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VISUALIZING CHROMOSOME

STRUCTURE/ORGANIZATION
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email: ericl89@hotmail.com, kato@aesop.rutgers.edu, kowatana@aesop.rutgers.edu
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■ Abstract With the rapid development of sequencing technologies in the past
decade, many eukaryotic genomes have been resolved at the primary sequence level.
However, organization of the genome within nuclei and the principles that govern such
properties remain largely unclear. Optimization of fluorescence probe-based hybridiza-
tion technologies combined with new advances in the instrumentation for microscopy
has steadily yielded more structural information on chromosome organization in eu-
karyote model systems. These studies provide static snapshots of the detailed organi-
zation of chromatin. More recently, the successful application of a chromatin tagging
strategy utilizing auto fluorescent fusion proteins opened a new era of chromatin stud-
ies in which the dynamic organization of the genome can be tracked in near real time.
This review focuses on these new approaches to studying chromatin organization and
dynamics in plants, and on future prospects in unraveling the basic principle of chro-
mosome organization.
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INTRODUCTION

The packing of chromatin within the eukaryote nucleus has been a subject of
great interest since the discovery that DNA contains the information that con-
trols the makeup and function of the cell. Together with the genomic DNA of
the cell and heterogeneous nuclear RNAs (hnRNAs), there are a large variety and
abundance of proteins in the nucleus. The high concentration of macromolecules
and proteins within the nucleus is manifested in its high density, and diffusion
of chromatin within the nucleoplasm is typically limited. These characteristics
raise the speculation that for processes such as transcription and recombination
to operate efficiently, nuclear DNA must be organized in a structured fashion (56,
64). A structured nucleoplasm is supported by observations that suggest an un-
equal distribution of certain transcription factors and splicing factors within the
nucleus of interphase cells (69) and the tracking of transcript movement from
the nucleus to the cytoplasm (56). However, direct demonstration and charac-
terization of chromatin organization in the nucleus are extremely difficult. Early
observations by Rabl (29) suggested that plants have a preferentially polarized or-
ganization of centromeres clustered at one end of the nuclear envelope (the apical
side) and telomeres at the opposite end (the basal side). The organization of the
rest of the chromatin is harder to define. For the past 20 years, optimization of the
Fluorescencein situHybridization (FISH) techniques has helped to provide a low-
resolution picture for disposition of specific DNA sequences within nuclei (86).
Combining 3-Dimensional (3-D) fluorescence microscopy and computer-aided de-
convolution techniques, some principles of chromatin organization in interphase
cells have emerged from studies with mammalian andDrosophilacells: (a) Each
individual chromosome occupies a discrete space (a so-called “territory”) in the
nucleus with little intertwining among the other chromosomes (41, 42, 81, 94).
(b) Interactions with the nuclear envelope and between heterochromatic regions
are important factors that contribute to the organization of the subnuclear envi-
ronment (64). Consistent contact points between chromosomes and the nuclear
envelope were observed inDrosophila, thus arguing for nonrandom distribution
of chromatin within the nuclei (62). (c) Chromosome movements during meiosis
and mitosis are directed and may be nonrandom (17, 29, 40, 70). A quantitative
understanding of how chromatin is organized at various scales of resolution is
ultimately necessary to unravel the complex roles that chromatin states can im-
pose on control of nuclear processes, such as transcription and DNA replication,
both locally and globally. With the advent of genome sequencing and DNA label-
ing technologies, it is now possible to integrate genetic and molecular data with
physical information related to chromatin organization at an unprecedented level
of resolution. This review summarizes our current state of progress in deploying
these novel techniques in model plant systems and hopes to stimulate as well as to
contribute to more future refinement and advances in the quantitative description
of chromatin organization and its relevance to nuclear processes.

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

04
.5

5:
53

7-
55

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

L
ou

is
ia

na
 S

ta
te

 U
ni

ve
rs

ity
 -

 B
at

on
 R

ou
ge

 o
n 

10
/0

6/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



24 Apr 2004 19:51 AR AR213-PP55-21.tex AR213-PP55-21.sgm LaTeX2e(2002/01/18)P1: GDL

CHROMOSOME STRUCTURE/ORGANIZATION 539

CHROMATIN AS THE BASIC COMPONENT
OF CHROMOSOMES

Composition of Chromatin and its Macromolecular
Structure

Chromosomes are the discrete units of the genome that carry all the DNA and
genes encoded by it, as well as all the associated proteins. Morphologically they
are visible only during particular phases of the cell division cycle in which they are
highly condensed. During the interphase of the cell cycle, chromosomes cannot
be observed and the mass of DNA protein is collectively known as chromatin.
The fundamental unit of chromatin consists of nucleosomes (reviewed in 25, 52),
which are formed from a protein core of basic proteins called histones with∼165
base pairs (bps) of superhelical DNA wound around twice. Each nucleosome is
connected to its neighbors by short DNA segments of 10–80 bps called “linker
DNA.” Variability of the linker length may be related to the regulatory functions
that control the particular locus. Each histone core is composed of eight polypep-
tides, two each of four highly conserved proteins: histones H2A, H2B, H3, and
H4. Together, this “octamer” of histone proteins provides the first level of or-
ganized compaction for nuclear DNA. In addition to this structural role, it also
creates a barrier for accessibility for nuclear enzymes such as transcription factors
to locate their target site of action. The linear arrangement of nucleosomes with
their linker DNA forms the classic “beads on a string” model of nuclear DNA
organization and has a compaction ratio of about 5- to 10-fold (i.e., from 2-nm
diameter of “naked” superhelical DNA to about 11 nm). The second level of or-
ganization is the folding of nucleosomes into 30-nm chromatin “fibers,” which
further compact the DNA by another 10-fold. A fifth histone, histone H1, sta-
bilizes this 30-nm fiber form of chromatin by binding to the linker DNA and
to the nucleosomes. Beyond this level of chromatin organization, the picture is
less clear. Based on more recent work, it is likely that chromatin can be further
compacted in highly condensed regions of the genome to larger structures with
diameters of 300–700 nm (25). These condensed regions are typically rich in repet-
itive sequences and are much less accessible to nuclear enzymes for replication or
transcription. In contrast, active regions of the genome rich in single-copy genes
will likely form loops of up to several megabase pairs (Mbps). A key character-
istic of the nucleosome unit is its inherent dynamic nature. The linker histone
H1 has an on/off rate of seconds, and the core histones are much more stable
with exchange rates measured at orders of minutes (for H2A/H2B) to hours (for
H3/H4). Covalent modification of the histones by various enzymes, especially
at their amino-terminal “tails” that extend out of the histone octamer core, can
significantly alter the stability of the nucleosome unit and is important to under-
standing how nuclear processes such as transcription can be controlled locally and
globally.
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Chromatin Structure and Genomic Information Processes

The compartmentalization of DNA within the nucleus of eukaryotic cells requires
a compaction of DNA. Transformation of DNA fiber to chromatin fiber and chro-
mosomes fulfills this requirement, as discussed above. The chromosomes of eu-
karyotes are characterized by the presence of deeply staining material, heterochro-
matin, which is distinguishable cytologically from the surrounding lightly staining
euchromatic regions (16, 43). From studies of position effects on transcription ac-
tivity, heterochromatin is transcriptionally inactive and euchromatin contains most
of the active genes in a genome. This view of heterochromatin is changing due to
the finding that the repeats within centromeres are transcribed, and these transcripts
produce siRNAs (90). Many repetitive sequences are identified in heterochromatin
regions. InArabidopsis, heterochromatin is largely confined to the pericentromeric
regions in each of the five chromosomes and to the nucleolus organizer regions
(NORs). NORs include thousands of kilobases of tandemly repeated ribosomal
RNA-encoding genes (18, 19), and pericentromeric regions include 180-bp satel-
lite repeats, as well as retrotransposons, most notably from theAthila family (34,
72, 76). Cytosine methylation and distinctive histone modifications are frequent
on repeat sequences, and these kinds of chromatin modifications are involved in
heterochromatin organization.

During DNA replication, epigenetic information is transferred onto the daughter
DNA strand thorough DNA methylation and histone modifications. Dnmt1-type
DNA methylase adds methyl-residues to cytosines on newly synthesized strands
by using the information on the parental DNA strands, whereas Dnmt3-type DNA
methylase functions in de novo DNA methylation. Plants have both types of DNA
methyltransferase. Chromomethylase is the only DNA methylase currently known
to be unique to plants, and chromomethylases inArabidopsisand maize recognize
CpNpG sequences (57, 71). Histones undergo covalent modifications including
acetylation, methylation, phosphorylation, and ubiquitination on mainly their N-
terminal tails (25, 58). These modifications can result in structural change of
chromatin fibers, and the interrelationship among each histone modification is
now clear. Histone methylation shows a close relationship with heterochromatin
organization. Several kinds of enzymes are currently shown to carry out histone
methylation on distinct sites, and methylation at each position implies a distinct bio-
logical consequence. Histone H3 Lys4 (K4) methylation correlates with gene acti-
vation, whereas histone H3 Lys9 (K9) methylation is preferentially correlated with
gene repression and is associated with heterochromatin. Heterochromatin protein 1
(HP1) binds with high affinity to Lys9-methylated histone H3, and oligomerization
of HP1 plays a role in heterochromatin formation (9, 55). In mammal and fission
yeast, Su(var)3-9 -type histone methyltransferases interact with HP1 homologs
(24, 78). These in turn lead to the recruitment of a histone methyltransferase and
expansion of the H3 K9 modification to neighboring nucleosomes and inactivation
of gene activity in the locus.

It is unclear how epigenetic information on histones is transferred from the
parental to daughter chromosomes.DECREASED DNA METHYLATION 1
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(DDM1) could be involved in maintaining information on nucleosomes inAra-
bidopsis. The mutant ofDDM1, which encodes an ATP-dependent chromatin
remodeling factor (46), shows reduced levels of genomic DNA methylation, par-
ticularly on repetitive sequences, and Lys9-methylated histone H3 (30, 47, 91).
DAPI (4′, 6-diamidino-2-phenylindole) staining analysis (discussed below) and
fluorescence immunostaining analysis using antibodies against methylated his-
tone H3 show that theddm1mutation results in decreased clearly stained foci by
DAPI and an antibody against Lys9-methylated histone H3, indicating deconden-
sation of centromeric heterochromatin (74, 82). The mutant of DNA methtyl-
transferase 1 (met1) also shows a reduction of heterochromatic chromocenter
(82, 85). DDM1 and MET1 could control heterochromatin assembly at chro-
mocenters by regulating DNA methylation and following histone H3 K9
methylation.

The two processes, histone modification and DNA modification, could be inti-
mately linked in some cases via protein-protein interaction (25, 30). Localization
of Dnmt3a with HP1 has been observed in mammalian cells (7), whereas CHRO-
MOMETHYLASE 3 (Cmt3) DNA methylase interacts with the heterochromatin
protein ofArabidopsis, LIKE HETEROCHROMATIN PROTEIN 1 (Lhp1). His-
tone H3 K9 methylation by KRYPTONITE,Arabidopsishistone H3 K9 methy-
lase, results in recruitment of Cmt3 methylase through the interaction of Lys9-
methylated histone H3 with Lhp1, and it is different from the direct interaction of
HP1 with histone H3 K9 methylase seen inS. pombeand animals (45). Recent
evidence fromS. pombeandArabidopsissuggests that the processes of RNA in-
terference/cosuppression, DNA methylation, and heterochromatin-directed gene
silencing may all be interrelated through modifications in chromatin structure (6,
33, 90).

Chromatin organization is clearly maintained by multiple types of interactions
between chromatin fibers and chromatin modifiers (i.e., epigenetic memory). It
is presently unclear whether nucleosome modifications are involved in the global
organization of chromosomes within the nucleus, and how the particular sub-
nuclear location may in turn affect the stability of histone/DNA interaction. Some
initial points of reference are likely established early in the life of a cell after it
has completed mitosis. The Rabl configuration likely sets up the initial state of
chromatin organization. However, after this initial state, organization of the inter-
phase nucleus is much less defined. It is now clear from studies of various systems
that each chromosome occupies a discrete “territory” in the nucleus, and radial
positioning of a chromosome in the nucleus from interior to periphery has an in-
timate correlation with the size and gene density of each chromosome (21, 65).
This suggests mechanism(s) that act to define the position of each chromosome
within the nucleus. One candidate for mediating nuclear organization could be
specialized regions of genomic DNA called matrix attachment regions (MARs)
and proteins associated with MARs, which help establish stable sites of contact
between chromatin and the nuclear envelope to mediate genome organization at
a global level. The components of the nuclear envelope might be involved in nu-
clear organization and dynamics of chromatin and chromosomes with the regulator
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proteins like the small GTPase Ran in plants (3, 68, 77) as animal counterparts (5, 8,
38). Currently, to what extent this order is maintained from nucleus-to-nucleus and
whether there is a set of predictable routes through which the genome can reorga-
nize itself after the initial Rabl state is unclear. The ability to track specific loci of the
genome in the nuclei of interphase cells is necessary to address these fundamental
questions.

TECHNOLOGIES FOR VISUALIZING DNA
AND CHROMATIN

Classical Cytological Approaches and DAPI Staining
for Heterochromatin

In plants, the technique of chromosome spreading dominated most of the earlier
work on subnuclear order until the advent of electron microscopy approaches (40).
The most classical approach to visualizing chromatin is through DNA-binding dyes
such as Giemsa stain, aceto-carmin, and aceto-orcein. These dyes have relatively
low sensitivity for smaller chromosomes and they do not provide much informa-
tion about the particular sequences, although their reproducible staining patterns
for particular chromosomes enable karyotyping and characterization of relatively
large changes in genome organization such as rearrangements and breakage of
chromosome arms.

DAPI is a water-soluble fluorescent dye that shows an absorption maximum
at 359 nm (UV region) and an emission maximum at 461 nm (blue color). It is
semipermeable to live cells and thus can be used with both live and fixed cells.
DAPI associates with the minor groove of double-stranded DNA preferentially to
AT-rich regions, and its fluorescence intensity increases about 20 times after bind-
ing to DNA due to displaced water molecules from both DAPI and DNA (10, 53,
67). DAPI unevenly stains chromosomes because AT-rich sequences are differen-
tially distributed over their lengths. Repetitive DNA such as pericentromeric hete-
rochromatin and nucleolar organizer regions (NORs) is usually highly condensed
and contain predominantly AT-rich sequences. Therefore, DAPI fluorescence in-
tensities in such regions are much higher than in other euchromatic regions. In
Arabidopsis, which has only about 10–12% repetitive sequences in the genome,
the highly stained regions appear as speckles in interphase nuclei, and these cor-
respond to “chromocenters” where heterochromatin exists in a highly condensed
state near the centromeres. Assigning these chromocenters is possible by using
hybridization techniques with bacterial artificial chromosome (BAC) clones that
are mapped to regions of the genome adjacent to the NORs or neighboring the
centromeres [(27); see below for discussion on FISH techniques]. DAPI staining
is frequently used to identify basic chromosome organization in many organisms
including plants.
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FISH: Sequence-Specific Detection of DNA
Via Hybridization

FlSH is an in situ DNA detection technique in which fluorescent dyes are conju-
gated to DNA probes (73). To detect a specific DNA sequence in chromosomes
in nuclei, the samples are usually fixed and denatured before hybridization to the
DNA probe that contains the specific sequence. To make the DNA probe permeable
to the nucleoplasm, one must at least partially remove the cell wall and cytosol from
plant samples of interest by either mechanical (including a flow sorting machine)
or chemical (such as enzymatic digestions) methods before denaturing the DNA
in the samples. The choice of fluorescent dyes is numerous, with many spectrally
distinct chromophores spanning the optical range of UV to near infrared available
commercially. Fluorescence microscopes that can precisely distinguish many of
these dyes have also been developed. By combining these technical advances, one
can detect many different DNA sequences in a single nucleus. To date, the most
colors of fluorescent dye combinations in a single cell that have been achieved are
27 for human chromosomes (79, 83), but more dye combinations are theoretically
possible by combining more color variants and DNA probes.

Most intensive work employing the FISH technique to study chromosome or-
ganization in plants has occurred in maize (Zea mays) and other grasses using
telomere and centromere probes containing repetitive sequences (11; reviewed in
22, 36, 37). Work from the Cande group shows that telomeres are randomly scat-
tered in the maize nucleoplasm excluding the nucleolus in interphase nuclei (11,
15). Once cells enter meiosis, telomeres are relocated to the nuclear periphery and
apparently slide on the nuclear envelope during late Leptotene and Zygotene stages
to make a telomere cluster, the so-called “bouquet.” This movement plays a crucial
role in controlling chromosome pairing or crossover. In wheat, thePh1 locus is
genetically proved to be important for correct pairing and recombination. FISH re-
veals thatPh1locus reduces nonhomologue association at their centromeres (66).
Recently, the Cande group adapted a computational model to the FISH analysis
data obtained from rye anthers showing that the observed telomere movement is
a directed active process (15). InArabidopsis, Fransz and coworkers combined
chromosome-specific FISH using BACs neighboring pericentromeric regions or
NORs and DAPI staining of chromocenters and showed that these condensed
repetitive regions can interact at a high frequency in interphase cells (27). Tran-
scription of rDNA units and the associated regions of the NOR have also been
characterized at high resolution using a combination of FISH and electron mi-
croscopy (EM) techniques. By incorporating Bromo-UTP into thin root sections
of pea, active transcription sites within the nucleus can be visualized. Together with
FISH probes that are amenable to subsequent immunogold detection, genomic se-
quences corresponding to the rDNA repeats can be simultaneously visualized in
EM sections (2, 32).

By extending the FISH technique entire chromosome(s) can be specifically
decorated, a technique called “chromosome painting” (79, 95). In this procedure
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each chromosome is isolated by flow sorting or microdisection from tissues or
cells of interest. The isolated chromosomes are then used as templates for poly-
merase chain reaction (PCR) with degenerated primers and fluorescent derivatives
of dCTP (2′-deoxycytosine 5′-triphosphate) to produce DNA probes (80). A sin-
gle fluorescent derivative of dCTP or a mixture of dCTP derivatives with distinct
fluorescent labels can be used to create chromosome-specific probes of different
colors. The probes are hybridized to target samples such as permeablized, fixed
nuclei or chromosome spreads. Typically, unlabeled DNA fragments containing
disperse repeat sequences from the target chromosomes are included to increase
specificities of the probes by suppressing cross-chromosome hybridization due to
the presence and abundance of these repetitive sequences all over the genome.
Chromosome painting is widely used in mammals, birds, and insects to charac-
terize chromosome arrangements. This technique revealed that each chromosome
in interphase nuclei is not entangled with the others but occupies a discrete ter-
ritory (see above and also reviewed in 20, 21, 95). Because of the abundance of
dispersed repetitive DNA sequences throughout the genome in most plant species,
chromosome painting in plants has been limited to unusual chromosomes such as
the so-called SUPERNUMERARY or B chromosomes, which exist only in limited
species (44). Chromosomes in several hybrid plants that carry chromosomes from
different species, such as the hybrid of barley and rye, can be painted. To paint
alien chromosomes, one or both parental chromosomes are extracted and used as
probes. This technique is called genomic in situ hybridization (GISH), and mainly
has been used to characterize the hybrid status of progenies from a cross of two
distinct parental species (23). In some cases, there is clear segregation of the two
genomes into distinct and separate domains within the nuclei of the hybrid. In
hybrids where a strong concentric arrangement of the two genomes was observed,
the phenotype of the hybrid progeny resembles the parent that contributed to the
outer whorl genome (12, 35). This latter result is especially intriguing because it
provides evidence that nuclear location may determine gene activity. A similar dif-
ferential subnuclear localization of the nucleoli of the two genomes may account
for the Nucleolar Dominance phenomenon (40).

Recently, Fransz and others established chromosome painting inArabidop-
sis (27, 59, 60), taking advantage of the tremendous molecular, genetic, and ge-
nomic resources that have been accumulated within the last few years. Using
publicly available BAC clones that span the length of the chromosome of inter-
est, and carefully eliminating clones that contain dispersed repeated sequences,
chromosome-specific FISH probes were constructed and used to characterize
their behavior in interphase or meiosis. Their results suggest thatArabidopsis
chromosomes also occupy territories in interphase nuclei, and euchromatic re-
gions of a chromosome emerge from a chromocenter and create loops while
highly condensed heterochromatin often associates at chromocenters. In con-
trast to observations in maize, telomeres ofArabidopsisare not scattered in the
nucleoplasm but are clustered around the nucleolus. I. Schubert’s group is cur-
rently expanding this technique (Figure 1) to paint multiple chromosomes of
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Arabidopsissimultaneously, as was achieved in human cells (I. Schubert, personal
communication).

Fluorescent dUTP Incorporation: Chromosome
Territories in Living Cells

Formation of chromosome territories can be observed in living mammalian cell
cultures by pulse labeling of newly synthesized DNA (14, 92) with fluorescent-
labeled dUTP (2′-deoxyuridine 5′-triphosphase) delivered into cells by microin-
jection or by scratching the cells with a needle. The cells are then left to divide
several times in a normal culture medium. The chromosomes incorporate the la-
beled dUTP during DNA replication as the cells undergo mitosis (S-phase) in the
first cell cycle, and sister chromatids are labeled. Subsequent cycles of random
segregation of labeled and unlabeled chromatids into daughter cells result in a
few labeled chromosomes in most nuclei. This technique of pulse labeling with
dUTP derivatives shows little effect on the morphology, growth rate, and viabil-
ity of the cells. For Cy3-dUTP incorporation, the cells show strong fluorescence
several days after labeling. An advantage of this approach is that one can directly
quantify chromosome motions in a single cell. By using a microscope capable
of recording three-dimensional movement as a function of time of single parti-
cles, different levels of diffusion motions of chromosome territories were revealed
(14). Because free dye-labeled nucleotides are rapidly depleted from the cells,
most likely through their rapid incorporation to cytoplasmic vesicles, only parts
of chromosomes that are replicated during the injection of nucleotides are labeled.
Therefore, one can specifically label certain regions of the genome (i.e., early- and
late-replication regions). By optically observing labeled single cells, this approach
can track the process of chromosome territory formation and the results show that
the territories are composed of subcompartments with diameters of about 500 nm.
Early-replicated DNA and the DNA that result from later duplication events form
separate compartments. The drawback of this technique is that a whole chromo-
some is not painted, and usually only one of the two sister chromatids is labeled.
The sequence of the painted regions is also difficult to identify. To date, studies
utilizing this method with plants have not been reported. However, this could be a
feasible approach because microinjection in plants is well established.

Fluorescent Protein-Based Chromatin Tagging

Although the FISH technique has added valuable insights to our appreciation of
subnuclear order, it is an invasive technique that cannot be applied to live cells.
Thus, chromatin needs to be denatured and hybridized with labeled probes in order
to visualize the position of specific sequences. The concern with artifacts can be
easily appreciated. Recently, advances in the application of the Green Fluores-
cent Protein (GFP) as an in vivo tag have opened many exciting novel avenues
of investigation. Using GFP fused to Histone H2B, Kanda et al. (48) first demon-
strated in mammalian cells that stable labeling of chromatin and chromosomes can
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be achieved in live cells. In plants, Boisnard-Lorig et al. (13) demonstrated that
expression of an H2B fusion protein with Yellow Fluorescent Protein (YFP) in
transgenicArabidopsisplants does not cause obvious developmental defects and
this fusion could be used as a noninvasive label of chromatin. They also showed
that the fluorescence behavior of this fusion protein in the nucleus during nuclear
division correlates with the predicted pattern of dramatic condensation during
metaphase. Using these characteristics, one can then track the mitotic activity
distribution in the developing endosperm using time-lapse Confocal Microscopy.
Gerlich et al. (31) and Walter et al. (92) reported a recent further development
of the H2B-fluorescent protein fusion approach. Taking advantage of the slow
exchange rate of H2B from the nucleosome core, they used a photobleaching ap-
proach with H2B-YFP or H2B-GFP expressing mammlian cell nuclei to mark and
track specific regions of the genome. Their results indicate that global positions
of chromosomes may be heritable through the cell cycle in some cells, and that
large-scale movements of chromatin at the scale of several microns can be ob-
served in early G1. Deploying this strategy with H2B::YFP-expressing transgenic
plants should be an interesting avenue of investigation in the near future.

In addition to labeling chromatin through fluorescent protein tagging of the
nucleosome components, a novel strategy with GFP has also been developed in re-
cent years to track specific chromosomal regions, and it promises to revolutionize
our capability to observe chromatin-based processes in real time. The technique
(illustrated in Figure 2), originally studied in the laboratory of Andrew Belmont
and collaborators, entails the construction of a fusion protein between GFP and
the DNA-binding domain (DBD) of a known transcription factor. Next, the bind-
ing site for this particular DBD is multimerized to about 250 copies and is then
inserted into the genome of animal and yeast cells (75, 84). Expression of the
GFP-DBD fusion results in fluorescent tagging of the concatamer in situ. This
essentially provides a “beacon” that allows one to track the position of this region
in the genome specifically. In bacteria, yeast, and animal cells, a single concatamer
insert can be visualized with high resolution and fidelity (75, 84, 93). In yeast and
bacteria, the application of this technique provided new insights into the behavior
of chromosomes during cell division. For example, sister chromatid separation in
yeast was shown to occur in the absence of microtubules (84). This method has also
been extended to track the movement of specific chromosomal locations within
living cells (63). Using single-particle tracking with 3-D fluorescence microscopy,
the movement of the LEU2 locus near the centromere of yeast chromosome III
was followed by a GFP-LacI beacon. Consistent with previous work using fluores-
cence photobleaching recovery (1), the results from this work show that diffusion
of chromosomes is slow and conforms to random Brownian movement without
requiring active metabolism. This slow movement is constrained within an area of
about 1% of the total nuclear volume. Together with the evidence from FISH stud-
ies that various loci of the genome can be found consistently in specific regions of
the nucleus (42, 62, 81, 94), these new results from real-time measurements within
living cells argue for a structured organization of chromosomes. Treatments that
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affect the integrity of the cytoskeleton result in an increased area of movement
for the labeled chromosome, suggesting that the physical constraint within the nu-
cleus is regulated at least in part by cytoplasmic components (63). Recently, Heun
et al. (39) reported large, rapid (>0.5µm in 10 sec.) movements of tagged sites in
budding yeast nuclei at the G1- and S-phases. These movements require ATP and
are not seen in cells at the stationary phase, thus lending support to the hypothesis
that they are correlated with transcription and/or chromatin remodeling activities
in the cell.

A key advantage of the operator array tagging strategy is that specific sites in
the genome can be visually tagged in live cells, which enables tracking of the
labeled sequence in near real time as well as delineating its relative location to
other sequences or subnuclear landmarks. However, there are two major drawbacks
for this approach: (a) The size of the operator array [approximately 10 kilobase
pairs (kbs) in the originallacO array construct (75, 84)] may perturb the local
chromatin structure. Using smaller operator arrays with brighter auto fluorescent
proteins may help to minimize this concern. (b) Alterations of global chromatin
organization may occur due to interactions between multiple operator arrays. Be-
cause the operator arrays contain highly repetitive sequences, it is conceivable that
multiple insertions of these arrays in the genome may cause significant changes
in the organization of the genome. Aragon-Alcaide & Strunnikov (4) reported a
phenomenon in budding yeast for multiple inserted arrays oftetO or lacO; they
coined this “trans-association.” These somatic associations are sequence specific
and are independent of chromosomal location or sequence context. Fuchs et al.
(28) subsequently showed evidence that the association betweentetOarrays may
depend on expression of the TetR fusion protein.

The operator array strategy can be further adapted to examine other chromatin-
based processes. For example, Tumbar & Belmont (88) showed that by tethering
a strong transcriptional activator domain (i.e., VP16 activating domain from the
Herpes Simplex Virus transactivator) to the LacI DBD, large-scale movement of
the lacO array from the nuclear periphery toward the interior can be visualized
upon transactivator recruitment. Also, by linking a transcription cassette expressing
a distinct color variant of GFP to an operator array tag, one can simultaneously
image the location of the gene and the production of its protein production in real
time (87).

We recently demonstrated the feasibilty of the operator array approach for
chromatin tagging in transgenic plants (49, 51). Using a steroid-inducible gene
expression system, we demonstrated that expression of a GFP-LacI-NLS fusion
protein inArabidopsiscells can result in the formation of discrete fluorescent spots
in the presence oflacO concatamers but not in its absence (Figure 2) (49). The
specificity of this apparent association was confirmed by inhibition of spot for-
mation by IPTG addition, which disrupts LacI/lacO interaction. The association
of the observed GFP fluorescent spots to the insertedlacO concatamers was also
recently confirmed by FISH analyses (N. Kato, E. Lam, A. Pecinka & I. Schubert,
unpublished data). Thus, chromatin tracking can be used with confidence for
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sequence-specific tagging in plants. Using anArabidopsistransgenic line that con-
tains two linked insertions withlacOconcatamers, the diffusion rate of chromatin in
leaf guard cells was compared with that of pavement cells from the hypocotyl (51).
It was found that in liveArabidopsisplants, chromatin has constrained diffusive
motion in interphase cells with rates that range from about 1.25× 10−4µm2 s−1

in guard cells to 5.35× 10−5 µm2 s−1 in pavement cell nuclei. These are similar
values to those measured recently inDrosophilaspermatocytes (89). We found that
chromatin in pavement cell nuclei has on average more than six times the range of
diffusion area compared to that of chromatin in guard cells. Although guard cell
nuclei are about four to five times smaller than nuclei of pavement cells, the ratio
of DNA content to nuclear volume is relatively constant, and the large increase in
diffusible area in pavement cells cannot be attributed to a simple increase in the
size of the nucleus. Further studies are needed to elucidate the precise cause for
the different behavior of chromatin in these cell types.

One limitation that we have encountered in deploying this technique in plants
is uneven and variable induction of the auto fluorescent fusion protein when us-
ing a chemical inducer. The reason for this is currently unclear. In studies with
live plants, another limitation is that the thickness of the tissue of interest may
preclude certain cells from high-resolution studies due to technical limitations at
the microscopy level. At this point,Arabidopsisis ideal for the operator array
approach in chromatin tracking because whole, live seedlings can be mounted
and examined under the microscope. In addition, the well-characterized genome
makes determining the integration site of the particular operator array relatively
straightforward. However, it is possible to envision other model plant systems for
deploying this technology. A clear advantage of intact plants is their immobile
nature due to the presence of the cell wall. This characteristic presents an unique
opportunity to study cells with defined lineage and a clear and reproducible axis of
orientation relative to the body plan of the organism. The continued optimization
of the controlled expression of brighter spectral variants of GFP as well as quanti-
tative imaging techniques with plant tissues would likely enable future application
of this technology to study different plant cell types under various developmental
conditions.

CONCLUDING REMARKS

The present model of chromatin organization within the nucleus is of a dynamic
state, with “territories” for each chromosome defined by their relative location to
each other (26, 54, 94, 95). In the cell division cycle, chromosomes are duplicated
during the S-phase and pulled to the two daughter cells during M-phase. Chromo-
some territories are re-established after cell division and once the cell is arrested in
a long interphase, chromosome movement is restricted again (1, 40, 61, 63). Some
nucleus-to-nucleus variations in the exact position for each locus relative to the
rest of the genome can be expected. Because some random diffusion within each
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territory is possible (1, 63), there are time-dependent small positional differences
in the relative coordinates of each locus within a single nucleus. These nucleus-
to-nucleus variations and the mobility of the established territories in the nuclei of
interphase cells are data that will become available in the near future for different
plant species as well as different cell types. By carrying out a genome-wide survey
of these parameters, a comprehensive picture of the subnuclear architecture and
its dynamics may be generated. Deploying multicolored DNA tagging systems by
using spectrally distinct auto fluorescent proteins (AFPs) should allow us to test the
feasibility of this approach. As a prelude to this effort in plant systems, we recently
demonstrated that it is possible to simultaneously resolve four spectrally distinct
AFPs in plant tissues (50). We also showed that it is possible to simultaneously
image four distinct compartments in the same cell of a transgenic plant (Figure 3).
Thus, we hope that this approach will be feasible in higher-resolution studies at
the subnuclear level and will enable visualization of multiple defined loci in the
genome and in live plants. Together with high-resolution FISH techniques using
fully mapped and sequenced BAC clones ofArabidopsisand rice, these technolo-
gies promise to open an exciting new era in chromatin studies of higher plants
that should provide us with new information on the principles underlying genome
organization.
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CHROMOSOME STRUCTURE/ORGANIZATION C-1

Figure 1   Painted Arabidopsis thalianaChromosome 1 in the pachytene stage of meiotic cell
division (left panel) and Chromosome 1 territories in interphase nuclei isolated from root tis-
sues (right panel). One hundred and eighty-three Chromosome 1-specific BAC clones were
used to paint the chromosome. Chromatids and nuclei are stained by DAPI (white). The top
arm is labeled by Texas Red dye (red) and the bottom arm of the chromosome is labeled by
Alexa 488 dye (green). The images were kindly provided by A. Pecinka in the Schubert labo-
ratory at the IPK in Gatersleben. 

Lam.qxd  4/24/2004  9:08 PM  Page 1

A
nn

u.
 R

ev
. P

la
nt

 B
io

l. 
20

04
.5

5:
53

7-
55

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

L
ou

is
ia

na
 S

ta
te

 U
ni

ve
rs

ity
 -

 B
at

on
 R

ou
ge

 o
n 

10
/0

6/
21

. F
or

 p
er

so
na

l u
se

 o
nl

y.
 



C-2 LAM  ■  KATO  ■  WATANABE

Figure 2   Application of the Green Fluorescent Protein (GFP) as an in vivo tag of spe-
cific chromosomal regions in living plants. Concatamers of the lac operator are inserted
in different chromosomal loci (Lac operator sites). GFP-LacI fusion proteins are then
expressed in the nucleus using an inducible promoter system. The fusion proteins rec-
ognize the operator sequence, and the bound arrays are visualized as bright fluorescent
spots in the nuclei with a fluorescence microscope. An image of a transgenic Arabidopsis
nucleus is shown on the bottom panel to illustrate the data that can be obtained. Three
bright fluorescent spots, which correspond to lacoperator site arrays inserted in the chro-
mosomes, are detected over background fluorescence that is caused by presumably
unbound GFP-LacI fusion proteins in the nucleus. 
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CHROMOSOME STRUCTURE/ORGANIZATION C-3

Figure 3   Detection of four distinct compartments in a single cell. An image of stom-
atal guard cells of a transgenic Arabidopsisis taken using a fluorescence microscope.
Nuclei are tagged with GAL4-CFP (cyan fluorescent protein), shown in blue; mito-
chondria is tagged with CoxIV -YFP (cytochrome c oxidase subunit IV-yellow fluores-
cence protein), shown in yellow; and plasma membrane is tagged with calmodulin
CaM53BD-GFP, shown in green. Chloroplasts are detected via their auto fluorescent
chlorophylls, shown in red. The plastids are tagged with DsRed2 protein fused to
plastid-targeted RecA with similar results (N. Kato & E. Lam, unpublished results). 
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