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ARTICLE

Visualizing catalyst heterogeneity by a
multifrequential oscillating reaction
Yuri Suchorski1, Martin Datler 1, Ivan Bespalov 1, Johannes Zeininger1, Michael Stöger-Pollach 2,

Johannes Bernardi 2, Henrik Grönbeck 3 & Günther Rupprechter 1

It is well documented that different surface structures of catalytically active metals may

exhibit different catalytic properties. This is typically examined by comparing the catalytic

activities and/or selectivities of various well-defined smooth and stepped/kinked single

crystal surfaces. Here we report the direct observation of the heterogeneity of active poly-

crystalline surfaces under reaction conditions, which is manifested by multi-

frequential oscillations during hydrogen oxidation over rhodium, imaged in situ by

photoemission electron microscopy. Each specific surface structure, i.e. the crystal-

lographically different µm-sized domains of rhodium, exhibits an individual spiral pattern and

oscillation frequency, despite the global diffusional coupling of the surface reaction. This

reaction behavior is attributed to the ability of stepped surfaces of high-Miller-index domains

to facilitate the formation of subsurface oxygen, serving as feedback mechanism of the

observed oscillations. The current experimental findings, backed by microkinetic modeling,

may open an alternative approach towards addressing the structure-sensitivity of hetero-

geneous surfaces.
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S
elf-sustained oscillations, i.e. oscillations occurring without
an external stimulus, are a fascinating phenomenon in
nature, originating from self-organization in a wide range of

fields, including biology, chemistry, physics, sociology, and even
economics. In simple words, a certain property or parameter
changes periodically, despite that external conditions are con-
stant. Examples of such oscillations range from fluid mechanics1 via
ecosystems (described, e.g., by classic Lotka−Volterra predator−prey
models2) to real estate markets3. In chemistry, more than a hundred
chemical reactions are known to exhibit oscillating reaction kinetics
under stationary conditions, the most famous being the Belousov
−Zhabotinski4 and Bray−Liebhafski5 (chemical clock) reactions.

In the field of heterogeneous catalysis, when e.g. gaseous
reactants react on solid catalytically active surfaces, oscillations
were first reported in the 1970s for CO oxidation on Pt6, and in
the 1980s for NO reduction7: the product formation rate mea-
sured by mass spectroscopy or gas chromatography varied peri-
odically, despite constant external conditions (gas pressures,
temperature, flow). Since then, oscillatory surface reactions have
developed into a wide research field8,9 having also practical
impact: non-steady, e.g. periodically oscillating, operation regimes
may improve catalytic reactor performance10 or enable fine
tuning of surface activity11. Apart from rate oscillations, many
types of spatial−temporal self-organization of initially uniformly
distributed reactants were observed, ranging from concentric self-
repeating patterns to chaotic behavior8,9,12.

To date, the main body of work on oscillating surface reactions
is still related to CO oxidation8,13 and NO reduction14,15, mainly
on single crystals of Pt group metals (Pt, Pd, Rh, which are widely
employed in automotive catalytic converters). The mechanism of
oscillating CO oxidation was thoroughly studied by Ertl and co-
workers by application of surface analysis techniques to well-
defined homogeneous low-Miller index single crystal surfaces8,9.
The importance of self-organization phenomena and oscillating
surface reactions was reflected by the Nobel Prizes to Prigogine in
1977 and to Ertl in 2007.

Despite the increasing importance of hydrogen-based energy
generation in fuel cells16, much less attention has been given to
(oscillating) catalytic H2 oxidation. There are only few reports
on oscillating H2 oxidation on polycrystalline Pt and Pd
wires17,18, polycrystalline Pt layers19, or supported Pd and Rh
catalysts20,21 under atmospheric pressure conditions. Under
high vacuum conditions, enabling microscopic studies of H2

oxidation, oscillations have been observed only on well-ordered
bimetallic Rh/Ni surface alloys22 and on sharp Rh nanotips
under high electric fields (>10 V/nm; with the applied field
causing the oscillations by stimulating the periodic formation of
Rh surface oxide23). However, from a technological point of
view, H2 oxidation studied under field-free conditions over less-
ideal heterogeneous surfaces exhibiting various surface struc-
tures as well as steps, kinks and defects, may be more relevant.

In this work, we report the direct observation of multi-
frequential oscillations occurring during the hydrogen oxidation
reaction over a heterogeneous rhodium surface composed of µm-
sized domains of different crystallographic orientations. In situ
monitoring of the reaction by photoemission electron microscopy
(PEEM) reveals that each particular domain exhibits its own local
oscillation frequency which appears to be governed by the local
Rh surface structure, with structure-sensitive subsurface oxygen
formation serving as feedback mechanism, as rationalized by a
micro-kinetic model.

Results
Multifrequential oscillations on individual domains of a
polycrystalline Rh foil. For the current study, we have used

PEEM to visualize in situ the ongoing H2 oxidation on poly-
crystalline Rh foil, which consisted of differently oriented stepped
(high Miller-index) domains of 10–50 µm size (Fig. 1). The
crystallographic orientation and the chemical purity of the indi-
vidual domains were characterized by EBSD (electron backscatter
diffraction; grain boundaries are marked as white lines in Fig. 1b)
and XPS (X-ray photoelectron spectroscopy), respectively.
Accordingly, the Rh foil represented a well-defined mesoscopic
model catalyst with known size, shape, and crystallographic
orientation of each individual domain. The PEEM chamber was
used as a flow reactor for catalytic H2 oxidation, with precision
leak valves for reactant dosing8–13,22,24.

Figure 1a displays a PEEM video-frame during H2 oxidation on
polycrystalline Rh foil, at constant pO2 = 1.1 × 10−6mbar, pH2 =

8.4 × 10−7mbar, and constant T = 433 K. The dark areas corre-
spond to the oxygen-covered inactive surface, and bright zones to
the catalytically active oxygen-free surface with low hydrogen
coverage24. In situ PEEM videos (see Supplementary Note 2 and
Supplementary Movie 1) reveal, however, not a static picture, but
a complex turbulence-like “stirring” surface consisting of
repeatedly nucleating “spirals” which spread as chemical waves
(magnified view in Fig. 1c–f; one wave has been colored). The
spirals overlap at the domain boundaries (Fig. 1b) and create the
turbulence-like pictures (Fig. 1a). It is most intriguing that the
“rotation speed” of the spirals strongly varies for different surface
orientations.

Placing regions of interest (ROIs, each corresponding to a 1-
µm-wide circle on the surface) at different positions of the image
(Fig. 1b), specifically at different crystallographic domains,
enables to evaluate the local image brightness, which reflects
the local reaction rates (kinetics by imaging25). The image
brightness analysis, thus, reveals the local oscillation frequencies,
as illustrated in Fig. 1g–j. Since the crystallographic orientation of
the individual domains is known from EBSD (see labels in
Fig. 1b), the local oscillation frequencies can be correlated with
the local surface structure of the corresponding domains. The
observed local oscillation frequencies can then be displayed as a
“frequency map”, shown in Fig. 1b.

Local oscillations confined in a furrow-like defect on Rh(111).
It was not possible to induce oscillations on smooth low-index
single crystal surfaces of Rh under these (and also under sig-
nificantly varying pO2, pH2 and T) conditions. It seems that a
certain degree of surface roughness is required to generate
oscillations. To prove this assumption, H2 oxidation was exam-
ined on a smooth Rh(111) single crystal surface containing a
mesoscopic furrow-like defect (25–30 µm wide, 1 µm deep; a
“scratch”) (Fig. 2a). The result is shown in Fig. 2b, in which the
time dependencies of the local PEEM intensities are shown for
different ROIs (inside and outside the furrow), and in Fig. 2c,
displaying an oscillation existence diagram. Clearly, the oscilla-
tions occur solely within the furrow and the confinement of the
oscillating behavior to the µm-sized defect on the otherwise
smooth Rh surface corroborates the importance of steps and
kinks for the generation of oscillations. It has been reported that
the initiation of kinetic transitions is pinned to surface
defects26,27; the present study suggests, however, that not only the
initiation, but also the propagation of oscillating fronts in H2

oxidation on Rh need a sufficiently rough surface. The analysis of
PEEM video-frames confirms the “propagating wave” character of
the observed instabilities confined within the furrow (see Sup-
plementary Figure 3). Further analysis of the furrow-profile by
AMF (atomic force microscopy) and EBSD (see Supplementary
Note 1) demonstrated that the steep flanks of the furrow con-
sisted of highly stepped surfaces, very different from the
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surrounding smooth Rh(111) surface. This explains why self-
sustained oscillations of hydrogen oxidation have not yet been
observed for low-index (quasi step-free) single crystal planes of Pt
group metals.

Returning to Fig. 1g–j, the width of the step-terraces apparently
influenced the oscillation frequency and, last but not least, also
the shape of the steps had an effect (cf. Fig. 1i, j). Note that small
variations of the oscillation frequency within one domain may
result from diffusional coupling of neighboring regions or small
local surface structure deviations (cf. Supplementary Note 1,
Supplementary Figure 1d).

Feedback mechanism and micro-kinetic model calculations.
Generally, a surface reaction can only exhibit oscillating behavior
when a feedback mechanism exists beside the bistability9. Bist-
ability describes the existence of two alternative steady states
(active or inactive in the present case) under identical external
conditions; thus the system’s state is determined by its previous
history. The feedback mechanism, in turn, periodically switches
between these two steady states, e.g. by varying the sticking
coefficient of reactants via changing the surface structure8,9, by
changing the concentration of subsurface oxygen8,28 or by (sur-
face) oxide formation12,28. The essential role of the stepped Rh
surface in the present observations, and the fact that oscillating
H2 oxidation was not observed on smooth low index Rh surfaces

(neither in the present study nor earlier), suggests the periodical
formation and depletion of subsurface oxygen to be the feedback
mechanism in the present observations. An alternative feedback
mechanism based on surface reconstruction, known from oscil-
lating CO oxidation on some Pd and Pt single crystal sur-
faces8,9,13,15, is highly unlikely here, since it can hardly be
expected that dozens of differently oriented Rh domains would
simultaneously exhibit similar reconstructions, but with different
frequencies.

Figure 3a illustrates the main reaction steps in the oscillating
cycle: (i) upon competitive coadsorption, oxygen from the mixed
O2/H2 gas phase adsorbs dissociatively on the Rh surface via a
molecular precursor; (ii) atomic oxygen can then diffuse from
surface to subsurface sites and subsequently form a surface oxide
layer. Both subsurface O and surface oxide significantly lower the
sticking probability of oxygen and thus reduce the rate of oxygen
adsorption; as a result, (iii) hydrogen can now also adsorb
dissociatively, despite the competitive adsorption with oxygen,
and water is formed by reaction between adsorbed hydrogen and
oxygen; (iv) upon continuing reaction, subsurface oxygen is
slowly depleted as it diffuses to the surface and is consumed in the
reaction with hydrogen; (v) when the concentration of subsurface
oxygen becomes low enough, the sticking coefficient of oxygen
and thus the high rate of oxygen adsorption recover and the
surface switches back to the inactive state of high oxygen
coverage, (vi) closing the oscillation cycle.
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Fig. 1 Isothermal kinetic oscillations in H2 oxidation on polycrystalline Rh on a µm scale. (a) PEEM snapshot (field of view 520 µm) taken during H2

oxidation at constant pO2= 1.1 × 10−6mbar, pH2= 8.4 × 10−7mbar, and T= 433 K; (b) “frequency map” of the observed oscillations. Crystallographically

different domains are marked with white lines (see also Supplementary Note 1). The numbered circular symbols mark the selected crystallographic

orientations; (c-f) propagation of a chemical wave in the 70 × 70 µm2 section marked in (a); (g–j) time-dependent (oscillating) local PEEM intensities of
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Supplementary Note 1)
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The reaction rate minima/maxima during oscillations are, thus,
characterized by the high/low oxygen surface coverage, which can
be unambiguously identified by PEEM: the low-activity state with
high oxygen coverage induces the dark image contrast, whereas
the high-activity regions with low oxygen coverage (surface
covered by hydrogen) are characterized by bright contrast.

The present PEEM observations do not provide a direct
evidence for the formation of subsurface oxygen but its formation
has been directly observed29 for the smooth Rh(111) surface at
470 K. For the rougher Rh surfaces studied herein, subsurface
oxygen might form at slightly lower temperature. To rationalize
the suggested model and, particularly, to verify the feedback
mechanism, the observed oscillations were analyzed by a mean-
field micro-kinetic model (Supplementary Note 3). The kinetic

parameters were based on the values for low index Rh surfaces
used in refs. 3031 to explain the field-induced oscillations in H2

oxidation on Rh nanotips.
The model predicts a critical dependence of oscillations on the

feedback loop between the rate of oxygen adsorption and the
concentration of subsurface oxygen. At the current experimental
conditions, on Rh(111) the rate of formation of subsurface
oxygen and surface oxide is too low, which prevents oscillating
reaction kinetics to be established. Thus, in agreement with the
experiments, the micro-kinetic model does not predict oscilla-
tions to occur on a smooth Rh(111) surface. For the stepped Rh
surfaces under the current experimental conditions, the exact
kinetic parameters are unknown and difficult to obtain with
sufficient accuracy from first-principles calculations. However, we
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noticed that the activation energies for surface oxidation and
surface reduction calculated by density functional theory for Rh
(111), Rh(011), and Rh(001) correlate linearly. Thus, as a
pragmatic procedure, we reduced the activation energy for
oxidation (as expected for stepped Rh surfaces for which the
incorporation of oxygen atoms occurs easier), and scaled (keeping
the other parameters fixed) the activation energy for reduction
accordingly, until the (field-free) oscillations occurred in the
simulations. In this way, reaction kinetics were obtained that
mimic the experimentally observed oscillating behavior (Fig. 3b).

The frequency of oscillations sensitively depends on the rate of
subsurface oxygen formation and its depletion, both governed by
the activation energy of subsurface oxygen formation. Reducing
the activation energy from the value used in Fig. 3b (1.134 eV) by
only 2% increases the frequency by a factor of two (Fig. 3c). The
more easy the subsurface oxygen is formed, the higher the
predicted oscillation frequency is, which is indeed observed in the
experiments: the more “stepped” and “kinked” the surfaces were
(Fig.1b), the higher the oscillation frequency was, and the faster
the spirals rotated. This model also explains the observations of
field-induced oscillations on Rh nanotips30,31: as shown earlier32,
a high electric field lowers the activation energy for surface
oxidation of Rh, enabling oscillations under high vacuum
conditions.

Discussion
In summary, multifrequential oscillating spatio-temporal pat-
terns, formed by spreading chemical waves, were observed by
PEEM during the ongoing H2 oxidation on µm-sized stepped
high-Miller-index domains of polycrystalline Rh. These spirally
shaped chemical waves, generated by local surface defects, spread
across the grain boundaries which act as “frequency transformers”
from one domain to another. As a result, the local reaction rate
oscillates with an individual frequency which is associated with
the local surface structure of each particular domain. The
microkinetic model explains the correlation of the local oscilla-
tion frequency and the local surface structure: the frequency of
the observed oscillations is governed by the feedback mechanism,
in the present case the subsurface oxygen formation, whose rate is
structure-sensitive. The critical sensitivity of the oscillation fre-
quency on the activation energy of subsurface oxygen formation
explains why oscillations in H2 oxidation were not observed on
smooth Rh surfaces despite decades-long efforts: the absence of
steps, kinks and other low coordinated sites makes the formation
of subsurface oxygen difficult. The feedback mechanism “stutters”
and oscillations can thus not be established. In contrast, on
stepped and kinked Rh surfaces the more facile formation of
subsurface oxygen enables self-sustained oscillations, which allow
one to directly visualize the catalytic heterogeneity of surfaces
active in hydrogen oxidation. This may open a promising
approach towards addressing the structure-sensitivity of hetero-
geneous surfaces and adds to the fundamental understanding of
complex self-organized systems.

Methods
Visualization of H2 oxidation on Rh. The current experiments were performed in
a PEEM/XPS ultrahigh vacuum setup consisting of separate PEEM and XPS
chambers connected with each other by a sample transfer. The setup is equipped
with a PEEM (Staib Instruments), a deuterium discharge UV lamp (photon energy
~6.5 eV) for electron excitation, an XPS-system (Phoibos-100 hemispherical energy
analyzer and XR 50 twin anode X-ray source, both from SPECS), a high purity gas
supply system (O2: 99.99%, H2: 99.97%) and sample preparation facilities for
cleaning the sample by argon ion sputtering and subsequent annealing. The
reaction was visualized in situ by PEEM and the images were recorded by a CCD
camera (Hamamatsu). The PEEM magnification was calibrated by comparison of
PEEM images of the Rh samples with optical micrographs of the same Rh foil and
of the same Rh(111) single crystal.

Preparation and characterization of Rh samples. The polycrystalline Rh sample
consisted of a 10 × 12 mm2 polished polycrystalline Rh foil of 0.2 mm thickness
(Mateck, purity 99.99%) which was cleaned in UHV by repeated cycles of sput-
tering with Ar+ ions at 1 keV at 300 K and consecutive annealing to 973–1073 K.
The cleanness of the sample was confirmed by XPS before each single reaction
measurement. The sample temperature was measured by a Ni/NiCr thermocouple
spot-welded directly to the sample. The crystallographic orientation of individual
μm-sized domains of a polycrystalline Rh foil was determined by EBSD (Electron
Back Scattering Diffraction). The EBSD measurements were performed by a field
emission scanning electron microscope (FEI Quanta 200F) using standard EBSD
conditions and evaluation procedures. Further details on the EBSD characteriza-
tion can be found in Supplementary Note 1. The Rh(111) single crystal (Mateck,
purity 99.99%) of 10 × 10 mm2 size and 0.6 mm thickness was cleaned in a similar
Ar+ sputtering and annealing procedure as the Rh foil with a subsequent XPS
control.

The micro-kinetic model. The micro-kinetic model is based on the well-
established Langmuir−Hinshelwood mechanism for H2 oxidation on Rh, with the
reaction network including the dissociative adsorption and associative desorption
of hydrogen, dissociative adsorption (and associative desorption) of oxygen via a
precursor state, formation and reduction of subsurface oxygen and catalytic water
formation. The details of the model and of the calculations as well as the used
calculation parameters are presented in Supplementary Note 3.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.

Received: 7 November 2017 Accepted: 12 January 2018
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