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Fig. 1. Fuzzy overlapping communities in a weighted undirected graph of 254 co-appearances of 77 characters in Victor Hugo’s novel
“Les Misérables” [32] shown at different levels of detail. In the fully aggregated graph, the uncertainty of a community is mapped to the
stars’ depth of jags. In the partially aggregated graph, all aggregated vertex subsets are completely certain as they are represented
by circles instead of stars. In the partially aggregated and the original graphs, the fuzzy community membership for single vertices is
mapped to the lightness and saturation of nodes using a radial color gradient.

Abstract—An important feature of networks for many application domains is their community structure. This is because objects within
the same community usually have at least one property in common. The investigation of community structure can therefore support the
understanding of object attributes from the network topology alone. In real-world systems, objects may belong to several communities
at the same time, i.e., communities can overlap. Analyzing fuzzy community memberships is essential to understand to what extent
objects contribute to different communities and whether some communities are highly interconnected. We developed a visualization
approach that is based on node-link diagrams and supports the investigation of fuzzy communities in weighted undirected graphs at
different levels of detail. Starting with the network of communities, the user can continuously drill down to the network of individual
nodes and finally analyze the membership distribution of nodes of interest. Our approach uses layout strategies and further visual
mappings to graphically encode the fuzzy community memberships. The usefulness of our approach is illustrated by two case studies
analyzing networks of different domains: social networking and biological interactions. The case studies showed that our layout and
visualization approach helps investigate fuzzy overlapping communities. Fuzzy vertices as well as the different communities to which
they belong can be easily identified based on node color and position.

Index Terms—Overlapping community visualization, fuzzy clustering, graph visualization, uncertainty visualization

1 INTRODUCTION

Relations among objects are usually modeled as a graph consisting of
a set of vertices connected by a set of edges. Graph visualization is
a useful tool to understand the network properties. Graphs that repre-
sent real systems, e.g., biological or social networks, are not regular,
i.e., the distribution of edges is globally and also locally inhomoge-
neous. Oftentimes, they consist of structural subunits, i.e., highly in-
terconnected sets of vertices, where the density of edges between these
groups is low. Such clusters, in the graph-theoretical sense called com-
munities, can be detected by community detection methods.

The analysis of such community structures is of high importance to
understand the structural and functional properties. Based on the com-
munity structure, we can draw conclusions about the attributes of the
network members because objects within the same community usually
have some properties in common. Unfortunately, vertices may belong
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to several communities at the same time. The overlap in networks is
obvious in our everyday life, e.g., nodes in social networks participate
in a multitude of diverse, overlapping contexts, all encoded in a single
network structure [39]. Vertices assigned to more than one community
are usually located at the boundary between clusters, thereby repre-
senting mediates or bridges between these communities. The identi-
fication of such bridges is an important topology-based task for ana-
lyzing the connectivity in graphs [35]. In contrast, vertices that have
a high edge degree within the community take up a central position in
the community and have an important function concerning the stabil-
ity of the group. To analyze communities in realistic systems, the issue
of detecting overlapping communities has become of high interest and
various algorithms have been developed [16].

In general, we can differentiate two types of overlapping communi-
ties: crisp and fuzzy overlapping communities [20]. With crisp over-
lapping community detection methods [19, 40, 44], each object fully
belongs to one or more communities; with fuzzy overlapping commu-
nity detection methods [4, 34, 53], vertices may belong to different
communities to different extent. Which type of overlapping commu-
nities is more suitable, depends on the data.

In this paper, we consider two typical application domains: bio-
logical and social networks, in which crisp as well as fuzzy over-
lapping communities occur. Hence, there is a need for visualization
approaches for fuzzy overlapping communities facilitating the analy-
sis of those. Previously available visualization techniques mainly al-
low us to visualize crisp overlapping or disjoint communities but do
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not support analyzing uncertainty of communities described by fuzzy
community memberships. We present a visualization approach that
enables users to analyze fuzzy overlapping communities in weighted
undirected graphs at different levels of detail (see Figure 1). Compared
to existing visualization approaches for crisp overlaps, our approach
benefits from its advanced visual mappings and hierarchical structure.
Our approach is based on node-link diagrams, where the fuzziness of
the community memberships is encoded in the nodes’ positions as well
as their color gradients or shapes. The former is achieved by a layout
approach that incorporates the fuzzy memberships. Due to the hier-
archical structure of our approach, users can use it to investigate the
network at the community level, the vertex level, as well as all inter-
mediate states in between by partially aggregating subsets of vertices
with a maximum fuzziness. Therefore, our approach allows users to
concentrate on shared nodes of minimal fuzziness only. Finally, the
details-on-demand option facilitates the investigation of the strength
with that each vertex contributes to each of the communities, which is
defined by the belonging coefficients of the respective vertex.

2 RELATED WORK

The most prominent visual representations of relational data are node-
link diagrams and adjacency matrices. Node-link diagrams are intu-
itive and effective for perceiving relations between objects because
they exploit Gestalt principles [33] of closure and good continuation.
When using node-link diagrams, vertices are mapped to geometric
forms such as circles or squares and relations among them are ex-
pressed by straight or curved links. A challenge is the computation of
an aesthetic layout. Common graph layout algorithms, such as force-
directed, orthogonal, or hierarchical layout algorithms, aim at optimiz-
ing a set of aesthetic criteria for graph drawings [13]. Force-directed
layout algorithms, such as the Fruchterman-Reingold model [18] or
the Kamada-Kawai model [31], can reveal clusters. Due to the com-
bination of repulsive spring forces between all nodes and attractive
forces between adjacent nodes, vertices that are highly connected are
positioned close to each other. Thereby, clusters emerge visually but
roughly, although they have not been extracted explicitly. However,
this “visual clustering approach” does not extract fuzzy memberships
as it does not become apparent to which communities a vertex be-
longs with what extent. We use a force-directed approach to produce
an aesthetic global layout for aggregated graphs representing relations
between communities.

Clusters or communities can also be derived algorithmically based
on community detection algorithms. Again, layout algorithms can
help reveal cluster structures in the graph, e.g., using a divide-and-
conquer approach in which each cluster is laid out separately before
the clusters are composed to form the graph [8, 52]. Besides spatial
proximity, color can be used to convey to which community a vertex
belongs [3]. In contrast, hierarchically clustered graphs are usually
visualized as recursively nested regions in the plane [14]. Groups of
vertices are thereby surrounded by 2D [3] or 3D (semi-transparent) [7]
convex hulls. Alternatively, hierarchically clustered graphs can be vi-
sualized using multi-level representations that visualize graphs at dif-
ferent abstraction levels by aggregating subgroups of vertices (clus-
ters) and edges [14]. They are usually realized by drawing each level
on a plane at a different z-coordinate and with the clustering struc-
ture drawn as a tree in the third dimension. In addition, there is much
previous work on using hierarchical clustering to control the extent
of represented information and to navigate through the graph using
graph aggregation methods [2, 15, 49, 51]. The system developed by
Archambault et al. [6] even supports the investigation of several hier-
archies of the same data based on different clustering criteria. In com-
parison to the approaches mentioned before, Ham and Van Wijk [49]
combine their degree of abstraction function with the fisheye approach
to show detailed information for a specific section and fewer details
for its surrounding. This degree of abstraction function is based on the
topology-based hierarchical clustering they extract in advance based
on a force-directed layout using a distance measure. Of course, also
non-hierarchically clustered graphs can be visualized on an abstract
level, e.g., CFinder [3], which provides users with a graph view of the

communities. However, all these methods were developed for non-
overlapping communities.

Existing visualization approaches mainly address the visualization
of flat disjoint communities and crisp overlapping communities. The
results of crisp overlapping community detection algorithms are so
far visualized by highlighting shared nodes in a different color [3, 4].
Besides, overlapping sets of vertices or elements in general are com-
monly represented using Euler-like diagrams [37, 43, 46], overlapping
convex hulls [22, 34, 40], or bounding isocontours [12]. While some
approaches use only color and transparency of the contours or shapes
to convey set membership [12, 34, 40, 43], Simetto et al. [46] addi-
tionally make use of texture. Alper et al. [5] use curves of different
color connecting all elements of a set instead of surrounding them to
represent set memberships. Only few papers included visualizations
of fuzzy overlapping communities [4, 50], where the membership dis-
tribution, i.e., the belonging coefficients, of a vertex are represented by
a pie chart. In the approach by Itoh et al. [24], pie charts are used to vi-
sualize the multiple categories to which a node belongs and which are
divided into equally sized segments. As pie charts should have a min-
imum size to allow for the differentiation of membership degrees, the
display becomes cluttered easily with increasing size of nodes. How-
ever, most of the visualization approaches are only for crisp and not
for fuzzy overlapping communities.

Whereas the use of convex hulls does not support the investigation
of fuzzy overlapping communities, some of the other approaches can
be adapted to that effect. Similar to existing approaches, we use spatial
proximity [52] and color [3] to visualize the memberships but indeed,
with respect to their fuzziness. In particular, the node-link diagram at
the vertex level is laid out based on a divide-and-conquer approach that
includes the fuzzy membership into the calculations of the vertex po-
sitions. Moreover, our approach supports the user with a graph view
of the communities, similar to the work of Adamcsek et al. [3], and
is furthermore related to multi-level graph drawings [14], where only
the graph view of one particular level is displayed at a time instead of
showing a three-dimensional stack of drawings. The multiscale hierar-
chy does in this case not result from a hierarchical clustering approach
but is generated based on the fuzzy memberships.

To analyze fuzzy overlapping communities, the fuzziness of the ver-
tices memberships needs to be visualized. The quantification and vi-
sualization of uncertainties within data has been recognized as one of
the most important issues in scientific visualization [25]. Here, uncer-
tainties originate during the clustering process because vertices cannot
be allocated to one single community due to their topology. This un-
certainty, i.e., the fuzziness of the vertices memberships, is described
by scalar values, which could be directly visualized using one of the
possible approaches: adding glyphs or geometry to the rendered scene,
modifying geometry, modifying attributes of the geometry, animation,
or by addressing other human senses [41]. A common approach is
the modification of geometry using visual attributes, like color, size,
position, shape, transparency, and so on, or the plotting of discrete
data points as glyphs (e.g., box plots or quartile plots) with specific vi-
sual attributes. Concerning color, in particular, the lightness or trans-
parency is commonly used to visualize uncertainty. When using the
deformation of geometry, usually the degree of bumpiness is used to
represent uncertainty, where smooth shapes imply certainty. We de-
cided to use two different mappings: the lightness of a node to repre-
sent the fuzziness of individual vertices and the shape of the node to
represent the overall fuzziness of aggregated vertex sets.

While there is extensive research on visualizing uncertainties of
flow fields and surface representations [21, 26], only little work has
been done on visualizing uncertainties within graphs, i.e., the uncer-
tainties of attributes of the graph. Collins et al. [11] visualized un-
certainties of translations using lattice graphs that show multiple lin-
ear paths for a translation. They mapped the likelihood of a trans-
lation to the fuzziness and hue as well as on the vertical positioning
of nodes. Cesario et al. [9] visualized uncertainties of multiple static
node attributes using a spatial layout and multiple linked views, e.g.,
the bullseye. Within the bullseye, nodes are plotted at a specific angle
and radius within a circle subsector to visualize the attribute value and
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Fig. 2. Meta-graphs Gθ describing different aggregation levels of a
graph, where only the section of community C1 with |C1| = 7 is repre-
sented. Vertices vi and meta-vertices mvθ

1 are saturated with respect to
their highest belonging coefficient fi

max and average belonging f1
avg.

confidence respectively. Their approach is designed to compare two
static graphs and their attributes. Both approaches make use of the
position to encode uncertainty but could not be extended to visualize
fuzzy (and hence uncertain) overlapping communities.

3 VISUALIZATION TECHNIQUE

Our visualization approach for fuzzy overlapping communities in
weighted undirected graphs is based on node-link diagrams. The
fuzziness of community memberships is visually encoded by the node
positions as well as the attributes shape and color of a node. We de-
cided to combine different mappings because using either the position
or color of nodes leaves ambiguities concerning the communities to
which a vertex belongs. After introducing our data model, we will
present our hierarchical layout approach that considers the fuzzy mem-
bership distributions. In the following subsections, we will introduce
our layered visualization model and show how the fuzziness of ver-
tices or aggregated sets of vertices as well as the edge weights can be
mapped to visual attributes of nodes and links, respectively. Finally,
we will explain how users can interact with our visualization approach.

3.1 Data Model

We model an undirected weighted graph G = (V,E) as a set of ver-
tices V and a set of edges E ⊆V ×V , where each edge e j ∈ E, 1≤ j≤
m, m = |E| is assigned a weight we j

∈ R. We define the overlapping

community structure of the graph as set of communities {C1, . . . ,CK},
where each Ck ⊂ V and K denotes the number of clusters. The com-
munities are not necessarily disjoint, i.e., there are at least two com-
munities Ck1

and Ck2
with Ck1

∩Ck2
6= /0. Then, fuzzy overlapping

communities, also referred to as covers, can be described by the cover
matrix F [38]. In particular, a belonging coefficient, also called fuzzy
membership degree, fik describes how strongly vi belongs to the k-th
cluster Ck. This strength is usually expressed by values fik ∈ R with
0 ≤ fik ≤ 1 such that for each vi, ∑

K
k=1 fik = 1 [20]. Using this mea-

sure, none of the vertices can strongly belong to several communities.
Vertices vi whose membership degrees are equally distributed across
communities, e.g., fi1 = 0.5 and fi2 = 0.5, represent perfect bridges
between these communities [38].

We define the predominant community Ci
k of a vertex vi to be that of

the highest membership degree fi
max. The fuzziness fi

fuz of a vertex
vi is then described by 1− fi

max. Vertices whose fuzziness is greater
than 0.5 are considered as extremely fuzzy vertices because they do

belong to their predominant community with less than 50% certainty.
If a vertex belongs to several communities equally, e.g., fi1 = 0.5
and fi2 = 0.5, the predominant community is selected randomly from
them. Based on the predominant community structure, we construct

aggregated graphs, also called meta-graphs, Gθ = (V,E,Vmeta,Emeta)

by collapsing subgraphs Gθ

k = (MV θ

k ,MEθ

k ) with MV θ

k ⊆ Ck and

MEθ

k ⊆ MV θ

k ×MV θ

k into meta-vertices mvθ

k ∈ Vmeta and by trans-

forming inter-cluster-edges e j of G into meta-edges meθ ∈ Emeta. The

weight wmeθ of a meta-edge meθ (mvθ

1 ,mvθ

2 ) is equal to the sum of
weights of all the inter-cluster-edges between vertices of the two sub-

sets MV θ

1 and MV θ

2 . Of course, meta-edges can also connect a meta-

vertex mvθ

k with a single vertex vi, aggregating the edges between
those.

The aggregation level of the graph depends on the threshold θ ∈
R [0,1], as only vertices vi with fi

max ≥ θ are aggregated into the

respective meta-vertex mvθ

k of their predominant community Ci
k (see

schematic illustration in Figure 2). This threshold is used as deter-
mining parameter for our degree-of-interest function. An aggregated

graph Gθ may therefore consist of vertices vi and meta-vertices mvθ

k ,

where G0 contains meta-vertices only. G1 represents a second special

case, as it aggregates only non-fuzzy vertices ( fi
fuz = 0). Finally, G>1

is equal to the original complete graph G containing vertices only (in
the following the superscript >1 will be dropped for G and commu-

nity subsets MVk). We define the certainty of a meta-vertex mvθ

k as

the average belonging coefficient fk
avg of all its vertices vi ∈ MV θ

k :

∑
fi

max

|MV θ

k |
representing how strongly the members belongs to the com-

munity, where fk
avg = 1 for a completely certain community. The

certain community subsets MV 1.0
k with fi

max = 1.0 for all vi ∈Ck are
referred to as the core communities.

3.2 Graph Layout

As mentioned in Section 2, force-directed layouts can help reveal com-
munities because vertices that are highly connected are often—but not
always—positioned close to each other (see Figure 3(a)). Our visual-
ization approach uses the Gestalt principles of closure (spatial proxim-
ity) as well as texture patterns [33] to encode the community member-
ships using a hierarchical layout approach. In particular, we employ a
regular and highly symmetric disk-like layout for the core communi-
ties to visually differentiate their (certain) vertices from other (fuzzy)
vertices (see Figure 3(c)). For background literature on texture per-
ception, we refer to Julesz) [29, 30]. Mirror symmetry is known to be
recognized preattentively [23, 48]. Therefore, our layout is designed to
show mirror symmetry; in fact, the regular disk-shaped layout shows
mirror symmetry along multiple axes to facilitate preattentive percep-
tion and hence effortless and efficient differentiation between certain
and fuzzy community members. Regularity is one of the primary tex-
ture dimensions [42]. Therefore, we generate layouts with regular pat-
terns for community cores in order to make their texture appearance
different from that of fuzzy vertices, adding a visual cue on top of
mirror symmetry. Furthermore, the distance of fuzzy vertices to their
community gives some indication of their fuzziness.

Our hierarchical approach is related to the divide-and-conquer ap-
proach by Wang et al. [52], in which each cluster is laid out separately
before the clusters are composed to form the graph (see Figure 3(b)):

Algorithm 1 Calculate the layout of G

1: L← layout(G0) {lay out aggregated graph}
2: for k=1 to K do
3: Lk← sublayout(Gk) {lay out community subgraph}
4: integrate Lk into L
5: end for

Similar to the approach by Wang et al., the global layout (line 1 of
Algorithm 1) is derived based on a layout algorithm that considers the
size of the sublayouts, which is proportional to the number of vertices
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(a) (b) (c)

Fig. 3. Comparison of different layout approaches for an example graph: a personal friendship network of a faculty of a UK university, consisting of
81 vertices (individuals) and 817 weighted connections [38]. The network was clustered using the algorithm by Gregory [20] for fuzzy overlapping
communities. (a) The graph is laid out with the force-directed Fruchterman-Reingold model [18] regardless the graph’s community structure. (b) The
layout is derived using a divide-and-conquer approach, where each cluster is laid out separately using the force-directed Fruchterman-Reingold
model before the clusters are composed to form the graph. Shared (fuzzy) nodes are thereby included in the subgraph of their predominant
cluster. (c) The layout is derived using our extended divide-and-conquer approach that includes the fuzziness of nodes, i.e., the different belonging
coefficients, in the calculation. Vertices with certain cluster membership are visually encoded by regular and symmetric disk-shaped layouts.

the subgraphs Gk contain. In contrast to their approach, we incorporate
an additional division step to derive the sublayouts (both alternatives
are compared in Figures 3(b) and 3(c)):

Algorithm 2 Calculate the sublayout of Gk

1: MV 1.0
k ← all vi ∈Ck with fi

max = 1.0 {extract core-vertices}

2: Gcore
k ← (MV 1.0

k , MV 1.0
k ×MV 1.0

k ) {extract complete core graph}
3: Lcore← layout(Gcore

k ) {lay out core graph}
4: Lk← layout(Gk,Lcore) {lay out subgraph}
5: return Lk

To achieve a regular and symmetric disk-shaped layout for a com-
munity core, the core-vertices are positioned based on a layout de-
rived for the complete core-graph Gcore

k (lines 1–3 of Algorithm 2).
In particular, Gcore

k is laid out using the force-directed Kamada-Kawai
model [31] based on spring forces proportional to the graph theoretic
distances, as this creates very regular layouts.

In the fourth step of Algorithm 2, all non-core-vertices vi ∈Gk with
fi

max
< 1.0 are positioned around the core-layout Lcore using a force-

directed approach of attracting and repulsive forces that depend on the
belonging coefficients fik and are applied to non-core-vertices only.
The repulsive force between any two vertices vi is small, where the
forces between a vertex vi and the “pseudo-vertices” representing Ci

k,
positioned at the center of Lcore, depends on fi

max, i.e., the weaker
the membership degree of vi to its predominant community Ci

k, the
stronger is the force of repulsion. This produces distances of vertices
vi to the center of the core that are nearly proportional to their fuzzi-
ness. Furthermore, the non-core-vertices vi are pulled toward those
communities to which they also belong. This is achieved by attract-
ing forces between a vertex vi and all its communities Ck represented
by “pseudo-vertices”, which are again proportional to the respective
membership degrees fik. For example, for a vertex vi with the belong-
ing coefficients of fi1 = 0.5, fi2 = 0.4, and fi3 = 0.1, the attracting
force to community C2 will be much higher than for C3 but highest for
C1. Whereas the repulsive forces guarantee a minimum distance be-
tween the core-graphs and the fuzzy vertices, the attracting forces keep
the vertices within a maximum distance from the core-graph. Vertices
will therefore mostly, i.e., if fi

max
>> fik for each Ck 6= Ci

k, be posi-
tioned closest to their predominant community and toward one or two
other communities to which it significantly belongs. In the final step
(line 4 of Algorithm 1), the sublayouts are integrated into the global
layout L to form the overall layout (see graphs at θ > 1 in Figure 4).

We provide several alternatives for the global layout: a force-
directed layout, either the Fruchterman-Reingold model [18] or the
Kamada-Kawai model [31], and a circular layout. For the force-

directed approaches, the size of the sublayout is described by 2D rect-
angular areas. In contrast, for the circular approach it is described
by an arc of particular length. For our case studies, we use the
Fruchterman-Reingold model as force-directed layout, as it provides
layouts that are aestethically more pleasing, at least for these datasets.

3.3 Layered Visualization Model

Our visualization approaches provides users with graphs at different
aggregation levels described by a degree-of-interest function. This
function aggregates nodes of a particular degree of fuzziness described
by the threshold θ . The layout of the original complete graph (see Fig-
ure 4 right) is used as a basis to derive the layout for any aggregated

graph Gθ . Meta-nodes (mvθ

k ) are thereby positioned at the barycenter

of the vertices vi ∈MV θ

k they aggregate. Due to our hierarchical layout
approach, meta-nodes are positioned near the center of the core-graph
Gcore

k . Therefore, changing the level of detail by in- or decreasing the

threshold θ , produces a sequence of plots of the graphs Gθ at different
abstraction levels that preserves the mental map (see Figure 4). This
holds for both layout approaches, the force-directed and the circular
layout approach.

Figure 4 shows the complete sequence of aggregation states for a
small example graph. The graph consists of 12 vertices, 3 communi-
ties, and 3 nodes whose community memberships are fuzzy. Starting
with threshold θ = 0, the graph contains meta-vertices only and rep-
resents the fully aggregated graph. Increasing the threshold to θ = 0.7
separates node e with f max = 0.664 from C3. A further increase of θ

to θ ≥ 0.91 separates nodes d and i both with f max = 0.908 from C1

and C2, respectively, and results in an aggregated graph whose meta-
vertices contain core-vertices only, i.e., fk

avg = 1.0 for all three aggre-
gated subgraphs. Setting the threshold θ > 1.0 finally breaks up the
partially aggregated graph to its single vertices vi.

3.4 Node-Oriented Visual Mapping

Besides the position, our visualization approach uses further visual
attributes of nodes to encode the community memberships and to em-
phasize the degree of fuzziness of shared nodes (see Figure 5). To

differentiate between single nodes vi and meta-nodes mvθ

k , they are

represented using different shapes: circles and stars for vi and mvθ

k ,
respectively. To allocate nodes and meta-nodes to a cluster Ck, each
cluster Ck is assigned a color based on a colormaps created with Col-
orBrewer [1] and nodes (meta-nodes) are colored with respect to their
predominant community Ci

k (community Ck). We use two different
approaches, the modification of lightness and geometry of the object’s
shape, to visualize the node’s and meta-node’s fuzziness, respectively,
to differentiate between both types of nodes. Both mappings repre-
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θ < 0.7 0.7≤ θ < 0.91 0.91≤ θ ≤ 1.0 θ > 1.0

Fig. 4. Sequence of graphs Gθ showing the fuzzy overlapping community structure for an example graph with |V |=12 and K=3 at different levels of
detail, i.e., using different thresholds θ , starting with the fully aggregated graph (left) and ending with the detailed graph (right). For comparison,
the sequences are laid out with a force-directed (top row) and circular (bottom row) global layout L. Increasing θ first of all separates the fuzziest
vertex of the graph (e) from its predominant community C3 followed by the less fuzzy vertices d and i.

rin
v

rout
v

fi
max

(a) Fuzziness of nodes.

rin
mv

rout
mv

fk
avg

(b) Fuzziness of meta-nodes.

Fig. 5. Mapping the community membership fuzziness to visual at-
tributes of the nodes representing (a) vertices vi or (b) meta-vertices
mvθ

k . For vertices, the inner circle of the node defined by rin
v ∼ 1− fi

max

is rendered with a radial color gradient. Meta-vertices, on the contrary,
are represented by stars, where again the inner circle depends on the
fuzziness rin

mv ∼ fk
avg. The sequences show the visual mappings for

fi
max : [0.2,1.0] and fk

avg : [0.6,1.0], respectively.

sent common approaches to convey uncertainty [41]: the brighter (the
more distorted) a shape, the higher the uncertainty.

To visualize the fuzziness of the community membership of a vertex

vi to Ci
k, nodes with fi

fuz
> 0 are rendered with a color gradient instead

of a constant color (see Figure 5(a)). The gradient progresses radially
from the center of the circle to the inner radius rin

v , starting with white

in the center and ending with the respective color for Ci
k at the inner

circle. The annulus defined by rin
v and rout

v is rendered without gradient

in the community color. The inner radius rin
v describes the circle whose

area is scaled compared to the outer circle area using the fuzziness:

rin
v =
√

fi
fuzr2. To emphasize fuzzy nodes ( fi

fuz
> 0), these are rendered

with a slightly increased radius compared to non-fuzzy nodes ( fi
fuz =

0). If a vertex belongs to several communities Ck with similar extent,
the circle is divided into the respective number of segments whose size
is proportional to the belonging coefficient fik, where each segment is
rendered with the gradient as described before. We use a threshold of
10% for the similarity criterion in the examples of this paper, i.e., two

membership degrees are regarded as similar if fi
l+1 ≥ 0.9 fi

l , where
l denotes the index of the descendingly ordered membership degrees
fik of vi, starting with fi

0 = fi
max. Similar to the approach by Itoh

et al. [24], the segments and hence colors of the circle are arranged
such that they are closest to the respective communities. This mapping

shows which communities contribute significantly to the fuzziness of a
vertex, where small coefficients fik remain disregarded by normalizing
the significant coefficients.

For meta-nodes mvθ

k , the certainty fk
avg is represented by the fringe

degree of the star (see Figure 5(b)). The outer radius rout
mv of the star

representing mvθ

k describes the circle whose area is proportional to the

number of vertices aggregated in mvθ

k , i.e., rout
mv =
√
|MV θ

k |rout
v . The inner

radius rin
mv depends on the average strength: rin

mv= fk
avg2

rout
mv . The quadratic

mapping of fk
avg allows for an enhanced differentiation of community

fuzziness. Using different visual mappings for the fuzziness of ver-
tices and the sharpness of meta-vertices has the advantage that both
types of vertices are clearly distinguishable from each other.

Besides the fuzziness of nodes, also the distribution of membership
degrees fik of individual vertices vi should be visualized because de-
termining to what extent a vertex contributes to its communities is an
important task when analyzing fuzzy overlapping communities. We
decided to use pie charts and bar charts in the force-directed and cir-
cular node-link diagram, respectively. To ensure the readability of the
charts, these are rendered not smaller than a user-specified minimum
size, i.e., radius or width and length, respectively. To avoid visual
overload in the force-directed layout, only selected nodes are rendered
as pie charts, because these have a much bigger radius to make the
individual segments clearly recognizable. In contrast, in the circular
diagram, the bars are attached radially to the nodes instead of replac-
ing them. For both charts, the segments are ordered descendingly by
the fuzzy membership degrees fik.

Whereas in the force-directed layout approach nodes are connected
by straight links, in the circular layout approach we use curved links
to produce aesthetically pleasing diagrams. The curvature of a link
connecting two nodes v1 and v2 positioned at θ1 and θ2 decreases
with increasing angular distance, such that the link is straight for ∆θ =
180◦. To differentiate intra-community edges (e(v1,v2) with C1

k = C2
k )

from inter-community edges (C1
k 6= C2

k ), the former are rendered in
the respective community color for Ck, while the latter are rendered
in black. The edge weights (weights we of edges e j and aggregated
weights wme of meta-edges me) are mapped to the width of the link.

3.5 Interaction Techniques

The most important interaction technique of our visualization ap-
proach is the support to continuously drill from the highest aggregation
level (G0) down to the most detailed level showing the complete graph
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Fig. 6. Social contact network of 232 students and 10 teachers accumulated over one day. The node-link diagram is laid out using our force-
directed layout approach. (a) Fully aggregated graph G0. (b) The partially aggregated graph G0.51 separates all extremely fuzzy nodes from their
predominant communities. (c) The partially aggregated graph G0.8 aggregates only core-vertices into meta-vertices. Using this graph, all nodes
whose community membership is fuzzy can be analyzed and investigated. Four individuals have been selected and are therefore represented as
pie charts (integrated into (d) as overlays) showing their membership degree distribution. (d) The complete graph G helps investigate core-nodes
that fully belong to one community. The children highlighted by the dark blue circles are members of a different class than they were allocated to.
The reason for this is that they have much more contact with children of their community than to their own class.

(G). Therefore, our visualization approach adopts the Visual Informa-
tion Seeking Mantra [45]: it supports the user with an overview of the
fuzzy community structure on the community and vertex level, with
zoom and pan options, and with details-on-demand functions. The
latter include the representation of the membership distributions of in-
dividual vertices of interest as well as the available tooltips that appear
when hovering over nodes to obtain some exact values describing the
properties of vertices and meta-vertices. The zoom and pan options
ensure the readability of the fuzzy community memberships on the
vertex level, in particular, for large graphs. Besides, selecting a vertex
vi helps analyze its relations because it highlights all edges of vi and
fades all other links to the background.

4 CASE STUDIES

The aim of analyzing fuzzy overlapping communities is to differenti-
ate fuzzy from non-fuzzy vertices. For fuzzy vertices, it is important
to identify to which communities a vertex belongs and to what extent
it contributes to these communities. To demonstrate the usefulness of
our approach concerning these analysis tasks, we performed two case
studies in the domains of social networking and biological networks.
The networks were clustered with the algorithm by Gregory [20] for
fuzzy overlapping communities. The community detection algorithm
can cluster weighted or unweighted undirected networks into K com-
munities using a modularity-maximization approach.

4.1 Social Network

In social networks, communities overlap because individuals usually
belong to different communities, they have a family, are member of
different circles of friends, sports clubs, and the like [17]. Due to lim-
ited time and resources, these overlaps are usually fuzzy as individuals
cannot be fully involved with all communities to which they belong.

4.1.1 Background

Our first case study is based on a social network modeling the contacts
between students and teachers of a primary school [47], a frequently
used benchmark dataset for dynamic contact networks. The analysis of
contacts between children at school helps understand mixing patterns
between classes and grades, which in the end helps quantify transmis-
sion possibilities for respiratory infections [47]. Thereby, it is impor-
tant to identify children that are in strong contact with other classes
than their own. In this case study, we want to show how this can be
done using our visualization approach to analyze the fuzzy overlap-
ping community structure. The time-resolved face-to-face proximity
of children and teachers was recorded using radio frequency identifica-
tion device badges in 20 second intervals over 2 days. The data com-
prises contacts between 232 children of grades 1–5 and 10 teachers
across 10 classes, two classes per grade (1A, 1B, . . . 5A, 5B). The con-
tact data was aggregated into two weighted contact networks, one for
each day, where vertices vi represent individuals and edges e j repre-
sent contacts between them. The weight w j represents the cumulative
time spent by two individuals in face-to-face proximity, over one day.
Most contacts are of very short duration, although contacts of very dif-
ferent durations were observed. Therefore, edges between individuals
who spent less than 2 minutes during a day were removed. For further
details about the study of contact networks in a primary school and the
derived data, we refer to [47]. We clustered the networks for both days
using the modularity-maximization approach of Gregory’s algorithm,
which resulted in a set of 8 communities.

4.1.2 Results

For the space constraints of this paper, we will concentrate on the
graph of day 1 only. The clustering algorithm detected the different
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Fig. 7. Shows the same graph G as Figure 6(d) laid out with the force-
directed Fruchterman-Reingold model [18]. Using a force-directed lay-
out approach, coloring of nodes with respect to their community (same
color scheme as in Figures 6 is used) to which they belong and highlight-
ing shared nodes in a different color (here black), is a common approach
to analyze crisp overlapping communities.

classes as individual but highly connected communities (see Figure 6),
except for the classes of the 1st and 5th grade for which classes a and b
were detected as one cluster (1a+b, 5a+b). Meta-nodes mv are labeled
with respect to the class(es) they represent. In the following, we use
lower case letters for the community labels to differentiate between
classes (e.g., 2A) and communities (e.g., 2a). Nodes that represent
children are labeled by the class to which they belong and teachers
are labeled with the letter “T”. Since the labels can be hidden on de-
mand, the teachers are furthermore emphasized by framing the respec-
tive nodes with black circles.

We analyze the fuzzy community structure in a top-down approach
using our layered visualization model, i.e., by incrementally increas-
ing the threshold θ that determines the degree of aggregation, and us-
ing the details-on-demand options. Starting with the fully aggregated
graph G0, we can investigate the fuzziness on the community level
(see Figure 6(a)). Due to the fringe degree of the meta-nodes, it be-
comes clear that all communities are relatively certain, where the least
fuzzy communities are 3a, 4a, and 5a+b. The reason for this may be
that the children in these (joined) classes are in much more contact
among each other than with children of other classes. G0 furthermore
shows that the strength of contact between classes of the same grade
or directly consecutive grades is much higher compared to contacts
between classes that differ in their grade by more than one year.

Increasing the threshold to θ = 0.35 separates one child with f fuz =
0.66 from the predominant community 1a+b, who actually belongs to
class 3A. Using the details-on-demand option by selecting the node
(see pie chart (d.3) in Figure 6), we find out that this node almost
equally participates in the three communities 2a, 3a, and 1a+b. In-
creasing θ to 0.51 separates all extremely fuzzy nodes from their pre-
dominant communities, which comprise only 21 of 242 individuals
(≈ 9%) (see Figure 6(b)). It becomes clear that all extremely fuzzy
nodes are in strong contact with other communities too, since many of
the outgoing edges are rendered in black. The only exception is a child
of class 5B allocated to 5a+b. Using the selection based highlighting
of relations and the pie chart (see (d.4) in Figure 6), we find out that
although this child is solely in contact with children from 5a+b, she or
he is allocated to another community (4a), too. The teacher visible in
all graphs G>0.5 is positioned inbetween the communities 2a and 2b,
which suggests that she or he is in equal contact to both classes. We
can confirm this by selecting the node to investigate the membership
distribution (see pie chart (d.1) in Figure 6(d)).

Further increasing θ shows that at θ = 0.8 (see Figure 6(c)), all
remaining meta-nodes are completely certain, as they are rendered
as circles. Hence, G0.8 shows that about 44 individuals (≈ 19%) of
the graph are fuzzy concerning their community membership. Among
these individuals, there are several children whose predominant com-
munity is not equal to the class to which they belong. The respective
node positions imply that these children are also a member of the class
to which they belong. By individually selecting these children, we
can investigate the respective pie charts (e.g., pie chart (d.2) in Fig-
ure 6) and confirm this observation. Finally, the complete graph G
reveals that some children are preferably in contact with children from
other classes and thus fully allocated to these communities (see chil-
dren highlighted in Figure 6(d) by the dark blue circles).

As mentioned in Section 2, force-directed layouts may help reveal
communities. Figure 7 shows the complete graph G laid out using
a force-directed approach. The clustering derived implictly by the
force-directed layout is approximately consistent with the algorithmi-
cally derived community structure, which becomes clear by the color
mapping on nodes, where the members of community 2a are spread
over the diagram. However, using a layout approach to cluster the
graph does neither reveal the fuzziness of community memberships
nor their distribution, i.e., for many fuzzy vertices it cannot be per-
ceived to which communities they belong.

Analyzing the fuzzy overlapping communities of this social net-
work helps reveal mixing patterns between children of different classes
and age groups. This case study showed that contacts occur mostly
within the class or at least age group and only few children are in pre-
ferred contact with children from other classes or grades.

4.2 Protein-Protein Interaction Network

In our second case study, we concentrate on protein-protein interac-
tion (PPI) networks. The analysis of PPI networks is of high value for
investigating human systems and helps understand complex cellular
mechanisms and processes [27, 28]. In particular, the global organi-
zation of such networks, i.e., their classification into structural sub-
units, is of great interest, as groups of proteins usually comprise the
same specific cell function. This is because cellular functions are not
performed by individual proteins but groups of proteins (modules or
protein complexes). As in other application domains, communities in
PPI networks do overlap, since many proteins can play several distinct
roles in different contexts [40], but they cannot interact with different
proteins at the same time [10, 27]. Community detection methods can
therefore be used to identify communities of proteins based on their in-
teractions, to analyze their overlapping nature and to identify to what
extent shared (fuzzy) proteins are involved in particular functions.

4.2.1 Background

In our second case study, we analyze an undirected PPI network based
on data of a study by Jonsson and Bates [28]. They derived interac-
tions of proteins that are known to be susceptible to mutations leading
to cancer. Based on that, an extensive human PPI network (17,018 ver-
tices and 99,507 edges) was constructed using computational methods.
The network is undirected and weighted, where edge weights represent
confidence scores for the respective interactions. We analyze the same
subnetwork of this PPI network as Jonsson and Bates did in their study,
comprising 1,253 weighted interactions between 232 proteins. The
network was clustered using the modularity-maximization approach
of Gregory’s algorithm, which extracted a set of 14 communities.

As described in the original paper [28], proteins that were tran-
scribed from mutated genes are classified as cancer proteins. The
network comprises 174 non-cancer and 58 proteins, where cancer pro-
teins were furthermore classified into somatic (S) or germline (G) mu-
tations. The labels of nodes that represent somatic or germline cancer
proteins are extended by the identifiers “:CS” and “:CG” respectively,
or using “:C” if no information about the cancer type is available. As
the labels can be hidden on demand, the cancer proteins are further-
more emphasized by framing the respective nodes with a black or gray
circle for somatic and germline mutations, respectively.
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Fig. 8. Protein-protein interaction network comprising 1,253 weighted interactions between 232 proteins of which 174 are non-cancer and 58 are
somatic and germline cancer proteins marked by black and gray circles, respectively. (a) Fully aggregated graph G0. The partially aggregated
graphs (b) G0.34 and (c) G0.51 separate the fuzziest proteins and G0.51 furthermore all extremely fuzzy nodes ( f fuz > 0.5) from their predominant
communities. (d) All remaining meta-nodes of the partially aggregated graph G0.86 are completely certain. Some suspicious proteins have been
selected in G to reveal their membership distributions using the pie charts, which have been incorporated into (d). (e) G shows that all germline
cancer proteins are contained in the cores of communities, hence participating in central hubs rather than peripheral ones.

4.2.2 Results

Again, we analyze the fuzzy communities in a top-down approach
starting with the highest level of aggregation G0. Due to the shape
of meta-nodes, we figure out that there exist four communities that
are completely certain (C1, C11, C13, and C14) (see Figure 8(a)), i.e.,
they do not contain any protein that is involved in any other commu-
nity; besides, hovering over meta-nodes to inspect the exact average
belonging coeffcients revealed that even the fuzziest community (C3)
is relatively certain with f avg = 0.84.

Increasing θ to 0.34 separates the two somatic cancer proteins
PTPN11 and JAK2 as well as the protein TRAP1 from their pre-
dominant communities (see Figure 8(b)). We select these nodes to
investigate the membership distributions (see pie charts d.5-d.7 in Fig-
ure 8(d)), which shows that all three proteins are equally involved in
the three functional units. PTPN11 is allocated to C3, C13, and C7,
which build a huge protein complex responsible for signal transduc-
tions related to the “Jak-ST AT” signaling and adipocytokine signal-
ing but also cell communication at adherens junctions. JAK2 is in-
volved in the functional units C3, C13, and C6, where C6 is mainly
responsible for cell growth and death in apoptosis, the process of the
programmed cell death, as well as signal transductions related of the
immune system. In comparison to JAK2, TRAP1 is furthermore in-
volved in the process of antigen processing of the immune system,
which is the function of C12. Increasing θ to 0.51 (see Figure 8(c))
separates all extremely fuzzy nodes from their predominant communi-
ties, which comprise 13 of 232 proteins (≈ 6%). Further increasing θ

shows that at θ = 0.86 (see Figure 8(d)), all remaining meta-nodes are
completely certain because they are rendered as circles. Hence, G0.86

shows that 31 proteins (≈ 14%) of the graph are fuzzy concerning their
community membership.

The communities C5, C6, and C12 build a huge functional complex:
all three units comprise functions related to the immune system. G0.86

reveals that these functional units are held together by several pro-
teins involved in these different functions. In particular the functional
units C5 and C12 share many proteins with different extents, which be-
comes clear by the node positioning (many proteins are positioned in
the space between the respective two cores) and color gradients used
for rendering (see Figure 9(c)) but also by the huge amount of inter-
community links (also see black curves between proteins of C5 and
C12 in the circular layout of Figure 9(a)). Again by selecting the re-
spective nodes, we can investigate the membership distributions using
the pie charts. The somatic cancer proteins HSPCA, e.g., is involved in
all three functional units (see pie chart (d.4) in Figure 8). Figure 9(b)
shows that HSPCA has a particularly high degree of interactions in
general compared to other cancer but also non-cancer proteins.

Besides functional complexes, also single functional units (commu-
nities) share one or more proteins. We selected the respective proteins
to investigate their belonging coefficients using the pie chart (see, e.g.,
d.1–d.3 in Figure 8). The protein DMD, e.g., is involved in the func-
tional units C8 and C13, which are both responsible for cell motility
of the cytoskeleton. In fact, DMD takes a central and important role,
as the function is carried out by both communities as a whole, where
DMD serves as mediator. The shared role of DMD also becomes clear
looking at the circular visualization, which shows that DMD interacts
with all proteins of C8 and all proteins of C13. The proteins positioned
between C4 and C9 (DDX10, DDX18, PPP1CC) are shared by units
of different functions. Where C4 has the function of another type of
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(a) G0.86

DMD
HSPCA:CS

(b) G with DMD and HSPCA as selected proteins

DDX10:CS

DDX18

PPP1CC

(c) G with DDX10, DDX18, and PPP1CC as se-

lected proteins

Fig. 9. The protein-protein interaction network from Figure 8 shown with our circular layout. (a) The partially aggregated graph G0.86 (see also
Figure 8(d)). Images (b) and (c) show the complete graph G, each with different proteins selected to highlight all interactions of these proteins and
fade all others to the background.

signal transduction (Wnt signaling), C9 is responsible for the carbo-
hydrate metabolism and insulin signaling. Also the circular visualiza-
tion (see Figure 9(c)) shows this overlap, as DDX10 and DDX18 have
(PPP1CC has) a huge degree of contact with proteins from C9 (C4).

The complete graph G (see Figure 8(e)) shows that all germline can-
cer proteins are contained in the community cores, hence participating
in central hubs rather than peripheral ones. Therefore, somatic cancer
proteins tend to be at the interfaces of different protein communities.
Analyzing the fuzzy overlapping community structure of a PPI net-
work, as presented here, helps investigate which proteins are involved
in more than one community and hence functional unit. Using our
visualization approach, we could confirm the findings of Jonsson and
Bates [28], who presented their results tabularly and visualized sin-
gle functional units as well as functional complexes using node-link
diagrams within which shared proteins are barely recognizable.

5 CONCLUSION

Communities play a fundamental role in real-life networks, where de-
pending on the system they represent, communities may overlap. Our
visualization approach supports the investigation of fuzzy overlapping
communities but could be easily applied to crisp communities, too.
The only difference compared to fuzzy overlaps refers to the belonging
coefficients, which are binary for crisp overlaps, i.e., each object fully
belongs to one or more communities. Hence, crisp overlaps could be
visualized in a straightforward way using our approach by normalizing
all belonging coefficients of a vertex with the number of communities
to which it belongs.

Compared to the existing work on visualizing disjoint or crisp over-
lapping communities in networks, our visualization approach has the
advantage that it takes into account the fuzziness of the nodes mem-
berships. Existing layout approaches for (hierarchically) clustered net-
works do not incorporate any information on shared nodes, regard-
less whether crisp or fuzzy. Previous divide-and-conquer approaches
at least produce layouts that position nodes of the same community
closely, at the same time at positions contrasted from other commu-
nities. Nevertheless, shared nodes are positioned strictly within one
of their communities and may be far away from other communities to
which they also belong. In contrast, our force-directed layout approach
positions shared nodes close to the barycenter of its communities but
closest to their predominant communities. Of course, the position it-
self is not a non-ambiguous indicator for the membership distribution
of a vertex. Therefore, the color gradient of the nodes indicates the de-
gree of fuzziness, where the pie charts can be used to investigate their
exact membership distributions.

Our case studies showed that our visualization approach can be used
to analyze the fuzziness of a graphs community structure and to inves-
tigate the fuzziness of shared nodes. Users can examine to which com-
munities a vertex belongs and to which extent it is involved in these
communities. Furthermore, the visualization approach can be used to
identify nodes that are outliers with respect to their community mem-
berships and topology, i.e., their relation structure, as shown in the first
case study. Besides the layout approach and the other visual mappings
used, our visualization approach greatly benefits from different levels
of detail supported by our layered visualization model. Interactively
changing the degree of aggregation allows us to analyze the fuzzy
overlapping community structure at different levels of detail, starting
with highest aggregation level, over different stages of partially aggre-
gated graphs and ending with the complete graph that shows all nodes
individually. The subsequence of partially aggregated graphs attracts
the user’s attention to the fuzziest of the shared nodes first, followed by
decreasingly fuzzy nodes. The last graph of this subsequence is proba-
bly the most important one, as it separates only shared nodes from their
predominant community and aggregates all non-shared nodes. There-
fore, users can analyze the fuzziness and memberships of all shared
nodes, without being distracted by the detailed structure of the com-
munities’ cores. Since the layouts of all graphs of the sequence are
based on the same layout derived for the original complete graph, the
sequence of layouts preserves the mental map.

In the future, we want to extent our visualization toward the visual-
ization of directed graphs instead of just displaying undirected graphs.
Furthermore, we want to combine our degree-of-interest function with
the focus-and-context approach by applying it to one or more subsets
of communities only, while representing the others in an aggregated
way. We also plan to improve the color assignment such that adjacent
communities have colors of high contrast so that they are easily dis-
tinguishable. In general, the colormap used in the examples of this
paper can be replaced with any other colormap, e.g., one that is suit-
able for people with color vision deficiency [36]. Finally, we want to
perform a longitudinal study to evaluate our visualization approach in
the application domain of social networks. As there is no preliminary
work on visualizing fuzzy overlapping communities, it is hard to make
direct comparisons.
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