
Volume xx (200y), Number z, pp. 1–13

Visualizing Crowds in Real-Time

Franco Tecchia1, Celine Loscos2 and Yiorgos Chrysanthou3

1 Laboratorio PERCRO, Scuola Superiore S.Anna, Pisa, Italy
2 University College London, Computer Science Department, London

3 University of Cyprus, Computer Science Department, Nicosia, Cyprus

Abstract
Real-time crowd visualization has recently attracted quite an interest from the graphics community and, as in-
teractive applications become even more complex, there is a natural demand of new and unexplored application
scenarios. However, the interactive simulation of complex environments populated by large numbers of virtual
characters is a composite problem which poses serious difficulties even on modern computer hardware. In this
paper we look at methods to deal with various aspects of crowd visualization, ranging from collision detection
and behavior modeling to fast rendering with shadows and quality shading. These methods make extensive use
of current graphics hardware capabilities with the aim of providing scalability without compromising run-time
speed. Results from a system employing these techniques, seem to suggest that simulations of reasonable complex
environments populated with thousands of animated characters are possible in real-time.

1. Introduction

The wide use of computer graphics in games, entertainment,
medical, architectural and cultural applications, has led it to
becoming a prevalent area of research. Games and enter-
tainment in general have become one of the driving forces
of the real-time computer graphics industry, bringing rea-
sonably realistic, complex and appealing virtual words to
the mass-market. At the current stage of technology, a user
can interactively navigate through complex, polygon-based
scenes rendered with sophisticated lighting effects, and in
interactive applications like virtual environments or games,
animated characters (often called agents or virtual humans)
able to interact with the users are becoming more and more
common. As the size and complexity of the environments
increase, there is a growing need to populate them with
more than just a few of well-defined characters, and this
has brought to the attention of the developers community the
problem of rendering crowds in real-time. However, due to
the computational power needed to visualize complex an-
imated characters, the simulation of crowded scenes with
thousands of virtual humans is only now beginning to be
addressed sufficiently for real-time use.

One of the main obstacle to interactive rendering of
crowds lies in the computation needed to give them a cred-
ible behavior. It must be noted that behavior can be simu-

Figure 1: Real-time rendering of a village populated with
10.000 agents

lated at two different levels, global and local, that can be
combined. Global behavior is simulated when taking into
account mainly global parameters of the environment and
it is more suitable to describe group behaviors. On the other
hand, local behaviors are simulated using properties of the
agents and local parameters: agents are seen as independent
entities acting from their own properties, the simulation is

submitted to COMPUTER GRAPHICS Forum (8/2002).



2 Tecchia et al / Visualizing Crowds in Real-Time

done locally for each unit, and designers have a high level
of control. The basic idea of global behavior is that from
the use of simple local rules the emergent behavior should
result human-like. Developing such behavior is a hard task
as it can be difficult to understand how complex behaviors
emerge from simpler rules with the results often being quite
unexpected, but on the other hand, using simple general rules
is the only viable solution in case of real-time crowds ren-
dering, as the number of agents to simulate is too high for
individual scrip or perception-driven behavior.

Agents behavior is not the only hard task to perform
in crowds simulation, the graphical activities involved can
prove to be equally challenging. In fact, the rendering of
highly populated urban environments in real-time requires
the synthesis of two separate problems: the interactive vi-
sualization of large-scale static environments, and the vi-
sualization of animated crowds and traffic. Both tasks are
computationally expensive and, using the current technol-
ogy, only models composed by a few hundred of thousands
of polygons in total can be displayed and visualized at in-
teractive frame rates. The main problem in rendering crowds
comes from the fact that the human body has an elaborate
shape, and so a complex polygonal mesh is usually needed
to represent it. Also, a human body has a very familiar shape
to the eyes of a user which would be very sensitive to even
the smaller artifacts that can be introduced by any simplifi-
cation process. Situations where thousands of characters are
on-screen at once can easily need well over a million poly-
gons, making it impossible to render the scene in real-time.

In the rest of the paper we discuss possible solutions to
the above problems, mostly taken from our own research
on the field. Although more research is surely needed, pre-
liminary results seem to suggest that simulations of reason-
able complex environments populated with thousands of an-
imated characters are possible in real-time. An example of
the current results can be seen in Figure 1.

The main focus of our research has mostly been the real-
time graphical rendering aspect, but we ended up building
a complete platform for crowd visualization, and feel that
some of our technical decision could be of interest for the
community. In the following sections, we analyze in more
details three of the main tasks needed for an interactive sim-
ulation of crowds, taking them in the same order as they are
performed during a generic simulation. Each time-step of the
simulation normally starts with an initial collision detection
test, performed for each individual of the population (or per-
formed on the subset of the population that is active at a
given time); such test is then used as an input for the follow-
ing phase which gives the agents a behavior. Once an action
is assigned to each of them, the graphical rendering task is
performed to visualize the final situation of the time-step.

2. Collision Detection Task

The collision detection test is used to make each agent aware
of the surrounding environment; it is essential for tasks such
as path planning and obstacle avoidance. There are many
techniques to detect interference between geometric objects
17. Many of them use hierarchical data structures, for exam-
ple, hierarchical bounding boxes 7, 40, spheres trees 15, BSP
trees 27 and Octrees 31. However, the majority of these ap-
proaches try to solve the harder problem of exact interfer-
ence between complex objects. For this reason, they tend to
be much more precise than what is needed to simulate crowd
flows. Due to the large amount of moving objects and the
inherent time constraints of this particular application, we
need to look at other solutions, and trade off small errors in
exchange of greater speed and scalability.

To reduce the computational load, the fastest approach is
probably to perform collision detection through discretiza-
tion; the most relevant work to our idea is that of Myskowski
26 and Rossignac 30. Like in our case, they use graphics hard-
ware to perform the rasterization necessary to find the inter-
ferences in their models, but they then focus this task on a
small number of very complex 3D CAD objects. Instead, in
the case of crowds moving around in an environment, we can
exploit some special situation: even though the geometry is
still in 3D, the movement of humans is usually restricted to
a 2D surface in space (often called 2.5D), or possibly more
than one if we consider elements such as bridges. Bearing
in mind this and the fact that the environment itself is static,
fast collision detection can be performed.

Solutions dealing with the 2.5D case also exist. Steed 39

used a planar graph based on the Winged Edge Data struc-
tures for navigation in virtual environments. In Robotics,
the problem was studied extensively for navigating mobile
robots. Lengyel 16, for example, exploited raster hardware to
generate the cells of the configuration space used to find an
obstacle-free path. Bandi and Thalmann 5 also employed dis-
cretization of space using hardware to allow human naviga-
tion in virtual environments. However, in their case a coarse
subdivision is used on the horizontal plane and repeated on
several discrete heights, while in our system we consider the
height of the obstacles in a more continuous way: we want
not only to detect an obstacle, but also to detect its size; this
is because the overall idea of the algorithm 43 is to represent
crowd individuals as particles, and controlling their naviga-
tion trough a discreet representation of the virtual environ-
ment that we call the height map.

The height map represents simply the height of each cell
of the subdivision, and it gets stored in main memory. In Fig-
ure 5, you can see an example of a height map and its asso-
ciated 3D model. For every frame of the simulation, before
moving a particle to its new position, we check its current
elevation against the elevation stored in the height-map for
the target position. If these values are too different, we as-
sume that the step necessary to climb either up or down the

submitted to COMPUTER GRAPHICS Forum (8/2002).



Tecchia et al / Visualizing Crowds in Real-Time 3

Figure 2: Using a 2D grid to sample the environment. The
top image is an example of a 3D model. The bottom image
is the corresponding discretized heightmap used to perform
collision.

Figure 3: Agents, represented here as red particles, cor-
rectly detect and interact with gradual slopes, avoid falling
off the edge or going through objects taller than a threshold.

cell is too big and cannot be taken, otherwise we move the
particle and update its height according to the value stored
in the height-map.

We also perform a second test, trying to influence the col-
lision detection task with what lies ahead of the current par-
ticle position. Instead of simply checking whether our next
step is possible from the current position, we also check
whether the ith step is possible from the predicted (i− 1)th

position. If this is not the case, then we will still allow the
particle to move but start already changing the direction in
anticipation of the collision. This results in a smoother an-
imation. On the other hand, we now need two accesses to
the height map, and this makes our test slower than in the
previous case. The aim of these simple tests is to find a free
path avoiding querying directly the geometrical database for
valid directions, as this is essential in order to keep the cost
of the collision test low.

In Figure 3 we can see an example of the emergent be-
haviour from these rules. Using the height map the particles
correctly detect the different dimension of obstacles, climb-
ing on them if the steps are small enough and updating their
elevation without accessing the geometrical database of the
model. This simple algorithm seems to be sufficient for basic
collision detection tests, and it has several advantages upon
polygonal approaches: using the graphics hardware to pro-

duce a rasterization of space is very fast and the data struc-
ture generated can be queried in minimal time. As a result,
we can now perform collision tests for a population of thou-
sands of individual in milliseconds.

3. Behavior

Researchers from different disciplines ranging from psy-
chology to architecture and geography have been making ob-
servations of the micro scale behavior of pedestrians for over
thirty years. For example, Goffman 12 discusses the tech-
niques that pedestrians use to avoid bumping into each other.
He discusses not only inter pedestrian avoidance, but also
makes observations of differential flow, the role of attrac-
tors (shop windows), and how pedestrians negotiate junc-
tions. Early work was also done at University College Lon-
don, were researchers began to systematically develop tech-
niques for observing and analyzing patterns of pedestrian
flows, and correlating these to spatial properties of the en-
vironments navigated environment. Examples of these tech-
niques are documented in 14, 13. Observations had been made
purely by hand, with the sole research aim of being able to
better understand how people moved through space, both at
macroscopic (e.g 14, 13) and microscopic (e.g. 12) level. A
second important goal was to be able to predict real world
movement; but ideas of using such observations as the ba-
sis of rule sets to simulate pedestrian movement or to popu-
late virtual worlds with realistic humans were hampered by
computer processing power. To address these difficulties, re-
searchers have recently begun an attempt to devise simple
rule sets to drive navigating agents.

Many techniques have been borrowed from (or adapted
from) parallel research on real-world navigating robots, such
as Prescott et al. 29 as researchers working on navigating
robot problems have occasionally used software simulations
to test their ideas and areas of crossover are present between
the two fields.

The majority of work undertaken on simulating pedestrian
movement has involved simulating densely populated crowd
scenes such as in 24, 37. Much of the work done tend to focus
upon problem scenarios such as emergency situation evac-
uations and in 25 a definition of a crowd is proposed as be-
ing “a large group of individuals in the same physical envi-
ronment sharing a common goal”. Although serving as use-
ful precedents, this work is less useful for games program-
ming, where the aim is frequently to populate environments
with autonomous individuals that not necessarily share all
the same goal.

Work done on natural movement includes early work by
Penn et al. 28 in which rules were applied to agents, with dis-
tinct groups of agents using different heuristics for navigat-
ing from origins to destinations assigned randomly. The re-
sulting paths taken were compared to spatial analyses of the
environment and observed movement in the corresponding

submitted to COMPUTER GRAPHICS Forum (8/2002).



4 Tecchia et al / Visualizing Crowds in Real-Time

real environment (a district of London). Sophisticated varia-
tions on natural movement modeling include work done on
the weighting and use of interest attractors by Smith et al. 36;
attractors in this environment include shop doorways, recre-
ational areas, and street entertainers. Other refinements of
standard natural movement models include Mottram et al.
23, in which agents behavior is modified through foveal and
peripheral visual cues, and Thomas et al. 44 in which the mi-
cro scale behaviors required to navigate convincingly around
road junctions and crossing roads are included in the agent’s
rule sets.

As the definition of the rule set for emergent behavior is a
very complex task on its own, during our research on crowd
simulation we felt necessary to develop a dedicated tool that
could make the process of testing and debugging rules easier.
With this intention, a platform that allows a user to develop
and visualize the behavior of large numbers of agents was
developed 42. The use of space discretization employed ear-
lier for the collision detection (Section 2) is carried here as
well: a 2-dimensional grid containing various types of in-
formation is over imposed on the environment and agents
navigate using the data contained in it. This 2D represen-
tation of the scenario is composed of four different layers.
By combining the effect of each layer, an individual agent
reacts depending on its position and the relative position of
the other agents. The layers are ordered from the more basic
(detection of possible collisions) to the more complex be-
haviors. Each cell of the grid corresponds to an entry to each
layer. When an agent reaches a cell, it checks from the first
to the fourth layer to decide what is going to be its next ac-
tion. During each time-step of the simulation, an agent can
check one or more cells for each layer. The original imple-
mentation uses the same cell size for each layer, but this is
not strictly necessary. In the following we name and describe
these four layers, in the same order an agent accesses them
during a simulation.

Collision detection layer This layer is used to perform en-
vironment collision detection and defines the accessibil-
ity of areas. An image is used as an input to the plat-
form, encoding in grayscale the elevation of the cell, or
the information is created from a 3D model as described
in Section 2. By examining this map, an agent can decide
if it can pass by, climb up or descend in order to continue
its journey. If the difference in elevation is above a given
threshold, the agent must search for a new direction.

Intercollision detection layer This layer is used for agent-
to-agent collision detection. Before moving to a new cell,
an agent checks it to be sure that the target cell is not al-
ready occupied. The user can specify how much ahead to
check.

Behavior layer This third layer corresponds to more com-
plex behaviors encoded for each local region of the grid.
A color map is used as an input file, so that with 8 bits
per component in a RGBA space, up to 232 distinct be-
haviors can be encoded. The user then associates a color

to the corresponding behavior. When an agent reaches a
cell, it checks the encoded color to decide which behav-
ior to adopt. It may be a simple behavior like ’waiting’
or ’turning left’ or more complex like ’compute a new di-
rection depending on the surrounding environment. For
example, we can use a visibility map (Figure 4b) to en-
code more probable paths, or an attractor map (Figure 4c),
which may reflect how agents are attracted by some points
of interest such as a bus stop or a shop window.

Callback layer Using this layer callbacks can be associ-
ated to some cells of the grid in order to simulate agent-
environment behaviors. Such callbacks can allow the en-
vironment to react to the presence of agents; for instance
callbacks can be used to call elevators or, in a simulation
of city traffic, to make buses detect the presence of agents
waiting at a bus stop.

In our experience, the combination of the described four
layers permits the creation of complex crowd behaviors that
can appear realistic and still suitable for interactive applica-
tions; as an example, the four layers are sufficient to control
the actions of an agent walking along a pavement to reach a
bus stop. Whilst walking the agent can avoid obstacles such
as rubbish bins, telephone kiosks and other agents in front
of him. On reaching the cell that corresponds to the bus stop
(for which the associated behavior is to wait), the agent can
pause and wait. When the bus arrives, a callback gets acti-
vated, causing the agent to climb into the bus. The flexibil-
ity of the callbacks mechanism is that even if they are trig-
gered by the arrival of an agent, they can define local rules
and actions of the environment on the agent (not necessarily
the one that triggered the event). Since each rule is applied
only locally, the callback, which is a more computational ex-
pensive procedure, is executed only when needed so that the
whole series of behaviors can still be computed in real-time
even if the environment contains many thousands of agents.
Even the simple application scenario reported makes use of
all the four layers described above.

4. Graphical Rendering

Rendering realistic virtual environments populated by thou-
sands of individuals may need much more geometric power
than what is available on current hardware. Techniques to
efficiently handle large static polygonal models are a well-
studied topic in computer graphics literature, but most of
them are unable to handle complex dynamic entities such
as crowds. Generally speaking, the acceleration techniques
for the rendering of large environments can be subdivided
in three main categories: visibility culling methods, level-
of-detail (LOD) methods and image-based rendering (IBR)
techniques. Although both culling and LOD can be very ef-
fective under the right circumstances, in cases where hun-
dreds of detailed objects are visible simultaneously (see Fig-
ure 1) they can proven insufficient. This led us to choose IBR
as the basic acceleration which lies at the core of our whole

submitted to COMPUTER GRAPHICS Forum (8/2002).



Tecchia et al / Visualizing Crowds in Real-Time 5

(a) (b) (c)

Figure 4: (a) An example of a collision map. The regions where agents can move are encoded in white and inaccessible regions
in black. (b) and (c) Examples of behavior maps. (b) Visibility map. (c) Attraction map.

Figure 5: The underlying grid used for the behavior (left) and a snapshot of the development system (right)

rendering system. IBR allows us to reduce the amount of
rendered geometry drastically, in addition we can build on it
algorithms for efficiently providing other visual effect such
as shadows and real-time shading.

The area of IBR has received a lot of attention recently
resulting in a great body of research results 10. The basic
principle of Image-Based Rendering is to replace parts of
the polygonal content of the scene with images. These im-
ages can be either computed dynamically 33, 35, 32 or a priori
19, 8, 2 and can be used as long as the objects are far enough
from the viewpoint or as long as the introduced error remains
below a given threshold.

These image substitutes are of course approximations
which degrade as the viewpoint moves away from the refer-
ence position from which they were created. Image warping
21, 11 or the use of triangular meshes instead of single impos-
tor planes 9, 20 can be used to reduce the artifacts but they
come at increased rendering cost.

An IBR method which is close to our approach, also ap-
plied to the rendering of humans, is that of Aubel et al. 3, 4.
There, however, the impostors are computed dynamically
and used only for a few frames before being discarded. Since

the availability of large texture memory buffers is rapidly
growing, in our work 1, 41 we decided to try to maximize ren-
dering speed through the use of fully pre-computed impos-
tors.

4.1. Precomputed Impostors

In a preparation phase, a set of textures is created represent-
ing a virtual character, with different textures corresponding
to different frames of animation. Each texture is composed
of a set of images of the character taken from different po-
sitions: a sampled hemisphere is used to capture the images,
from 32 positions and 8 elevations around the character. At
run time, depending on the view position with respect to
each individual, the most appropriate image is chosen and
displayed on an impostor. No interpolation is used between
different views, as this is normally too CPU-intensive on cur-
rent hardware. The appropriate texture to map is chosen de-
pending on the viewpoint and the frame of animation.

Given the symmetric aspect of the human body perform-
ing a walking animation, we can reduce the number of sam-
ples and therefore the texture memory required for each
frame. By mirroring the animation, we can cut in half the

submitted to COMPUTER GRAPHICS Forum (8/2002).



6 Tecchia et al / Visualizing Crowds in Real-Time

Figure 6: Sampling the geometry and replacing it with im-
ages

memory needed. For instance, we can reduce the 32 sam-
ples to 16 and get the others 16 by mirroring. The images
for each human, per frame of animation, are collected to-
gether and stored in one big texture. Since each individual
sample contains also a lot of wasted space (background),
when we put them in the texture we can pack them closer
together. This results in savings of up to 75% with the only
disadvantage that the handling of the impostors is now a bit
more complex since the images are not arranged in a regular
grid in the texture 41. In addition, texture compression can
be used to store the image database and the use of OpenGL
compressed format S3TC_DXT3 34 gives a further memory
compression ratio of 1:4. The particular compression format
reserves 4 bits to the alpha channel values, that is extremely
important for our multipass rendering algorithm, described
in Section 4.3.

4.2. Choosing the Best Impostor Plane

Using impostors for representing complex objects such as
virtual humans may lead to two common forms of artifacts.
First, there might be missing data due to inter-occlusion and
black regions may appear. Second popping effects may oc-
cur when the image samples are warped and/or blended to
obtain the final image.

In our system, any artifacts are mainly due to the pop-
ping caused when switching the samples as the viewpoint
changes. An intuitive approach to reduce the popping effect
is, of course, to increase the number of samples. To keep the
memory consumption down, we chose instead to improve

the choice of the impostor to reduce the visual error between
two different views. The amount of error for a generic point
on the object surface is proportional to the distance of the
point from the projection plane. Instead of computing the
impostor plane as the one perpendicular to the view direc-
tion from which the sample image was taken, we decided to
try a different approach. We choose the impostor plane as
the one passing through an object that minimizes the sum of
the distances of the sampled points and the projection plane
given a camera position from where the sample image is cre-
ated. In the case of samples of human polygonal models, us-
ing this plane leads to a significantly better approximation of
the position of the visible pixels in respect to the actual point
positions in 3D 41.

4.3. Improving Variety With Multipass Rendering

Our approach of using precomputed impostors can be de-
manding in terms of texture-memory. Even with the all com-
pression techniques mentioned in Section 4.1, if we want to
provide a high variety of humans forming the crowd, it is
impossible to provide one individual representation of im-
postor per virtual human of the crowd without exploding the
memory requirements and cutting down the rendering time.
Instead, we have chosen to use a reduced number of virtual
humans and at rendering time, the impostors are modified
on the fly in the attempt to give to different agents a dif-
ferent aspect. As it would be more difficult to procedurally
change the shape and the general silhouette of each human,
we focused on re-coloring significant parts of their body, like
cloth, hairs, and skin color. As we need at run time to ef-
ficiently identify these areas on the images, we pre-select
the different regions and store them in an alpha channel im-
age with a different alpha value for each part to modify (see
Figure 7). If no texture compression is used we can store
up to 256 different regions in the texture, or up to 16 if
texture compression is used since only 4 bits of precisions
are available in the latter case. At runtime the alpha chan-
nel is then used together with multi-pass rendering: for each
pass, the alpha test value is modified allowing the render-
ing of one region at a time, while a different color is as-
signed to the impostor polygon per virtual human and the
texture is applied using the flag GL_MODULATE. In our
tests, we pre-selected 3 different regions but more regions
could be selected. However the number of selected regions
corresponds to the number of passes needed when rendering
and the heavy use of multi-pass rending might slow down
the overall rendering rate. One should decide on a tradeoff
between the variety and the rendering time.

4.4. Real-time Shading of the Impostors

There are strong motivations in the attempt to introduce in-
teractive lighting in the technique of animated impostors:
apart from flexibility and aesthetic considerations, relying on

submitted to COMPUTER GRAPHICS Forum (8/2002).



Tecchia et al / Visualizing Crowds in Real-Time 7

Figure 7: Modulating colors using the alpha channel

the simple, pre-computed lighting often associated to the im-
postors forces severe restrictions to the simulation, in partic-
ular when switching from the polygonal mesh to the image-
based representations. Such operation can introduce disturb-
ing popping artefacts in the rendered image, that we can clas-
sify in two categories: the first has a geometric nature, and is
due to the misalignment in the final image of the pixels lo-
cation computed with the proper geometric transformations
and the location of the pixels generated by the use of the
single-layer impostor, where all the geometry is projected on
the impostor plane, see Section 4.2. The second form of arte-
facts has a lighting nature, and it is due to the clashing illumi-
nation condition between the polygonal mesh and the impos-
tor image. The latter is generally pre-encoded in the sampled
images, and as such it can’t normally be efficiently changed;
some work on the topic has been proposed recently 22. On the
other hand, this rigidity penalizes also the polygonal repre-
sentation, that could reflect any lighting condition using the
standard lighting model of OpenGL, including dynamically
changing light conditions (local/moving light sources, col-
ored lights and so on).

Given the current image sample rate (i.e. the number of
samples taken around each object) and the current memory
limitations, it can be said that the popping artefacts due to
the lighting differences are by far the more distressing ones.
The difference between these two lighting information im-
poses to use in the environment a fixed number of directional
and static light sources and thus make it impossible the sim-
ulation of any reasonably flexible specular effect; while this
may not be too important when rendering a crowd, it can
be quite limiting when impostors are used for objects with a
prominent specular nature, as cars or in general any object
with glossy surfaces.

In this section we show how it is possible, using standard

OpenGL1.3 per-pixel dot product, to achieve on animated
impostors a dynamic lighting equivalent to the one available
for polygonal models. OpenGL 1.3 per-pixel dot product is
available trough the token DOT3_RGB_ARB of the texture
environment parameters 34.

Figure 8: Storing the normals information in the RGB space.

Figure 9: Local illumination parameters. V is the viewing
direction, L is the light direction, N is the normal of the sur-
face, R is the mirror direction of L relatively to N, H is the
bisector of the L and V .

The first step of our approach requires to change the type
of information stored in the impostors’ image database: in-
stead of storing a gray-scale image holding a fixed lighting
information as suggested in 41, we need to store the normal
associated at each pixels (see Figure 8 for a reference). Ac-
cording to the OpenGL 1.3 specification, the spatial com-
ponents x, y, z, of the normal of each pixel are encoded
in the texture RGB space using the following convention:
x → r,y → g,z → b. Once the color channels are filled with
the normals’ information, we store in the alpha channel the
same information as suggested in 41; we use such data to

submitted to COMPUTER GRAPHICS Forum (8/2002).



8 Tecchia et al / Visualizing Crowds in Real-Time

have a finer control on the impostor colors. Let’s now con-
sider the local reflection model used by OpenGL: leaving
aside the issue of color, we can write down the intensity
equation in the usual form:

I = A+Kd
−→L .

−→N +Ks(
−→R .

−→V )n (1)

where n is used to simulate the degree of imperfection of
a surface; when n = ∞ the surface is a perfect mirror (see
Figure 9 for details in notations) . For other values of n an
imperfect specular reflector is simulated. The mirror direc-
tion −→R being expensive to calculate, the equation is normally
considered in the following form:

I = A+Kd
−→L .

−→N +Ks(
−→H .

−→N )n (2)

where H is simply the halfway direction between the light
direction L and the viewing direction V. We can now use the
DOT3_RGB_ARB texture parameter to perform the equa-
tion’s dot products on a per-pixel basis, accumulating on the
frame buffer the partial results of the intensity equation. Us-
ing multipass rendering we can sum all the components, and
compute the final value of each pixel intensity. To accom-
plish this, and in accordance with the OpenGL specifica-
tions, the RGB codification of vectors L and H are used as
the fragment color of the polygon. To simplify the otherwise
overwhelming computation of L and H for each pixel, we
consider them constant over each impostor. In this way it is
necessary to compute L and H on a per-impostor basis only,
depending on the current impostor position and orientation
with respect to the considered light source.

To accumulate in the frame buffer all the lighting compo-
nent of equation (2), we use at present 5 passes per impostor.
The first n passes are used for the specular component (in our
tests we used an average of 3 passes; greater values are possi-
ble, but at the cost of slowing the rendering process); the next
pass is used to render the effects of the ambient component,
and a last one to add the effect of the directional component.
Playing with the modulus of the polygon color, it is possible
to introduce in the equation the factors kd and ks, and effects
of local light sources complete with attenuation can be sim-
ulated. At this point, the frame buffer contains the grayscale
image of the impostors representing the correct illumination
with respect to the actual light position and surface propriety
(see Figure 10). The process could be repeated to accumulate
the effects of multiple light sources; in this case the limited
numerical precision of the frame buffer should be consid-
ered, as the standard 8 bits per color channel could present
some numeric precision issues. Using a uniformly colored
texture in the second texture unit, we can modulate the color
of the resulting intensity computation, making it possible to
simulate even colored lights. Once the illumination is in the
frame buffer, we use several additional passes (in our case 3)
to modulate different regions with different colors, using the
alpha test technique as described in 41. Figure 10 shows the
described process, starting from the light intensity calcula-
tion to the final color modulation using the alpha-test.

4.5. Adding Shadows

Shadows not only add greatly to the realism of the rendered
images but they can also provide additional visual cues and
help "anchor" objects to the ground. They can be however
an expensive process. Given that the use of the impostors
can greatly accelerate several aspects of the rendering, we
decided to investigate if the same representation could be
used to accelerate shadowing too. In the context of a virtual
city with animated humans, we can differentiate 4 cases of
shadow computations:

1. Shadows between the static geometry, e.g. buildings cast-
ing shadows onto the ground;

2. Shadows from the static onto the dynamic geometry, e.g.
from the buildings onto the avatars;

3. Shadows from the dynamic onto the static geometry, e.g.
from the humans onto the ground;

4. Shadows between dynamic objects, e.g. shadows of
avatars onto other avatars.

In our current work 18 we address the cases 1 (partially),
2 and 3. We use fake shadows 6 to display shadows from
the buildings on the ground and simple OpenGL lighting
to shade buildings. The standard approach of using shadow
maps was not used because it is problematic for very large
scenes such as ours. The resolution of the shadow buffer is
limited and thus the shadows end up appearing very blocky.
Some recent work in improving this can be found here 38.

Addressing case 2 is not obvious. Having a multitude of
virtual humans walking in a city model means having thou-
sands of dynamic objects (and their shadow) to update in
real time. This problem is extremely complex when consid-
ering it in a general case. However, our case can be assumed
to be 2.5 D and therefore a 2.5D map can approximate the
volume covered by the shadows. We call this map shadow
height map. The idea is to discretize the shadow volumes
and to store them in a 2D array similar to the height map
of Section 2. In this way we can approximate the height of
the shadows relatively to the height of the objects computing
the difference between the value stored in the shadow height
map and the original depth of the geometry (Figure 11). At
run time is possible to compare the position of each agent
against the height of the shadow volumes, and to compute
the degree of coverage of a virtual human by a shadow. It
should be noted that this approach works for any kind of an-
imated object. If the objects are polygonal, the information
stored in the shadow height map can be used to quickly com-
pute shadows onto the polygons. In our case, we compute
shadows for moving objects represented by the impostors.
We then use a shadow texture mapped on each impostor to
darken the part in shadow.

Case 3 can be treated with a different approach from the
previous cases. As it is impossible to compute accurately the
shadow of each virtual human on the environment, we de-
cided to use the impostor structure for displaying the shad-
ows as well. The idea is to use the light source position to se-

submitted to COMPUTER GRAPHICS Forum (8/2002).



Tecchia et al / Visualizing Crowds in Real-Time 9

Figure 10: Adding lighting and color information to the animated impostors.

(a) (b)

Figure 11: Computing shadows on the impostors using a
shadow volumes-map. An example of a shadow height map
is given in (a). In (b) the overall rendering of the shadows
is illustrating, taking into account for the coverage of the
shadow onto the virtual humans.

lect the appropriate impostor image instead of the user view
position. This image is then mapped on a black polygon pro-
jected on the environment (the ground in our case). Although
this method might look simple, it is extremely powerful and
allows highly realistic shadows, which are animated accord-
ingly to the impostor. The texture is loaded once both for the
virtual human impostor and for its shadow, which is impor-
tant since it’s an expensive operation. It doesn’t take more
memory consumption and it is as fast to modify the light
position as it is to modify the view point. These shadows en-
hance greatly the realism with a negligible cost. One draw-
back though is the computation of the projected polygon. At
the moment, we restricted it to be at ground floor, avoiding
shadows on the building. We believe we could use a multi-
level approach, computing the projection on the full environ-
ment only for the close objects. In 18, a detailed description
of the results for the 3 cases can be found.

5. Implementation and results

Our test system was developed on a PC Pentium III -
800Mhz equipped with an NVIDIA 64 Mb GeForce GTS2
video card. This type of hardware is nowadays common
and it even offers full support for OPENGL1.3 per-pixel
lighting. We organized the rendering system in 2 sepa-
rate modules: the first one is used to import the polygo-
nal models created with a modeling software and to gen-
erate, optimize and assemble all the images resulting from
the object sampling procedure. These data are stored in
a single RGBA image, and saved on disk. At run time,
our second module loads the images database, storing
it in texture memory using a compressed RGBA format
(GL_COMPRESSED_RGBA_S3TC_DXT3); these images
are used to generate the impostors in real-time. As the base
for our population, we used 6 different polygonal meshes
(generated with CuriousLabs Poser), three for the male char-
acters and three for the female characters. The limited num-
ber of different meshes used was due only to the lack of
ready-available models, and a conspicuous part of the tex-
ture memory available was still unused.

5.1. Testing the Full Simulation, no Shading

At run-time, we rendered the impostors in 3 passes to draw
different colors (chosen randomly for simplicity). We ren-
der up to 10,000 different instances of the base models, each
with its own individual colours. These humans move in a vil-
lage modeled with 41,260 polygons. The display is updated
between 12 and 20 frames per second mostly depending on
the polygonal complexity of the displayed geometry. It’s im-
portant to note that, due to the nature of the impostors, there
is no trade off between the character details definition and
the speed of the rendering, at least as long as the user don’t
get too close to the avatars. Putting aside the popping arti-
facts mentioned before (often unnoticeable), the visual qual-
ity in most of the situation is reported by the majority of the

submitted to COMPUTER GRAPHICS Forum (8/2002).



10 Tecchia et al / Visualizing Crowds in Real-Time

Figure 12: Number of agents against time per frame.

users to be the same as when using normal polygonal mod-
els.

To evaluate the scalability of our simulation, we also tried
to run different simulations for 1,000, 5,000 and 10,000 peo-
ple with a chosen camera path identical for each of them. By
making the comparison of the rendering time, it has been no-
ticed the lightweight representation of the crowd makes the
rendering of the village model one of the slower tasks. For
this reason, we believe that an occlusion-culling algorithm
performed on the static model could further accelerate the
overall rendering. The plot in Figure 12 represents the frame
time vs. the number of agents in the simulation, and it shows
clearly that the relation is almost linear, fact that makes the
approach very scalable. It is to be noticed that these timings
include the real-time collision detection, the basic behavior
computation performed for each of the virtual humans sim-
ulated, and the shadows of the buildings and of the virtual
humans.

5.2. Testing the Real-Time Shading

For the shading experiments we used a male character per-
forming a cyclical walking animation. The polygonal count
for the model was 8,440 triangles. The model was ren-
dered from 32*8 different camera position, in two succes-
sive phases: the first is used to compute the pixels normal
and the second for the regions that are controlled using the
alpha-test.

The operations performed in our preliminary system were
far from being optimized, but it nevertheless provides a basic
platform sufficient to test the functionality of our algorithm,
as it lets to the user the possibility to move a local light
source around and to change parameters such as color, at-
tenuation, and the intensity of the ambient, diffuse and spec-
ular component. We did not use the OpenGL higher preci-
sion accumulation buffer because rendering to the accumula-
tion buffer was not hardware accelerated on our platform. It
must be noticed that everything here was done with standard
OpenGL functionalities; using different approaches, like us-
ing NVIDIA registers combiners functionalities, it should be

Population 250 500 1,000 2,000

Avg. frame time(ms) 6.3 9.2 14.7 23.2

Table 1: Rendering time for increasing number of shaded
avatars

Screen 500x400 640x480 800x600 1024x768
resolution
(pixels)

Avg. 7.5 8.1 11.1 14.7
frame

time(ms)

Table 2: Rendering time as a function of the image resolu-
tion

possible to compact together some of the rendering passes,
further speeding-up the lighting process.

To test the scalability of our approach, we rendered some
scene populated with different number of animated charac-
ters, and in particular we measured the average frame ren-
dering time for populations of 250, 500, 1,000 and 2,000 in-
dividuals performing a walk-in-place animation. Each char-
acter has an independent orientation in space, to avoid any
coherence in the pattern of texture memory reuse. Table 5.2
summarizes the results. As it can be seen the relation be-
tween the number of humans and the rendering time is al-
most linear, fact that proves the good scalability of the ap-
proach. We also decided to measure and study the relation
between frame rendering time and screen resolution, due to
the fact that our approach minimizes the geometry complex-
ity of the scene but has very high fill-rate requirements. In
this case we kept constant the number of rendered charac-
ters (1,000) and varied the screen resolution. As it can be
seen in Table 5.2, performances decrease more or less pro-
portionally to the number of pixels on the screen; this is a
hint to the fact that this approach is mainly fill-rate limited.

It should be noted that we didn’t use any particular strat-
egy or order in the rendering process: on modern hardware
architectures some scene graph sorting could probably in-
crease significantly the performances, due to the increas-
ingly common implementation of early occlusion tests, like
hierarchical z-buffer or tile-rendering strategies. To sum up,
the results prove that the lightweight representation of the
animated impostors makes the rendering of crowds very effi-
cient, even with the support of dynamic lighting. The current
algorithms could certainly be used to render different kinds
of objects, in particular vehicles, so that a full simulation
of a complex urban environment should be possible. Clearly
the method is not limited to the simple random walking ani-

submitted to COMPUTER GRAPHICS Forum (8/2002).



Tecchia et al / Visualizing Crowds in Real-Time 11

mation used in our tests, and more elaborate animations are
possible as long as there is enough texture memory available.

6. Conclusion and future work

In this article we presented some of the results we obtained
developing a system for real-time rendering of densely
populated large scaled environments. We have described a
method for fast collision detection in complex city models
that uses graphics hardware to produce a rasterization of
space, which can be queried in minimal time. As a result we
have shown that it is possible to achieve collision tests for a
population of thousands of individual in real time. The algo-
rithm presented proved to be easy to implement and adapt-
able to various models with different complexity. We have
presented a system that facilitates the development and the
visualization of behaviors for moving independent agents.
The representation combines a 2D grid implemented in four
layers to encode different levels of behavior. We believe that
these four layers can be used to encode complex behaviors.
The rendering method used allows real-time rendering of
crowds using fully pre-computed animated impostors; for
this reason, the rendering time of each avatar is independent
from the complexity of its polygonal model and it’s possi-
ble to render thousands of agents at interactive frame-rates.
The amount of texture memory is minimized using texture
compression, and we also use a multi-pass algorithm to fine-
tune the color of different regions of the impostors. Finally,
we add efficient shading and shadowing techniques that en-
hance the overall perceived realism.

Crowd visualization is a vast research topic and our cur-
rently research tries to improve the results of the existing
system on several fronts. We are investigating the use of an
efficient data-compression strategy to reduce the storage re-
quirements for both the height-map data and the data stored
in the other layers of the behavior simulation; this could al-
low the efficient storage of even large scenarios and the re-
finement and precision of the data. From the rendering point
of view, we are currently working on the improvement of
the per-pixel lighting and use of shadow buffers to further
improve the realism of the simulated illumination.

It is our opinion that with the continuous increase of tex-
ture memory available on commodity hardware, the use of
IBR approaches will be more and more feasible for real-
time crowd visualization. We also believe that there is great
scope for further improvement and developments of the
technique. It will not take long before hardware support-
ing displacement-maps will appear on the market, making
it possible to perform image-warping of the impostor, lead-
ing to the complete removal of the current visual artifacts.
Moreover in our implementation we made a number of as-
sumptions that could be re-examined. As we used the im-
postor images for the generation of the avatar shadows we
implicitly made the assumption that the position of the light
source is at infinity. In our examples this was not a limita-

tion, as we were assuming the only light source to be the
sun for which this approximation is acceptable. However,
should we perform a simulations with different light con-
ditions (for instance night time with streetlights), then we
would have to properly warp the shadow textures before us-
ing them. Quicker ways to compute the shadow volume in-
formation could allow interactive updates for moving light
sources. Full development of occlusion culling working on
both the moving agents and the static environment could
speed up the rendering substantially. Finally, an extension
that could greatly improve the realism of our system would
be the use of real photographic images of humans instead of
synthetic models. To avoid the complexity of the data acqui-
sition process (we need the depth-buffer for each image sam-
ple), the availability of high quality, reality-scanned human
models to generate the image would probably be enough to
bring it close to photo-realism.

References

1. F. T. a and Y.Chrysanthou. Real-Time Rendering of
Densely Populated Urban Environments, pages 83–88.
Springer Computer Science, 2000. Rendering Tech-
niques 2000. 5

2. D. G. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang,
C. Erikson, K. E. H. III, T. Hudson, W. Sturzlinger,
R. Bastos, M. C. Whitton, F. P. B. Jr., and D. Manocha.
MMR: an interactive massive model rendering system
using geometric and image-based acceleration. In Sym-
posium on Interactive 3D Graphics, pages 199–206,
1999. 5

3. A. Aubel, R. Boulic, and D. Thalmann. Animated im-
postors for real-time display of numerous virtual hu-
mans. In J.-C. Heudin, editor, Proceedings of the 1st
International Conference on Virtual Worlds (VW-98),
volume 1434 of LNAI, pages 14–28, Berlin, July 1–3
1998. Springer. 5

4. A. Aubel, R. Boulic, and D. Thalmann. Lowering the
cost of virtual human rendering with structured ani-
mated impostors. In Proceedings of WSCG 99, Plzen,
Czech Republic, 1999. 5

5. S. Bandi and D. Thalmann. The use of space discretiza-
tion for autonomous virtual humans. In K. P. Sycara and
M. Wooldridge, editors, Proceedings of the 2nd Inter-
national Conference on Autonomous Agents (AGENTS-
98), pages 336–337, New York, May 9–13 1998. ACM
Press. 2

6. J. F. Blinn. Jim Blinn’s Corner: Me and my (fake)
shadow. IEEE Computer Graphics & Applications,
8(1):82–86, Jan. 1988. 8

7. J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-
collide: An interactive and exact collision detection sys-
tem for large-scale environments. In Proceedings of

submitted to COMPUTER GRAPHICS Forum (8/2002).



12 Tecchia et al / Visualizing Crowds in Real-Time

Figure 13: A scenario rendered in real-time

ACM Interactive 3D Graphics Conference, pages 189–
196, 1995. 2

8. W. J. Dally, L. McMillan, G. Bishop, and H. Fuchs. The
delta tree: An object-centered approach to image-based
rendering. Technical Memo AIM-1604, Massachusetts
Institute of Technology, Artificial Intelligence Labora-
tory, May 1996. 5

9. L. Darsa, B. C. Silva, and A. Varshney. Navigating
static environments using image-space simplification
and morphing. In M. Cohen and D. Zeltzer, editors,
1997 Symposium on Interactive 3D Graphics, pages
25–34. ACM SIGGRAPH, Apr. 1997. ISBN 0-89791-
884-3. 5

10. P. Debevec, C. Bregler, M. F. Cohen, R. Szeliski,
L. McMillan, and F. X. Sillion. Image-based model-
ing, rendering, and lighting, July 1999. 5

11. P. E. Debevec, C. J. Taylor, and J. Malik. Modeling
and rendering architecture from photographs: A hy-
brid geometry- and image-based approach. In ACM
SIGGRAPH 96 Conference Proceedings, pages 11–20,
Aug. 1996. held in New Orleans, Louisiana, 04-09 Au-
gust 1996. 5

12. E. Goffman. The Individual as a Unit. Relations in Pub-
lic: Microstudies of the Public Order. Allen Lane The
Penguin Press, London, 1972. 3

13. B. Hillier, M. Major, J. D. Syllas, K. Karimi, B. Cam-
pos, and T. Stonor. Tate gallery, millbank: a study of the
existing layout and new masterplan proposal. Techni-
cal report, London, Bartlett School of Graduate Studies,
University College London, 1996. 3

14. B. Hillier, A. Penn, J. Hanson, T. Grajewski, and J. Xu.

Natural movement: or, configuration and attraction in
urban pedestrian movement. In Environment and Plan-
ning B: Planning and Design 19, 1992. 3

15. P. M. Hubbard. Collision detection for interactive
graphics applications. IEEE Transactions on Visual-
ization and Computer Graphics, 1(3):218–230, Sept.
1995. ISSN 1077-2626. 2

16. J. Lengyel, M. Reichert, B. R. Donald, and D. P. Green-
berg. Real-time robot motion planning using rasteriz-
ing computer graphics hardware. Computer Graphics,
24(4):327–335, Aug. 1990. 2

17. M. Lin and S. Gottschalk. Collision detection between
geometric models: A survey. In Proceedings of IMA
Conference on Mathematics of Surfaces, 1998. 2

18. C. Loscos, F. Tecchia, and Y. Chrysanthou. Real time
shadows for animated crowds in virtual cities. In ACM
Symposium on Virtual Reality Software and Technol-
ogy, pages 85–92, Nov. 2001. 8, 9

19. P. W. C. Maciel and P. Shirley. Visual navigation of
large environments using textured clusters. In P. Han-
rahan and J. Winget, editors, ACM Computer Graph-
ics (Symp. on Interactive 3D Graphics), pages 95–102.
ACM SIGGRAPH, Apr. 1995. ISBN 0-89791-736-7.
5

20. W. R. Mark, L. McMillan, and G. Bishop. Post-
rendering 3D warping. In M. Cohen and D. Zeltzer,
editors, 1997 Symposium on Interactive 3D Graphics,
pages 7–16. ACM SIGGRAPH, Apr. 1997. ISBN 0-
89791-884-3. 5

21. L. McMillan and G. Bishop. Plenoptic modeling: An

submitted to COMPUTER GRAPHICS Forum (8/2002).



Tecchia et al / Visualizing Crowds in Real-Time 13

image-based rendering system. Computer Graphics,
29(Annual Conference Series):39–46, Nov. 1995. 5

22. A. Meyer, F. Neyret, and P. Poulin. Interactive render-
ing of trees with shading and shadows. In Eurographics
Workshop on Rendering, July 2001. 7

23. C. Mottram, R. Conroy, A. Turner, and A. Penn. Virtual
beings: Emergence of population level movement and
stopping behaviour from individual rulesets. In Space
Syntax - II International Symposium, Brasilia, Brazil,
1999. 4

24. S. Musse, C. Babski, T. Capin, and D. Thalmann.
Crowd modelling in collaborative virtual environments.
In Proceedings of VRST’98, Taiwan, Nov. 1998. 3

25. S. R. Musse and D. Thalmann. A model of human
crowd behavior: Group inter-relationship and collision
detection analysis. In Workshop of Computer Anima-
tion and Simulation of Eurographics ’97, pages 39–52,
Budapest, Hungary, 1997. 3

26. K. Myszkowski, O. G. Okunev, and T. L. Kunii. Fast
collision detection between complex solids using ras-
terizing graphics hardware. The Visual Computer,
11(9):497–512, 1995. ISSN 0178-2789. 2

27. B. F. Naylor. Binary space partitioning trees as an al-
ternative representation of polytopes. Computer-Aided
Design, 22(4):138–148, May 1990. 2

28. A. Penn and N. Dalton. The architecture of society:
Stochastic simulation of urban movement. Simulating
Societies, pages 85–126, 1994. 3

29. T. J. Prescott and J. E. W. Mayhew. Adaptive local nav-
igation. In Blake, A. and Yuille, A. Active Vision, Cam-
bridge, MA, 1992. MIT Press. 3

30. J. Rossignac, A. Megahed, and B.-O. Schneider. Inter-
active inspection of solids: Cross-sections and interfer-
ences. Computer Graphics, 26(2):353–360, July 1992.
2

31. H. Samet. The Design and Analysis of Spatial Data
Structures. Series in Computer Science. Addison-
Wesley, Reading, Massachusetts, U.S.A., reprinted
with corrections edition, Apr. 1990. 2

32. G. Schaufler. Per-object image warping with layered
impostors. In 9th Eurographics Workshop on Render-
ing ’98, pages 145–156, Vienna, Austria, Apr. 1998.
EUROGRAPHICS. ISBN 0-89791-884-3. 5

33. G. Schaufler and W. Sturzlinger. A three-dimensional
image cache for virtual reality. Computer Graphics Fo-
rum, 15(3):C227–C235, C471–C472, Sept. 1996. 5

34. SGI. Opengl texture compression.
http://oss.sgi.com/projects/oglsample/registry/EXT/texture
compression s3tc.txt. 6, 7

35. J. Shade, D. Lischinski, D. Salesin, T. DeRose, and
J. Snyder. Hierarchical image caching for accelerated
walkthroughs of complex environments. In H. Rush-
meier, editor, SIGGRAPH 96 Conference Proceedings,
Annual Conference Series, pages 75–82. ACM SIG-
GRAPH, Addison Wesley, Aug. 1996. held in New
Orleans, Louisiana, 04-09 August 1996. 5

36. D. Smith, S. Pettifer, and A. West. Crowd control:
Lightweight actors for populating virtual cityscapes. In
Eurographics UK 2000, pages 65–71, Swansea, UK,
2000. 4

37. D. S.R. Musse, F. Garat. Guiding and interacting with
virtual crowds in real-time. In Proceedings of Eu-
rographics Workshop on Animation and Simulation,
pages 23–34, Milan, Italy, 1999. 3

38. M. Stamminger and G. Drettakis. Perspective shadow
maps. In ACM SIGGRAPH. 8

39. A. Steed. Efficient navigation around complex virtual
environments. In Proceedings of the ACM Symposium
on Virtual Reality Software and Technology (VRST-97),
pages 173–180, New York, Sept. 15–17 1997. ACM
Press. 2

40. M. L. Stefan Gottschalk and D. Manocha. Obb-tree: A
hierarchical structure for rapid interference detection.
In SIGGRAPH 96 Conference Proceedings, pages 171–
180, August 1996. 2

41. F. Tecchia, C. Loscos, and Y. Chrysanthou. Image-
based crowd rendering. IEEE Computer Graphics and
Applications, 22(2):36–43, March-April 2002. 5, 6, 7,
8

42. F. Tecchia, C. Loscos, R.Conroy, and Y.Chrysanthou.
Agent behaviour simulator (abs): A platform for urban
behaviour development. In GTEC’2001, Jan. 2001. 4

43. F. Tecchia and Y.Chrysanthou. Real-time visualisation
of densely populated urban environments: a simple and
fast algorithm for collision detection. In Eurographics
UK, Apr. 2000. 2

44. G. Thomas and S. Donikian. Modelling virtual cities
dedicated to behavioural animation. In Eurographics
2000. Blackwell Publishers, 2000. 4

submitted to COMPUTER GRAPHICS Forum (8/2002).


