=8 is accounted for by the TCN=5-8 category (Figure 1a). The categories for total copy 125 

number have been chosen for biological relevance (Figure 1): TCN=0 reflects homozygous 126 

deletions, TCN=1 represents a genomic deletion resulting in an LOH, TCN=2 is equivalent to a 127 

diploid state including copy neutral LOH (a phenomenon whereby one of two homologous 128 

chromosomal regions is lost, but two identical copies of this region still remain; Figure 1b), 129 

TCN=3 or 4 reflect a gained state of tri- to tetra-ploidy, TCN=5 to 8 represent a penta- to octo-130 

ploidy state, and TCN>=9 represents high-level amplifications such as ones found in samples 131 

containing extrachromosomal DNA (ecDNA) [22]. Each of the heterozygous and LOH total 132 
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copy number categories are additionally subclassified into five additional categories based on the 133 

size of their segments: 0 – 100kb, 100kb – 1Mb, 1Mb – 10Mb, 10Mb – 40Mb, and >40Mb. 134 

Three size bins are used for the additional subcategorization of homozygous deletions: 0 – 135 

100kb, 100kb – 1Mb, and >1Mb. The partitioning by segment sizes was chosen to ensure that a 136 

sufficient proportion of segments are classified within each category [7]. This classification 137 

allows summarizing copy number profiles using 48 distinct channels and can be represented 138 

using a vector with 48 components. For example, a sample harboring multiple focal 139 

amplifications, either contained on linear or extrachromosomal DNA, will have many events in 140 

the 9+ total copy number category and the first 3 size bins (0 – 100kb, 100kb – 1Mb, 1Mb – 141 

10Mb; Figure 2a-b). Conversely, a sample containing a large number of focal deletions or losses 142 

of entire chromosomes or chromosome arms will have numerous events in the LOH category, 143 

spanning all size bins (Figure 2c-d). Another example will be a sample with a whole-genome 144 

doubling where copy number changes will primarily encompass segments with large genomic 145 

sizes (10Mb – 40Mb; 40Mb) and total copy number between 3 and 4 (Figure 2e-f). Overall, this 146 

48-channel classification schema can effectively summarize a diverse array of copy number 147 

states seen across tumor types [7], whether they contain broad or focal events that result in 148 

amplifications or deletions. 149 

 150 

Input Data for Classifying Copy Number Variations 151 

SigProfilerMatrixGenerator allows examining allele specific CNV data that, at a minimum, 152 

include the following information for each CNV segment: chromosome, start coordinate, end 153 

coordinate, and copy number of both the minor and major allele. Output files from the following 154 

tools for detecting CNVs are automatically supported: ASCAT [23], ABSOLUTE [24], 155 
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Sequenza [25], FACETS [12], Battenberg [23], and PURPLE [26]. Additionally, custom 156 

segmentation files from other CNV detection tools can be used if these files contain the 157 

aforementioned information. 158 

 159 

Classification of Structural Variations 160 

A classification schema consisting of 32 features, based on Nik-Zainal et al. [21], is used to 161 

construct a mutational vector with 32 dimensions for each sample. In principle, each structural 162 

variant consists of two breakpoints which are at single-base resolution, where a breakpoint is 163 

defined as a junction that indicates a structurally variable genomic segment greater than 50 base 164 

pairs [10].  Breakpoints are typically detected using three signals from aligned sequencing reads: 165 

depth of sequence coverage, discordant read-pairs, and split read-pairs [27-29]. Breakpoints can 166 

also be detected via genome assembly, where reads are assembled into contigs, the contigs are 167 

aligned to the reference genome, and these alignments are analyzed for structural variants [10]. 168 

The previously developed classification of structural variants considers the following canonical 169 

SVs: tandem duplications, deletions, inversions, and translocations (Figure 3). A tandem 170 

duplication refers to a segment of genomic material that has been duplicated and inserted on the 171 

same chromosome adjacent to the original segment (Figure 3a). It should be noted that a tandem 172 

duplication is not necessarily the same as a copy-number amplification. For example, ecDNA 173 

copy-number amplifications are not tandem duplications as they are not inserted adjacent to the 174 

original chromosome segment. A somatic deletion is an event that has removed a set of existing 175 

base-pairs from a given location of a chromosome (Figure 3b). An inversion is when a segment 176 

of the chromosome breaks off and reattaches at the same locus but in a reverse orientation 177 

(Figure 3c). A translocation event occurs when a piece of one chromosome breaks off and some 178 
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(or all) fragments from that piece re-attach to either another chromosome or to a different locus 179 

of the same chromosome (Figure 3d). The classification schema bins all SVs, apart from 180 

translocations, according to the size of the event in base pairs: 0–10kb, 10kb–100kb, 100kb–181 

1Mb, 1Mb–10Mb, and >10Mb [21]. Translocations, which may involve more than one 182 

chromosome, are not binned by size because they can be either balanced (where there is no net 183 

loss of genetic material on the chromosomes involved and thus the size can be described by one 184 

number) or unbalanced (where there is a net loss or gain of genetic material on the chromosomes 185 

involved and thus the sizes of the segments cannot be described by just one number). Note that 186 

whether a translocation is balanced or unbalanced is not considered in this classification schema. 187 

The different types of SVs are then further divided into clustered and non-clustered events to 188 

account for the non-random distribution of these events along the genome. Clustered events are 189 

defined as events that occur closer to each other on a chromosome than purely expected by 190 

chance. These clusters often arise as a result of complex events, such as chromothripsis [30] or 191 

chromoplexy [31], generating many breakpoints in a single instantaneous event as opposed to the 192 

gradual accumulation of events over many cell cycles which results in more dispersed non-193 

clustered events. Clusters of breakpoints can also form as a result of other mechanisms, 194 

including, for example, rearrangement hotspots in the genome [32]. Clustering of SVs is 195 

determined based on a previously developed algorithm that utilizes the Potts’ filter method [33]. 196 

This method segments a chromosome based on inter-mutational distance of SV breakpoints, and 197 

if the average distance in a particular segment is less than 10 times the average inter-mutational 198 

distance in the sample, all breakpoints in the segment are considered clustered. A minimum of 10 199 

breakpoints must be present for a given segment to be considered clustered, otherwise all 200 

breakpoints in that segment are considered non-clustered.   201 
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An example of a whole-genome sequenced bone cancer with a highly rearranged genome that 202 

contains chromosomes with clustered events as well as chromosomes with only non-clustered 203 

events is shown in Figure 4a. For instance, in this sample, chromosome 12 contains a high 204 

number of SV breakpoints in close proximity to one another (Figure 4b) and the SV pattern of 205 

this chromosome can be summarized in a vector with 32 components containing a high number 206 

of clustered SVs (Figure 4d). In contrast, chromosome 8 has SV breakpoints randomly scattered 207 

throughout the chromosome (Figure 4c) and the SV pattern of chromosome 8 is exclusively one 208 

of non-clustered SVs (Figure 4e).  209 

 210 

Input Data for Classifying Structural Variants 211 

SigProfilerMatrixGenerator allows examining SV data that contains genomics information for 212 

each of the two breakpoints of a structural variant. In principle, the tool can process files in 213 

browser extensible data paired-end (BEDPE) format that, at a minimum, contain the following 214 

six columns: chrom1, start1, end1, chrom2, start2, and end2. Here, the genomics coordinates of 215 

the first breakpoint are annotated as chrom1, start1, and end1, while the genomics coordinates of 216 

the second breakpoint are provided as chrom2, start2, and end2. If the type of SV has been 217 

predetermined, then its annotation can be provided using a column named svclass. Otherwise, the 218 

columns strand1 and strand2, which indicate the strands of the read mate-pairs, are required. If 219 

the mates are on the same chromosome, the convention followed is inversion (+/- or -/+), 220 

deletion (+/+), and tandem-duplication (-/-). If mates are on different chromosomes, the SV is 221 

automatically classified as a translocation. SigProfilerMatrixGenerator supports SV in BEDPE 222 

format, which is utilized by most bioinformatics tools for detecting SVs, as well as being the 223 

native output files from BRASS [21]. 224 
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DISCUSSION 225 

The newly developed version of SigProfilerMatrixGenerator allows transforming a set of 226 

mutational catalogues of copy-number changes and structural rearrangements into matrices 227 

amenable to decomposition, including, subsequent mutational signature analysis. The tool 228 

provides support for two previously developed [7, 21] classification schemas for large mutational 229 

events. Further, the tool also delivers an extensive plotting functionality that seamlessly 230 

integrates with matrix generation to visualize the majority of output in a single analysis. 231 

SigProfilerMatrixGenerator is the first tool to provide support for the 48 channel CNV schema 232 

across a wide variety of popular tools for detecting CNV. Importantly, this schema can be 233 

applied across several data modalities, including whole-genome sequencing, whole-exome 234 

sequencing, RNA-sequencing, single-cell sequencing approaches, and genotyping microarrays. 235 

In addition, SigProfilerMatrixGenerator is the first Python package that provides support for the 236 

32 channel SV schema in a fast and intuitive manner with minimal preprocessing. 237 

 238 

CONCLUSION 239 

A breadth of computational tools exists for exploring the patterns for small mutational events, 240 

including our initial implementation of SigProfilerMatrixGenerator [8]. However, to the best of 241 

our knowledge, there are currently no tool for exploration and visualization of large mutational 242 

events. We recently demonstrated that a classification of CNVs into 48 channels provides the 243 

means to better elucidate and understand the mutational processes operative in human cancer [7]. 244 

Similarly, we and others have previously demonstrated that the classification of SVs into 32 245 

channels can be used to understand the mutational processes giving rise to SVs across multiple 246 

cancer types [19]. Our newly developed version of SigProfilerMatrixGenerator provides the 247 

capability to examine these classification schemas from cancer genomics sequencing data. The 248 
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tool can scale to large datasets and will serve as foundation to future analysis of both mutational 249 

patterns and mutational signatures of large mutational events. 250 

251 
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AVAILABILITY AND REQUIREMENTS 252 

Project name: SigProfilerMatrixGenerator 253 
Project home page: https://github.com/AlexandrovLab/SigProfilerMatrixGenerator, 254 
https://github.com/AlexandrovLab/SigProfilerMatrixGeneratorR 255 
Operating system(s): Unix, Linux, and Windows 256 
Programming language: Python 3 and R 257 
Other requirements: None 258 
License: BSD 2-Clause "Simplified" License 259 
Any restrictions to use by non-academics: None 260 
 261 
ABBREVIATIONS 262 
BEDPE: browser extensible data paired-end 263 
CNV: copy number variation 264 
DBS: doublet base substitution 265 
ecDNA: extrachromosomal DNA 266 
ID: small insertions and deletions 267 
LOH: loss of heterozygosity 268 
SBS: single base substitution 269 
SV: structural variation 270 
TCN: total copy-number 271 
WGS: whole-genome sequencing 272 
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FIGURE LEGENDS 297 

Figure 1. Description of the Copy Number Classification Schema. The copy number 298 

classification schema consists of 48 mutually exclusive channels, divided by heterozygosity 299 

status, segment size, and total copy number (TCN). a) In the heterozygous state, both alleles are 300 

retained and either one or both alleles can be amplified. This amplification can be focal (top 301 

panel) or it can encompass a chromosome or even the whole genome (bottom panel). The 302 

heterozygous category is further subdivided based on TCN (TCN=1, TCN=2, TCN=3 or 4, 303 

TCN=5 to 8, and TCN>=9). b) In a state of loss of heterozygosity (LOH), one of the alleles is 304 

lost. The remaining allele can then be duplicated (i.e., copy neutral LOH), and undergo more 305 

amplification resulting in higher total copy number states. The LOH category is further 306 

subdivided based on TCN (TCN=0, TCN=1, TCN=2, TCN=3 or 4, TCN=5 to 8, and TCN>=9).  307 

The heterozygous and LOH categories are further divided on the basis of the size of the segment: 308 

0 – 100kb, 100kb – 1Mb, 1Mb – 10Mb, 10Mb – 40Mb, >40Mb. High-level LOH or 309 

heterozygous amplifications (e.g., TCN=5 to 8 or TCN>= 9) can be carried on 310 

extrachromosomal DNA (depicted as red circles) as well as on linear chromosomes. c) 311 

Homozygous deletions result in the loss of both alleles, and are divided on the basis of the size of 312 

the deleted segment: 0 – 100kb, 100kb – 1Mb, and >1Mb. 313 

 314 

Figure 2. Converting Copy Number Segmentation Profiles into Copy Number Mutational 315 

Vectors. The CNV classification schema converts a sample’s segmentation profile (a, c, e) into a 316 

count vector of 48 mutually exclusive components (b, d, f). These components are based on 317 

segment size, heterozygosity status, and total copy number. A breast cancer sample with many 318 

highly amplified segments, possibly due to the presence of extrachromosomal DNA, is shown in 319 
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(a, b). This sample’s count vector is characterized by peaks in the 5-8 and 9+ total copy number 320 

categories. A gastric cancer sample with extensive loss of heterozygosity is shown in (c, d). This 321 

sample’s count vector is characterized by peaks in the LOH category, specifically with a total 322 

copy number of 1 indicating a loss of an allele. A sarcoma sample with a whole-genome 323 

duplication event, characterized by peaks in the 3-4 total copy number category and the 40+ Mb 324 

size bin, is shown in (e, f). 325 

 326 

Figure 3. Description of the Structural Variant Classification Schema. Structural variants 327 

(SVs) are categorized as tandem-duplications, deletions, inversions, or translocations. a) Tandem 328 

duplication of a segment containing the A allele. A tandem duplication occurs when a segment is 329 

duplicated and inserted adjacent to the original chromosomal segment. b) Deletion of the 330 

segment containing the A allele. A deletion occurs when there is a loss of genetic material from a 331 

chromosome. c) An inversion of the segment containing the B allele. An inversion occurs when a 332 

segment breaks off and reattaches in a reverse orientation within the same chromosome. d) A 333 

translocation of a chromosomal segment. A translocation event occurs when a piece of one 334 

chromosome breaks off and some (or all) fragments from that piece re-attach to either another 335 

chromosome or to a different locus of the same chromosome. 336 

 337 

Figure 4. Classifying Structural Variants into Mutational Vectors. a) An example of a bone 338 

cancer sample from PCAWG with a highly rearranged genome consisting of both clustered and 339 

non-clustered structural variants (SVs) is shown as a Circos plot representation. b) Zooming into 340 

SVs specifically found on chromosome 12 in the bone cancer sample. SVs are shown as a linear 341 

representation (top) and as a rainfall plot (bottom). The rainfall plot depicts all breakpoints on 342 
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chromosome 12 according to their genomic coordinate (x-axis) and the log10 inter-mutational 343 

distance (y-axis), which is the distance to the breakpoint immediately preceding it. The tendency 344 

of breakpoints to cluster in a specific genomic region on chromosome 12 due to a chromothripsis 345 

event is evident in all representations. c) Zooming into SVs specifically found on chromosome 8 346 

in the bone cancer sample. SVs are shown as a linear representation (top) and as a rainfall plot 347 

(bottom). The rainfall plot depicts all breakpoints on chromosome 8 according to their genomic 348 

coordinate (x-axis) and the log10 inter-mutational distance (y-axis), which is the distance to the 349 

breakpoint immediately preceding it. There are no clustered SVs on chromosome 8 as, per the 350 

SV classification schema, clustering requires a minimum of 10 breakpoints in a segment of a 351 

chromosome. d) The SV classification schema is applied to the SVs found on chromosome 12 in 352 

the bone cancer sample. SVs are classified by the event type (denoted by color) and are binned 353 

according to the size of the event (0 – 10kb, 10kb – 100kb, 100kb – 1Mb, 1Mb – 10Mb, and 354 

>10Mb). e) The SV classification schema is applied to the SVs found on chromosome 8 in the 355 

bone cancer sample. SVs are classified by the event type (denoted by color) and are binned 356 

according to the size of the event (0 – 10kb, 10kb – 100kb, 100kb – 1Mb, 1Mb – 10Mb, and 357 

>10Mb). 358 

359 
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