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Abstract

Within biological systems water molecules undergo continuous
stochastic Brownian motion. The rate of this diffusion can give
clues to the structure of underlying tissues. In some tissues the rate
is anisotropic – faster in some directions than others. Diffusion-
rate images are second-order tensor fields and can be calculated
from diffusion-weighted magnetic resonance images. A 2D diffu-
sion tensor image (DTI) and an associated anatomical scalar field,
created during the tensor calculation, define seven values at each
spatial location. Visually representing these images is a challenge
because they contain so many inter-related components. We present
two new methods for visually representing DTIs. The first method
displays an array of ellipsoids where the shape of each ellipsoid
represents one tensor value. The novel aspect of this representa-
tion is that the ellipsoids are all normalized to approximately the
same size so that they can be displayed simultaneously in con-
text. The second method uses concepts from oil painting to rep-
resent the seven-valued data with multiple layers of varying brush
strokes. Both methods successfully display most or all of the infor-
mation in DTIs and provide exploratory methods for understanding
them. The ellipsoid method has a simpler interpretation and expla-
nation than the painting-motivated method; the painting-motivated
method displays more of the information and is easier to read quan-
titatively. We demonstrate the methods on images of the mouse
spinal cord. The visualizations show significant differences be-
tween spinal cords from mice suffering from Experimental Allergic
Encephalomyelitis (EAE) and spinal cords from wild-type mice.
The differences are consistent with differences shown histologically
and suggest that our new non-invasive imaging methodology and
visualization of the results could have early diagnostic value for
neurodegenerative diseases.
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1 Introduction

Within biological systems water molecules undergo continuous
stochastic Brownian motion. In different tissues the rate of this
diffusive motion can vary by several orders of magnitude – faster
in liquids like cerebro-spinal fluid, slower in tissues like muscle.
In some tissues the rate is anisotropic, or faster in some directions
compared to others. Magnetic resonance imaging (MRI) can ac-
quire images with intensity values sensitive to the diffusion rate of
water. A quantitative image of the diffusion rate can be calculated
from a set of such MR images [4, 2, 3, 1]. From a 2D slice or 3D
volume image of this directionally dependent diffusion rate we can
infer underlying tissue structure and better understand the anatomy
of the nervous system, neuro-degenerative diseases, and neural de-
velopment [4].

Diffusion-rate images calculated from MRI measurements are
second-order tensor fields. A diffusion tensor image (DTI) and the
associated anatomical scalar field, calculated as part of the tensor
calculation, define seven related values at each spatial location. Of-
ten it is useful to simultaneously display more than a few of these
values in order to visualize inter-relationships among them and to
understand the data. We present two new methods for visually rep-
resenting these diffusion tensor images. The first method, shown in
Fig. 1, displays an array of ellipsoids where the shape of each ellip-
soid represents one tensor value. The novel aspect of this represen-
tation is that the ellipsoids are all normalized to approximately the
same size so that they can all be displayed in context. The second
method, shown in Fig. 2, uses concepts from oil painting to rep-
resent the seven-valued data with layers of varying brush strokes.
Renderings of data from a diseased mouse are shown for compar-
ison in Figs. 8 and 10. The color plate shows both methods for
both a healthy mouse and a diseased mouse. The methods are ex-
ploratory – they allow a viewer to explore all of the values compris-
ing a tensor-valued dataset rather than distilling out some simpler
derived quantity. Both are implemented as new modules within
AVS[23].

In the remainder of the paper we first discuss related work in vi-
sualizing second-order tensor fields. We then describe the anatomy
of the mouse spinal cord and the pathology of the mouse neurolog-
ical disease that we use in our example images. Section 4 describes
diffusion tensor images acquired using MRI. Section 5 describes
the ellipsoid-based method and Section 6 describes the painting-
motivated method. We summarize and conclude in Section 7.

2 Related work

References [7, 13, 12, 9, 8] review specific methods for tensor-field
visualization and develop several tensor-field visualization meth-
ods. Portions of references [19, 10] also give informative reviews
of methods. However, these methods are all designed for display-
ing tensor fields with a different physical structure and interpreta-
tion than the diffusion tensor. The methods do not take advantage
of the fact that a diffusion tensor has orthogonal eigenvectors and
non-negative eigenvalues, and thus devote critical visual bandwidth
to tensor attributes not present in diffusion tensors. They also pro-
duce visual representations that intuitively represent the physical



Figure 1: Normalized diffusion ellipsoid visualization. Each ellipsoid represents the tensor value at one pixel geometrically to capture most
of the information in the tensor-valued image. Fig. 2 shows the same data rendered with our oil-painting-motivated method. Figs. 8 and 10
show both methods used to render data from a diseased mouse. (See color plate.)

Figure 2: Diffusion tensor image (DTI) visualization using concepts from painting. This stroke image is composited from layers as shown in
Figs. 9 and 10 and in the color plate. Component data values are represented in a blue-purple underpainting; in the direction, shape, color, and
transparency of a layer of elliptical strokes over that; and in the frequency of a texture applied to the elliptical strokes. The resulting image
displays all seven inter-related values that comprise a DTI.



phenomena that they are representing, but that do not represent dif-
fusion intuitively.

Diffusion tensor imaging data have primarily been displayed by
extracting scalar- or vector-valued components of the tensor at each
point and visualizing the resulting scalar fields and vector fields [5,
20]. The primary limitation with this approach is that it is difficult
to understand the tensor field from individual component images
because relationships among the different components are spread
across several images. For example, imagine trying to understand
a 2D image of 3D vectors by viewing three grayscale images of
the x; y; and z components of the vector. It would be difficult to
understand the 3D direction of the vectors without a representation
that combines the three values. Another limitation in viewing the
components individually is that noise in the acquired images can
bias some of the extracted values when they are viewed out of the
context of the other values [20].

Arrays of ellipsoids have also been used to represent diffusion
tensor data [5, 20]. They have been limited to images of small re-
gions of interest (16 � 16 pixels) where each image provides an
iconic representation of 256 tensor values. Fortuitously, the regions
displayed have diffusion rates that differ by less than a factor of
10. However, the smaller tensor values are represented by sparsely
spaced small ellipsoids, and the connection between the different
values is lost. For regions where the diffusion rate is more widely
varying this effect would be compounded and the ellipsoids for low-
rate tensor values would be all but invisible.

Reference [14] was the first to experiment with painterly effects
in computer graphics. More recently reference [18] extended the
approach for animation and further refined the use of layers and
brush stroke characteristics for creating effective imagery. Both
of these efforts were aimed toward creating art, however, and not
toward visualizing scientific data. Along similar lines, references
[26, 25, 22] used software to create pen and ink illustrations for
artistic purposes.

Layering has been used in scientific visualization to show multi-
ple items. In reference [15, 16], transparent stroked textures show
surfaces without completely obscuring what is behind them. These
results are related to ours, but our application is 2D, and so our lay-
ering is not as spatial as it is in the 3D case. Our layering is more in
the spirit of oil painting, where layers are used more broadly, often
as an organizing principle for a painting.

Much of the inspiration for our approach comes from studying
the painting styles of a number of impressionist painters and from
consulting books on basic artistic principles and problem solving
in painting. We found Van Gogh’s style particularly applicable be-
cause he used expressive, discrete strokes that are combined to rep-
resent a continuous scene. They can be read differently from dif-
ferent distances and can encode different information from each of
those viewpoints.

The goal of our work is to visualize scientific information by
building on many of these concepts. From the sources above we
discovered many useful concepts and rules-of-thumb for creating
effective images. Just as when an artist creates a painting, our goal
is to communicate complexity in a direct, expressive, and visually
pleasing manner. We used these principles as guidelines for creat-
ing our visualization methods.

There is a large body of literature on the perceptual effects of
texture, color, icons, and other visual representations of scientific
data [17, 24, 21]. In our painting-based work, visual choices were
based not on this visualization perception literature, but instead on
the artistic guidelines. The effects of many of the components of
our visualizations undoubtedly are explained in the visualization
perception literature. It would be interesting, but beyond the scope
of this work, to better connect the literature to the world of art.
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Figure 3: Anatomy of a healthy wild-type mouse spinal cord sec-
tion. The three major regions will take on different appearances in
the histological sections below and in our visualizations. The top
of the image is dorsal and the bottom ventral.

Figure 4: Histology showing anatomy of a healthy wild-type mouse
spinal cord section. The section has been stained with toluidine
blue; dark regions contain myelin and correlate with regions of
white matter.

3 Anatomy and pathology of examples

Our visualization examples are taken from images of the spinal
cords of healthy and diseased mice. The diseased mice are trans-
genic and suffer from Experimental Allergic Encephalomyelitis
(EAE), a disease where the mouse immune system attacks the cen-
tral nervous system [11]. Many aspects of the pathology of EAE
mimic multiple sclerosis in humans. The disease causes a stripping
away of the insulating myelin sheath (demyelination) of axons that
comprise the white matter of the spinal cord. A large amount of
inflammation is also observed. EAE causes behavioral symptoms
that progress in well-characterized stages: 1) limp tail, 2) uneven
gait, 3) hindlimb paralysis, 4) fore and hindquarter paralysis, and
5) moribundity and death.

Fig. 3 shows the anatomy of a spinal cord section in a healthy
wild-type mouse. Fig. 4 shows a histological section that has been
stained with toluidine blue that labels myelin with a dark blue color.
The light-blue butterfly-shaped region in the center of the spinal
cord consists of gray matter containing mostly neuronal cell bodies.
The darker-blue cardiod-shaped region surrounding the gray matter
is white matter. The myelinated axons in this region connect the
brain and other levels of the spinal cord. The cardiod shape is the
boundary of the spinal cord. Outside of the cord is a layer of spinal
nerves that connect the central nervous system to other parts of the
body.



Figure 5: Matrix representation of a diffusion tensor image. All of
the scalar elements are shown. The upper left image represents the
upper left matrix element for each pixel. Understanding the tensor
field from this collection of scalar-valued images is not intuitive.

4 Diffusion tensor images

The diffusion tensor images used in our visualizations were ob-
tained using novel MRI and numerical methods described in [1].
The data are in the form of a 2D slice image with a second-order
tensor value at each pixel. Each second-order tensor value can be
represented by a 3 � 3 symmetric matrix with non-negative eigen-
values. It can also be represented geometrically by an ellipsoid.
The matrix and ellipsoid representations are equivalent [6]. The
principal axes of an ellipsoid are the eigenvectors (n1; n2; n3) of
the matrix and the principal radii are the eigenvalues (�1; �2; �3)
of the matrix. The shape and size of an ellipsoid encode key as-
pects of the diffusion tensor value we wish to visualize. It can be
interpreted as the shape that a small dot of ink would take on after
some fixed diffusion time. Larger ellipsoids represent faster diffu-
sion, spheres represent isotropic diffusion, and eccentric (prolate or
oblate) ellipsoids represent anisotropic diffusion.

In the spinal cord, gray matter has nearly isotropic diffusion
whereas white matter has very anisotropic diffusion as observed
in MRI measurements [4]. In white matter water diffuses more
readily along the axon than across it. The pathology of EAE leads
to changes in the diffusion characteristics of the spinal cord, espe-
cially in certain regions of white matter. We intuitively show these
pathologic changes with the help of our visualization methods.

Each sub-image in Fig. 5 shows one element of the matrix rep-
resentation of a diffusion tensor image. The matrix elements are
difficult to interpret intuitively as a tensor-valued image. One rea-
son for this difficulty is that they are not rotationally invariant; they
change if the sample is oriented differently within the experimen-
tal apparatus. These images are analogous to images of the scalar
components of a vector.

Fig. 6 shows images of the eigenvalues of the same diffusion
tensor image. The scalar values in these images are rotationally
invariant but display no directional information. These images are
analogous to an image of the magnitude of a vector. The directional
information that is missing is a significant part of the tensor value
that we wish to display.

In addition to the tensor-valued diffusion-rate image, the numer-
ical calculation of the tensor image from MR images also produces
a scalar-valued anatomical image as shown in Fig. 7. We name it
I0. It shows contrast between anatomical regions arising from non-
diffusion mechanisms and thus captures additional information.
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Figure 6: Images of the scalar eigenvalues of a diffusion tensor
image. These values extract important geometric information about
the diffusion tensor but do not include the directional context.

Figure 7: An additional scalar-valued image produced as part of
the data-modeling process that calculates the diffusion tensor im-
age. This image is similar to a conventional magnetic resonance
image and contains additional anatomical information beyond what
is contained in the diffusion tensor image.

5 Normalized ellipsoid representation

Our first new visualization method for diffusion tensor images cap-
tures most of the tensor information into a single image. It takes ad-
vantage of the fact that a tensor value with positive eigenvalues can
be represented with an ellipsoid. Our first attempts made a direct
mapping from tensor values to ellipsoids, but, because the diffusion
rates vary by factors of almost a thousand, so did the sizes of the
ellipsoids. The ellipsoids could not all be seen in their appropriate
locations with such a large variation in size

We avoid this extreme variance in tensor values by normalizing
each tensor value so that its maximum eigenvalue is 1:0. The result-
ing images, shown in Figs. 1 and 8 and in the color plate, contain
ellipsoids with their largest radii all equal. The planar grid of ellip-
soids is lit from top center with a single directional light source and
viewed with perspective projection at a small tilt.

� Observations Each ellipsoid has a clear spatial location, and
their shapes can be interpreted. Isotropic tensor values, e.g., in the
gray-matter regions of Fig. 1, are represented as spheres that com-
pletely obscure the background color. Anisotropic tensor values,
e.g., in white-matter regions, are skinny and smaller. This is be-
cause their largest principal radius is the same as the largest radius
of the spheres but the other principal radii are much smaller. In
these regions the background color shows through more.

Fig. 1 shows an image of a spinal cord from a healthy mouse.



Figure 8: Ellipsoid representation of diseased spinal cord. Note right-left asymmetries in this image. These and other differences between
this image and Fig. 1 of a healthy cord show changes due to the disease. Significant changes are particularly noticeable in the ellipsoid shapes
in the myelinated regions in the lower right quadrant of the image. (See color plate.)

Fig. 8 shows an image of a spinal cord from a diseased mouse. The
color plate shows portions of both images. Differences due to the
pathology of the disease are apparent in the ventral white matter.
The presence of EAE lesions appears to have reduced the diffusion
anisotropy throughout much of the white matter and caused the el-
lipsoids to become much more spherical than in comparable regions
of the healthy cord.

This visualization method shows different information at differ-
ent distances. From farther away, neighboring ellipsoids visually
blend together to create a texture that gives an almost-continuous
qualitative impression of the underlying anatomical regions. Close
up, the ellipsoids are distinct enough to see individually, and show
the relative anisotropy and directional information more quantita-
tively.

These ellipsoid images encode most of the information from the
tensor-valued diffusion rate images. They capture the spatial cor-
relation between the tensor values and the underlying space, the
orientation of the tensors, and the relative diffusion rates in each di-
rection. They are missing both the scalar I0 value and the absolute
diffusion rate that was normalized out of the tensor values so that
the ellipsoids would be a consistent size.

6 Painting-motivated representations

Our second method applies concepts from oil painting to display
diffusion tensor images. We used multiple layers of brush strokes
to represent the tensor image and the associated anatomical scalar
image, I0. The brush strokes reflect the geometric nature of values
derived from the tensors and of the relationships among the values.
Also, the use of underpainting and saturated complementary colors
evokes a sense of depth. Together, these painting concepts help
create a visual representation for the data that encodes all of the data
in a manner that allows us to explore the data for a more holistic
understanding.

The color plate and Fig. 2 both show a completed stroke image.

diffusion data visualization
anatomical I0 image underpainting lightness

voxel size checkerboard spacing
ratio of largest to smallest

eigenvalue (
�1

�3
)

stroke length/width ratio
and transparency

principal direction (n1x ; n1y ) stroke direction
principal direction (n1z ) stroke red saturation

magnitude of diffusion rate stroke texture frequency

Table 1: Mapping of data parameters to visualization parameters
for diffusion tensor example.

We built the visualization in four layers that are illustrated in Figs 9
and 10. Table 1 summarizes the mapping of data values to image
contents. The layers are discussed individually in the following
paragraphs.

� Underpainting First, we wanted a layer to show the overall
form or structure of the anatomy. This is analogous to the function
of an underpainting in oil painting. The I0 image provides this
information and has the best signal-to-noise ratio (SNR) of any of
our scalar variables. It is encoded in the lightness of the purple layer
shown in the left image of Fig. 9.

� Checkerboard layer Second, we wanted to incorporate the
underlying voxel size into the image. Without it, the image can give
a false sense of resolution. The voxel-size representation needed to
be subtle and not overwhelm the other information, so we encoded
it as a semi-transparent checkerboard pattern layered over the un-
derpainting. The center image in Fig. 9 shows the checkerboard
layered over the underpainting.

� Stroke layer Third, we wanted to capture geometric informa-
tion about the diffusion tensor values. Axon tracts in white mat-
ter are quite anisotropic while gray matter is close to isotropic,
so the degree of anisotropy needed to be prominently displayed.
We chose ellipse-shaped strokes with a length-to-width ratio equal



Figure 9: Underlayers of the visualization in Fig. 10. The images, from left to right, show an underpainting layer, a checkerboard layer
composited on the underpainting, and a stroke layer composited over that. Both Fig. 10, and the color plate show a fourth and final layer
composited over these that captures the diffusion rate in a texture along each stroke.

Figure 10: Diffusion tensor image (DTI) visualization using concepts from painting of a spinal cord from a mouse with EAE. This stroke
image is composited from layers shown in Fig. 9. It displays all seven dependent values that comprise a diffusion tensor image. (See color
plate.)



to �1

�3
. Nearly circular ellipses represent isotropic regions, while

skinny ones represent anisotropic regions. We compared �2 and �3
and they are always nearly equal within the cord, so we did not need
to incorporate �2 directly. The ellipse is a natural icon to represent
this ratio, since the shape echoes the structure of the underlying
physical phenomenon.

We also wanted to represent the principal diffusion direction, n1,
in this stroke layer. This is the direction of fastest diffusion and
shows the direction of fiber tracts. The direction of the projection
of n1 into the image plane is encoded in the direction of the strokes.
The out-of-plane component of n1 is indicated by the saturation of
the strokes; the saturated red strokes appear to point more out-of-
plane because red on blue elicits a sense of depth. Note that for the
more isotropic regions the direction becomes less meaningful, since
the eigenvalues are all equal. Strokes in isotropic regions are made
more transparent to deemphasize the regions because the data there
contain less information and the changes in n1 have less meaning.

Stroke placement within the image is random, with strokes ar-
ranged so that they do not overlap in the direction of their widths but
do slightly in the direction of their lengths. Thus adjacent strokes
create the impression of flow along their direction, similar to Van
Gogh’s style in some cases. The flow gives a sense of the direc-
tional fibers within the axon tracts. Strokes are not placed where
the SNR is insufficient to calculate an accurate tensor. The right
image of Fig. 9 shows this stroke layer composited over the two
underlying layers.

� Stroke texture layer Finally, because the absolute magnitude

of the diffusion rate is not correlated with the anisotropy ratio, �1
�3

,

we wanted to encode it in the fourth layer. It is less important than
the other values, however, so we encoded it in a form that is in-
terpreted less quickly. We represented the rate with the frequency
of the texture on the strokes. Faster diffusion is represented with
more stripes along a stroke, and slower diffusion with fewer. The
higher-frequency textures create smaller features that are often used
artistically to represent higher speeds. This intuitively represents
the corresponding higher rate of diffusion.

� Observations The complete visualization is shown for a
healthy cord in in Fig. 2 and for a diseased cord in Fig. 10. In
the healthy cord the anatomical regions are clearly distinguished.
The anisotropy of the white matter and spinal nerves creates re-
gions of narrow, opaque ellipse shapes. The regions of gray matter
are shown with rounder, semi-transparent shapes. Unlike the el-
lipsoid representation, the stroke images distinguish the diffusion
rate difference between white matter and spinal nerves. In the
spinal nerves, the diffusion rate is faster, and shows in the higher-
frequency texture on the strokes. This difference is consistent with
the larger axon diameter of the spinal nerves as shown in histo-
logical sections. The differences in the anatomical scalar image
also show through between the stroke shapes, particularly when the
images are viewed from a distance, incorporating its non-diffusion
information to distinguish different regions.

The pathology of the disease is apparent in the ventral white
matter. The strokes near EAE lesions are much rounder and
more transparent than in other white-matter regions, indicating less
anisotropy. The stroke images show different information at dif-
ferent distances. From farther away, the underpainting, strokes,
and texture all combine to give a qualitative impression of different
anatomical regions. From a closer perspective, the texture becomes
more apparent, and more subtle anatomical difference appear. At
very close perspectives, more quantitative measures of the tensor
can be seen – the anisotropy ratio (ellipse aspect ratio), or the abso-
lute diffusion rate (texture frequency). The quantitative information
is easier to read quantitatively from the stroke images than from the
ellipsoid images because the stroke images are strictly 2D. There
is no distortion from the perspective rendering, the projection from
3D to 2D, or the lighting calculation – all of the geometric informa-
tion lies directly in the plane of the stroke image. Only the portions

of the tensor mapped to less quantitative color and transparency are
less easy to quantify.

A stroke image represents all of the information in a diffusion
tensor image and in the associated scalar-valued anatomical image.
It captures the spatial correlation between the tensor values and the
underlying space, the orientation of the tensors, the relative diffu-
sion rates in different direction, and the absolute diffusion rate.

7 Summary and conclusions

We have presented two new methods for visualizing 2D images of
second-order tensor fields representing diffusion rates. Our meth-
ods create visually rich images that can represent many values at
each spatial location in an image. With this richness we have cap-
tured most or all of the information present in the data. Through
applying the visualization methods we hope to better understand
biological systems imaged with diffusion tensor imaging.

The first method represents the tensor values with ellipsoids. It
modifies the direct tensor-to-ellipsoid mapping by normalizing the
ellipsoid sizes. As a result, the ellipsoids are all approximately
the same size and show the tensor structure effectively everywhere
within the image.

With our second method we applied concepts borrowed from
artists. Varied brush strokes and layering helped to simultaneously
display many components of the data. Underpaintings showed
form. We used brush strokes both individually, to encode specific
values, and collectively, to show spatial connections and to generate
texture and a sense of speed corresponding to the speed of diffusion.
We used layering and contrast to create depth. Stroke size, texture,
and contrast helped to define a focus within each image and also
suggested the viewing order for different parts of an image.

The images created with both methods are effective because
they display many data values simultaneously. We know of no
other methods that simultaneously display as many components of
second-order tensor-valued data. Our methods also qualitatively
represent the underlying phenomena intuitively and geometrically.
From different perspectives, they show the data at different levels
of abstraction – more qualitatively from a distance, more quantita-
tively up close. Finally, the images emphasize different data values
to different degrees leading a viewer through the temporal process
of understanding the relationship among them.

Both of our methods visually represent multi-valued data with
images at a much higher spatial resolution than the data. Unfortu-
nately, this can lead to cluttered images that are difficult and time-
consuming to interpret. We believe that incorporating all of the in-
formation is important for exploring the relationships among values
in multi-valued data. We have found that by attempting to design
the temporal interpretation of our images we can create images that
can be interpreted at different levels of detail in different amounts
of time. For datasets with many more spatial samples, the challenge
will become greater and our methods as they stand may not be as
effective, but the design methodology should still apply.

We are in the process of performing usability studies comparing
these and other methods. Our subjects are spinal-cord researchers
and we plan to report results in a future publication.

We have made some very specific visual choices in generating
our examples. Hopefully, those choices will stimulate others to
make different choices as a further exploration of this fascinating
domain. We have only begun to explore the space of visualiza-
tion methods that borrow conceptually from painting. We believe
that methods that incorporate concepts from art and other fields will
continue to lead to many new, effective, and powerful visualization
algorithms for multi-valued scientific data from many disciplines.
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Figure 1: Two methods for visualizing a slice from a 3D second-order tensor field. The data measure the molecular diffusion rate of water
for each voxel in a mouse spinal cord. Each image shows half of a spinal cord section. The top images use an ellipsoid shape to represent
the diffusion rate for each voxel and capture most of the information from the tensor-valued data. The bottom images use concepts from oil
painting to represent the data. The images are composited from layers as shown in Fig. 9. The data values are decomposed into different
components. The components are represented visually in a blue-purple underpainting; in the direction, shape, color, and transparency of a
layer of elliptical strokes over that; and in the frequency of a texture applied to the elliptical strokes. The resulting image displays all seven
related values from the data. Both methods show significant differences between the healthy spinal cord in the left images and the diseased
spinal cord in the right images.


