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Visualizing Fuzzy Points in Parallel Coordinates
Michael R. Berthold, Senior Member, IEEE,and Lawrence O. Hall, Fellow, IEEE

Abstract—Exploratory data analysis heavily relies on methods
to visualize data and models in a user friendly and interpretable
manner. We show how models consisting of a collection of fuzzy
points can be visualized in parallel coordinates. In contrast to ex-
isting techniques that display only lines representing centroids or
shaded areas showing the general variance of cluster centers, the
proposed technique shows the spread of the fuzzy membership in
each dimension in detail. This allows for a better interpretation of
overlap in fuzzy rules.

Index Terms—Fuzzy rules, parallel coordinates, visualization.

I. INTRODUCTION

V ISUALIZATION has received increasing attention for the
analysis of large data sets. Several recent articles have at-

tempted summarizations of visualization techniques, a special
issue on this topic [1] contains a number of introductory articles.
In [2], an overview of visualization techniques can be found as
well. Most methods discussed so far have mainly focused on
presenting an overview of the data itself. However, in many in-
stances it is important to not only present a view of the data
(or a subset of it) but also show summarizations of data, such
as cluster based models [3] or decision tables [4]. One problem
of such visualizations is the dimension of the underlying fea-
ture space, which tends to be larger than three. For medium-di-
mensional features spaces (3–20), techniques such as principal
component analysis, multidimensional scaling [5], or even just
simple two-dimensional (2-D) scatter plots have been used fre-
quently. However, such visualizations lose potentially important
information. Parallel coordinates [6] have been introduced as an
alternative way to visualize data in medium-dimensional fea-
ture spaces. In [7], an approach was discussed that shows hier-
archical clusters in parallel coordinates through an interactive
tool that enables one to zoom in and out of the underlying hi-
erarchy. The shaded spread of lines in parallel coordinate space
visualizes the extension of each cluster. We show how this tech-
nique can be extended to also visualize fuzzy points, where each
such fuzzy point corresponds to an imprecise location in-di-
mensional space. Alternatively, fuzzy points can also be viewed
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Fig. 1. Parallel coordinate depiction of three points on a line with
a = (1:0; 3:0;1:0), b = (4:0;0:0;2:0), andc = (2:5; 1:5;1:5). The two
intersection points atl = (0:5;2) andl = (0:75;1:5) uniquely describe
the line going through all three points in the original Euclidean 3-D.

Fig. 2. Same points as in Fig. 1 shown in traditional 2-D projections.

as fuzzy clusters or as fuzzy rules indimensions. The shaded
area in this case visualizes the degree of membership.

II. PARALLEL COORDINATES

An interesting approach to visualize high-dimensional data
sets in two dimensions isparallel coordinates[6], [8]. Essen-
tially, parallel coordinates transform multidimensional patterns
into 2-D patterns. Visualization is facilitated by viewing the 2-D
representation of the-dimensional data points as lines crossing

parallel axes, each of which represents one dimension of the
original feature space. This approach scales well with increasing

and has been incorporated into several data analysis tools such
as Xmdv [9], XGobi [10], VisDB [11], and others [6].

The basis for parallel coordinates are a representation in
which all coordinate axes are lined up in parallel, next to each
other. The distance between each adjacent axis is assumed to be
equal to one. A point in -dimensional space becomes a series
of connected lines in parallel coordinates which intersect
each axis at the appropriate value for that dimension. A parallel
coordinates example of three points in three dimensions,

, , and , from a line
is shown in Fig. 1. The same set of three points is shown in
Fig. 2, this time using three traditional 2-D projections.

The dual of an -dimensional line in Cartesian coordinates
is a set of points in parallel coordinates [6], [12], for
the example in Fig. 1 these are indicated by
and , which uniquely describe a line in three
dimensions.

The -dimensional line in Cartesian coordinates can be rep-
resented by linearly independent equations each of which
results from equating a different pair of the following fractions
[13]:

(1)
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Fig. 3. (a) Fuzzy cluster displayed in parallel coordinates. The solid line indicates the centroid and the fading region shows the decline in membership value,
which in this case comes from spherical membership functions. The resulting display is similar to the one used in [9] for visualization of hierarchical clusters. (b)
Fuzzy rule with trapezoidal membership function displayed in parallel coordinates. The solid area indicates the core region (� � 1where� is the membership
function for dimensionx ). The fading region shows the (in this case) linear decline in membership value. (c) Two clusters for two different classes of the Iris data
(blue: Iris-Setosa, red: Iris-Versicolor). Note how the cluster visualization presented in [9] only shows the cluster center and the spread as a shaded region with
equal decline. (d) Two fuzzy rules which cover the most examples for classes Iris-Setosa (blue) and Iris-Versicolor (red) of the Iris data. Note how the fuzzy points
indicate regions where patterns of each class were encountered (solid region) as well as the individual decline in membership value along each dimension (shaded
regions). (e) and (f) Two clusters from (c) for two different classes of the Iris data shown separately. Note how the clusters suggest that these two classes can be
separated along three attributes.

Now, it may be assumed that the linearly independent
equations are obtained from pairing the adjacent fractions,
with no loss in generality. This yields

(2)

where represents the slope and
the intercept of the -axis of the projected line on

the -plane. The dual point of the-dimensional line in
parallel coordinates, therefore, corresponds to the set of
indexed points

for (3)

There are other nice results about the parallel coordinate repre-
sentation [12], [14], [15] that are not germane to this paper.

III. V ISUALIZING CLUSTERS

Instead of visualizing each data point it is often preferable to
only show a summary of the data set. Visualizing clusters in par-
allel coordinates has been done by the tool described in [9]. In
their scheme, the center of the cluster (which is a crisp point) is
represented by a line in the parallel coordinates and the spread
of the cluster is shown using a shaded area surrounding this line.
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The degree of shading declines linearly toward the standard de-
viation of the cluster spread and does not carry additional infor-
mation.

However, in the case of fuzzy clusters the shaded region can
also be used to visualize the corresponding degree of member-
ship for the entire cluster. Fig. 3(a) shows an example for such
a display. The resulting display is similar to the cluster display
presented in [9] because in this example the fuzzy membership
function is singular and declines equivalently along all dimen-
sions.

IV. V ISUALIZING FUZZY POINTS

A fuzzy point represents an imprecise location in-dimen-
sional space. A set of one or more crisp points belong (par-
tially) to a given fuzzy point. More broadly, fuzzy rules may be
viewed as fuzzy points. The antecedent of a fuzzy rule applies
to a set of nonfuzzy points in-dimensions. In each dimension,
the fuzzy rule is likely to apply to a broader region than a single
fuzzified -dimensional vector. Also, fuzzy rules can be created
from fuzzy clusters [16]–[18]. Hence, a fuzzy cluster can also be
viewed as a fuzzy point in dimensions where the fuzzy range
for each dimension is determined by the spread of the cluster in
each dimension.

However, fuzzy rules do not need to be singular, that is mem-
bership functions do not have to be convex or show only one
point of maximum degree of membership. Powerful algorithms
to construct general fuzzy rules from data exist [19]–[24]. The
resulting rules can have a plateau, i.e., an interval as the core
region, where the degree of membership is maximal and the
membership function does not need to decline linearly or even
equally on all sides. The information about the shape of the
membership function would be lost in the existing cluster vi-
sualization.

Extending the aforementioned visualization leads to a display
where the color shading is used to display the degree of mem-
bership. Fig. 3(b) shows an example for such a display.

V. EXAMPLES

A. Iris Data

We have incorporated the parallel coordinates visualization
technique into a tool which generates fuzzy rules from data [20].
Using the well-known Iris data set [25], we demonstrate how an
extension such as presented above can offer additional, valu-
able insights into the generated models. The Iris data consists
of 150 four-dimensional patterns describing three classes of Iris
plants: Iris-Setosa, Iris-Versicolor, and Iris-Virginica. The four
dimensions consist of measures for the petal and sepal, length
and width. Most classification algorithms generate less than ten
rules or clusters to sufficiently describe this data. In Fig. 3(c),
two overlapping clusters obtained from a fuzzy-means [26]
partition into three clusters are shown. Note how only the cluster
center is indicated and the spread of the clusters only gives an
estimation of the spread of the underlying data.

We can also generate a set of fuzzy rules using the algorithm
described in [20]. The two rules which cover the most exam-
ples of the classes Iris-Setosa and Iris-Versicolor are shown in
Fig. 3(d). Note how the rule visualization allows the user to

judge not only the spread of the underlying patterns (solid area,
i.e., the core of the rules) but also indicates areas where no con-
flicting information was encountered (shaded area, where de-
gree of membership is 1).

The difference becomes more obvious when the two clusters
or fuzzy rules are displayed separately [Figs. 3(e) and (f) and
4(a) and (b)]. The cluster display in Fig. 3(e) and (f) suggests
three features for a possible separation between the two classes:
sepal-length, petal-length, and potentially also petal-width. The
display of the fuzzy rules in Fig. 4(a) and (b), however, clearly
indicates that sepal-length is not an appropriate choice to sep-
arate the two classes, due to the heavy overlap of the two rules
along this feature. This is due to the symmetric nature of the
cluster display. It only shows the centroid of each cluster and a
shaded area surrounding it that symbolizes the cluster’s spread.
The fuzzy rule display, in contrast, summarizes the encountered
training instances along each dimension.

A different way to visualize fuzzy rules, as shown in Fig. 4(c),
also demonstrates which features are useful. Here, all six rules
generated for the Iris data are shown in an interlaced manner.
Only the core-regions are displayed, that is, regions for which
the training algorithm actually encountered training examples.
The well-known fact that the Iris data can be separated best
along the last two features is obvious from this display as well.

B. Ocean Satellite Images

In this example, we show how parallel coordinates can be
used to separate out the fuzzy points of a specific class. In this
case, the fuzzy points are fuzzy rules in five dimensions. We are
searching for a rule that can separate Red Tide clusters from the
rest, which represent other types of water.

The satellite data comes from a satellite used primarily to
examine the ocean. The images are from the Coastal Zone Color
Scanner (CZCS) and are of the West Florida shelf [27], [28]. The
CZCS was a scanning radiometer aboard the Nimbus-7 satellite
which viewed the ocean in six co-registered spectral bands 443,
520, 550, 670, 750 nm, and a thermal IR band. It operated from
1979 to 1986.

The features used were the 443-, 520-, 550-, and 670-nm
bands and the pigment concentration value was derived from
the lowest three bands. Atmospheric correction was applied
to each image [29] before the features were extracted. A fast
fuzzy clustering algorithm, mrFCM [30], was applied to obtain
12 clusters per image. There were five regions of interest
in each image. These consist of red tide, green river, other
phytoplankton blooms, case I (deep) water and case II (shallow)
water; 25 images were ground-truthed by oceanographers [31]
and 18 of these were used for training. The eighteen training
images were clustered into 12 classes. Each class or cluster was
labeled from the ground truth image as its majority class.

Similar to the experiments described in [32], the labeled
cluster centers from the training images were then given to
the same fuzzy rule generating tool used with the Iris data. It
generated a set of fuzzy rules which are shown in Fig. 4(d)
using the interlaced polygons display of the core or regions
where membership is one.

Utilizing this display and the sliders upon each axis, we then
attempt to derive a rule which will classify all of the red tide
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Fig. 4. (a) and (b) Two fuzzy rules from Fig. 3(d) for two different classes of the Iris data shown separately. Note how the fuzzy rules clearly indicate that the
feature sepal-length should not be used to separate the two classes because of extensive overlap. (c) Interlaced display of all six fuzzy rules generated for the Iris
data set (blue: Iris-Setosa, red: Iris-Versicolor, green: Iris-Virginica). Here, only the core region(� � 1) is visualized. (d) Parallel coordinate view of the satellite
image fuzzy rule cores. (e) and (f) Restricting the 443 nm range to�54.45 nm (e) and subsequentially the 670 nm band to�27.68 nm (f) isolates the red tide rules
quite well. (g) Finally, restricting the pigment band(�112.71) will allow the extraction of a rule which identifies red tide clusters with no false positives.

clusters and no other clusters. The sliders are used to constrain
the displayed rules to specific ranges on the corresponding at-
tributes. That is, they are used to form a conjunctive crisp rule
with each attribute lying within the displayed ranges. By suc-

cessively limiting the range of the rules in the 443–nm [see
Fig. 4(e)], then 670-nm [see Fig. 4(f)], and finally pigment bands
[see Fig.4(g)], we derive a new crisp rule which models red tide.
It correctly classifies all of the clusters in the training set that are
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Fig. 5. 2-D projection with nonaxis parallel lines which split off most of the
red tide cluster centroids. The red tide clusters are the triangular shaped objects
on the graph, the+’s are other phytoplankton blooms (including green river),
the stars are case I water and the diamond like objects are case II water.

red tide, while making no errors. This crisp rule was not previ-
ously known to us.

The generated rule actually better fits the training data than
previous work. In [27] and [31], red tide (triangle shaped ob-
jects) were separated from most other fuzzy cluster centroids
by using nonaxis parallel cuts in a two dimensional projection
of the training images as shown in Fig. 5. The lines can be used
to build a rule to separate most of the red tide from the rest of
the clusters.

Our parallel coordinates display allows only axis parallel
boundaries between classes and off axis boundaries were used
in Fig. 5. However, the use of an extra attribute actually results
in a model that better fits the training data. We recognize that
mileage may vary on the test data, but the point here is to show
the utility of parallel coordinates in deriving new information
from fuzzy points.

VI. OUTLOOK

Techniques such as the one discussed here—which visualize
models rather than the entire data set—make the exploration of
very large data sets possible. Future work will also focus on
how a parallel coordinate display can be used to adjust existing,
and create new, fuzzy rules to model a given set of examples.
As more rules are introduced or existing ones are altered the
coverage can then be visually inspected. This would represent
an extension along the lines of the multidimensional brushing
technique presented in [7].

VII. CONCLUSION

We have demonstrated how an existing method to visualize
cluster centers and their spread can be extended and used to
visualize fuzzy rules, or more generally fuzzy points in more
than 3-D spaces. The presented methodology uses parallel co-
ordinates and provides visualization of the degree of member-
ships through different degrees of shading. The ability to inspect
the degrees of membership in individual dimensions allows the
user to investigate areas of overlap. We believe that such visual-
izations of fuzzy rules are a promising approach to exploratory

data analysis and will also lead to interactive ways to adjust and
create fuzzy rule sets.
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