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Abstract
This paper presents the cartographic elements of a system for classifying and visualizing high-
dimensionalgeographicdatasets.Thesystemhasbeendevelopedaspartof theLandOceanInter-
actions in the Coastal Zone [LOICZ] project. The goal of the system is to develop regional and
globaltypologiesof coastalzonesusinglargemulti-variabledatasets.Our implementationbrings
togetherstatisticalclusteringalgorithmswith visualizationcapabilitiesto allow easyanalysisand
comprehension of the results. The two main tasks of the visualization are to allow for discrimina-
tion of multiple classes and to show relationships between those classes. These are accomplished
in two different visual presentations. In both cases, the system selects colors appropriate to the
purpose. In the latter case--showing relationships--the system uses a novel iterative refinement
algorithmto selectthecolors.Theresultsshow thatthesystemis successfulatbothgeneratingthe
classes and visualizing the relationships between them.

Keywords: typology, clustering, visualization, color, color selection



Visualizing Geographic Classifications Using Color

1 Intr oduction

The Land-Ocean Interaction in the Coastal Zone project [LOICZ] is a component of the Interna-
tional Geosphere-Biosphere Programme [IGBP] that focuses on the area of the earth’s surface
where land, ocean and atmosphere meet and interact. The overall goal of this project is to deter-
mineat regionalandglobalscales:thenatureof thatdynamicinteraction;how changesin various
compartments of the Earth system are affecting coastal zones and altering their role in global
cycles;to assesshow futurechangesin theseareaswill affect theiruseby people;and,to provide
a sound scientific basis for future integrated management of coastal areas on a sustainable basis
[Pernetta, JC and Milliman, JD (Editors) (1995)].

A primaryLOICZ objective is developingglobalscale-estimatesof biogeochemicalfluxesof car-
bon, nitrogen, and phosphorous [C, N and P] in and through the coastal zone [CZ]. The strategy
adoptedis to identify ‘type-specimen’CNPbudgetsfor well-characterizedcoastalregions,to fur-
theridentify thecoastalregionsaroundtheworld of whichsuchfunctionalobservationsmightbe
typical, and to use this typology relationship to upscale the limited local data to an estimate of
global coastal zone function. Within this context, a typology is defined as a classification system
that divides coastal zones into a set of classes according to one or more physical, geological,
atmospheric, or human-related variables.

The development of an inventory of standard-format CZ budgets is in progress in the Bio-
geochemical Budgets task of LOICZ (http://data.ecology.su.se/mnode/). The Typology project
(http://www.nioz.nl/loicz/typo.htm) is responsible for developing the coastal classification
approach needed for budget upscaling. One of the major strategies adopted by the typology
project is the development of clustering and visualization techniques suitable for classifying
coastal areas in terms of their similarity with respect to environmental variables relevant to bio-
geochemical function.

Visualizationof geographicclassificationsis a fundamentalpartof thesystematictypologydevel-
opment process. The process is described in detail in [Maxwell, M and Buddemeier, B (in
review)]. Appropriate visualization allows users to intuitively assess the typologies and make
judgements about the similarity of geographic classes. This in turn can identify problems with
typologies or build confidence in the results.

There are two major elements in the visualization of geographic classes. First, the user must be
ableto discriminatetheclassesin orderto getasenseof thespatialdistributionof individualclass
members. Second the user needs to be able to visualize class relationships such as their overall
relative similarity.

Thefirst issueis oneof colorselectionfor maximumdiscrimination.Appropriateuserinteraction
can also add discriminability to a set of selected colors. Our solution to this problem, is to use an
empirically selected set of colors for the initial ten classes, followed thereafter by randomly
selectedcolorsfrom theRGB spectrum.Weaugmentthevisualizationby giving userstheability
to turn the coloring for a particular class on or off.

Thesecondissueinvolvesmappinghigh-dimensionaldistances--e.g.betweenN-dimensionalvec-
tors, where N may be 20 to 100--to a low dimensional space--e.g. red, green, and blue [RGB].



This problem is quite different from the standard one of visualization of a single variable using a
color spectrum. This paper presents a novel solution to this mapping based on an iterative refine-
ment process. The resulting colors closely match the relative similarity relationships between the
geographic classes, and provide an intuitive visual understanding of the class relationships.

We bring these tools together in the LOICZView application and demonstrate the results of these
algorithms on a 17-variable subset of the global LOICZ data. The paper concludes with a discus-
sion and directions for future work.

2 Theory and methodology

This sections provides a brief overview of the methods used in the typology development, and a
more extensive description of the visualization methods.

2.1 Typology class development

There are two parts to our typology development process: 1) selecting a similarity measure for
multivariate geographic data points, and 2) selecting a clustering method to generate classes of
similar geographic points given the similarity measure.

2.1.1 Distance measures for multi variate geographic data points

We have explored the use of several similarity measures for multivariate geographic data points.
To clarify the meaning of this phrase, a data point is a physical location or area--in our dataset it
constitutes a 1-degree by 1-degree area. Each data point has a set of measurements, or variables,
associated with it. These include variables like air temperature, sea surface temperature, soil
moisture, precipitation, etc. If we collect these variables into a single vector, then each data point
is represented by an n-tuple, or n-dimensional vector, that describes the geographic location.

The significant issues we face when selecting an appropriate measure of similarity between data
points--and thus between two multi-dimensional vectors--are that 1) the variables do not all have
the same mean or standard deviation, and 2) not all of the variables are meaningful for all data
points. For example, sea surface temperature is not meaningful for a data point that contains no
ocean. Likewise, soil moisture is not meaningful for a data point that contains no land. Further-
more, because the variables are not necessarily normally distributed the covariance matrix of the
data points is not necessarily invertible, invalidating traditional similarity measures such as the
Mahalanobis distance [Harff, J and Davis, JC (1990)].

To dealwith theseproblems,wehavedefinedtwo differentsimilarity measures,onebasedon the
average scaled error, and one based on the maximum scaled error.

We define the average scaled Euclidean [ASE] distance between two points,DA, as in (1),

(1)DA
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wherex andy are the two data point vectors,  is the variance of variablei, Valid is the set of

dimensionsthathavevalid datain bothx andy, andcard(Valid) is thenumberof valid dimensions.

The distance measureDA can be interpreted in the following intuitive manner. If the value is less
thanone,thentheaveragedifferencebetweenx andy in any onedimensionis lessthanastandard
deviation. If the value is greater than one, then the average difference is greater than a standard
deviation.Takingthesquarerootof DA wouldprovideanexactmeasurein termsof standarddevi-
ations.

An alternativedistancemeasurefor geographicclassificationis to usethemaximumscaleddiffer-
ence [MSD] between corresponding variables rather than the average scaled distance. In other
words,two vectorsthatareidenticalexceptfor asinglevariablexi, will havethescaleddifference
in xi astheirdistance.Comparethis to a traditionalmeasure,wherethefactthatmostof thediffer-
ences are zero drives the Euclidean or scaled Euclidean distance towards zero as the number of
dimensions increases. A formal definition of the distance is given in (2).

(2)

The MSD is a well-behaved distance measure since it obeys the properties of identity, symmetry,
and the triangle inequality. In other words, two vectors that contain all variables can only have a
distance of zero if they are equal to one another (identity property). Two vectors have the same
distance no matter the order in which they are considered (symmetry property); and if

 and , then  (triangle inequality), which just
states that if two points are not equal, they cannot both be equal to some third point. The MSD
alsobehavesnicelybothwith respectto missingvariables--itjust considersvariablesthatexist in
both data points--and multiple variables that carry the same information--it considers only the
maximum difference.

Anotherwayof thinkingabouttheMSD is thatit letstheextremesrule judgementsof similarity;
two vectorscannotbesimilar if they haveasinglevariablethatis verydifferent.In our implemen-
tation of MSD distance, we use the maximum normalized squared difference, where the normal-
ization constants are the variances of the specific variables.

TheMSD distanceis inspiredby theHausdorff distance,whichis ameasureof similarity between
sets thathasbeenusedsuccessfullyin imagecomparisonsandobjectrecognitiontasksin thefield
of computer vision [Huttenlocher, DP, Klanderman, GA, and Rucklidge, WJ (1993)]. It has also
recently been used in data mining applications to select variables and build decision trees [Pira-
muthu, S (1999)]. The Hausdorff distance says that the distance between two sets A and B is the
maximum of the minimum distances between all points in A and all points in B.

2.1.2 Clustering data points to generate classes

Given a definition of similarity, we can now start to look for natural groupings of similar points
that may indicate the existence of a meaningful class. A standard method for clustering similar
pointsis unsupervisedk-meansclustering,alsocalledvectorquantization[VQ] [Anderberg, M R
(1973)][Rabiner, L, andJuang,B-H (1993)].Overall, thealgorithmtakesasinputadistancemea-
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sure, a dataset, and a desired number of clusters. It then attempts to find a set of vectors that best
represents the dataset. Each of these vectors is the mean vector of a unique subset of the data
points. The output of the VQ algorithm is the set of mean class vectors and a tag for each data
point, indicating its class membership.

Since there is a random element to the VQ algorithm, it is important to run it multiple times with
thesameinputs.Thebestsetof classvectorsV is thesetthatminimizestheoverall representation
error, which can be defined as the sum of the distances between each point and its nearest mean
class vector.

We select the desired number of classes using a combination of expert judgement and the infor-
mation theoretic description length of the classes and the resulting representational error [Ris-
sanen, J (1989)]. This process is described in more detail in [Maxwell, M and Buddemeier, B (in
review)].

2.2 Selection of colors and a user interface for maximum discrimination

Thetwo majorissuesin visualizationare1) how to enableusersto discriminatebetweendifferent
classes, and 2) how to enable users to visualize relationships between different classes.

2.2.1 Selection of colors for maximum discriminability

The selection of colors for maximum discriminability of the different classes is a much more dif-
ficult problem than map-coloring, which seeks to maximize local discriminability between adja-
centneighbors.Sincetheclassdevelopmentmethoddoesnot restrictthespatialcharacteristicsof
the classes--i.e. they do not have to be contiguous or located in a particular geographic area--it is
possiblefor everyclassto bespatiallylocatednext to everyotherclass.Therefore,eachclassmust
have its own unique color, and, if possible, each color must be discriminable from every other
color.

We have taken an empirical approach to this problem based on our own observations and typical
numbers of classes that users can usefully visualize. These empirical observations are as follows:

• It is difficult to select more that twenty colors that can be easily differentiated based on 4-6
pixel-wide dots on a black background (we have empirically found it better to use a black
background than white when using a computer monitor),

• Users can easily visually identify points whose color is changing in response to some stimu-
lus, like clicking a mouse, and

• For theLOICZ datasets,it will berarefor usersto belookingatmorethan20-30classes,and
more commonly they will be considering 10-20,

The second observation is also supported by the fact that people possess a strong ability to detect
motionin theirenvironmentthatis separatefrom theircolordetectioncapability[Sperling,G and
Lu, Z-L (1996)].

Thiscombinationof observationsledusto thefollowing implementation.First,wehavespecified
by hand the colors for the first 10 classes the user wants to visualize. These ten colors are shown
in Figure 1. These colors are easily discriminated by a person with normal color vision, even
when intermixed with points sizes of 2-4 pixels. Beyond the first ten, the colors are selected by
generating random 24-bit values--creating 8-bit red, green, blue triples--and ensuring that each is



brightenoughto bevisible.Second,to takeadvantageof thefactthatpeoplecaneasilyseeobjects
whenthey change,wegivetheusertheability to turnthecoloringof classesonandoff, switching
thedatapointsbetweenamediumgrayandtheirselectedcolor. Thus,thepointsflashin response
to a user’s mouse clicks.

2.2.2 Iterative refinement for visualization of cluster relationships

Throughouttheprocessof clusteror regiondevelopmentandmerging it is importantto beableto
visualizetheprocessandtheresults.TheLoiczView programprovidesanintuitivegraphicaluser
interface to the set of tools that implement the typology development and visualization methods
describedabove.In particular, it allowstheuserto visualizeboththespatialdistributionof classes
and, through color relationships, the similarity of classes.

The program uses a novel iterative refinement technique for selecting the display colors to repre-
sent distances between color vectors. This is a hard problem because the distances calculated
betweenclassesresidein ahigh-dimensionalspace--upto 100dimensions--whilecolor residesin
a three dimensional space. Therefore, in most cases we cannot select a set of colors whose dis-
tances exactly mirrors the true distances between the mean class vectors.

As a simple example of this problem, consider five points in a five dimensional space that are all
equidistantfrom oneanother. Onesetof pointsthatmeetsthiscriteriais theset{(1, 0, 0, 0, 0), (0,

1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)}. In this case, each 5-D point is away
from everyotherpoint.In a3-dimensionalspace,it is only possibleto havefour pointsequidistant
from one another--a tetragon. It is not possible to generate five points that are equidistant from
oneanotherin a3-D space.Therefore,thebestwecandowhenselectingcolorsis to approximate
the true distances in color space.

The problem can be set up as follows. First, calculate the matrix of distances between each class
vector. Normalizethismatrixby dividing eachelementby thelargestelementof thematrix.Now
all of the distances are in the range [0, 1].

Second, generate a set of random colors and assign one color to each class. Now calculate the
matrixof distancesbetweenthecolorsin colorspace.In thisdescriptionof thetechnique,wewill
use the RGB color space, letting each axis ranges from [0, 1]. Now we have two matrices whose
elements are in the range [0, 1]. The following algorithm will iteratively modify the class colors
so that it reduces the difference between the two matrices.

Top Row

White (1, 1, 1)

Red (1, 0, 0)

Green (0, 1, 0)

Blue (0, 0, 1)

Yellow (1, 1, 0)

Bottom Row

Violet (0.5, 0, 1)

Orange (1, 0.5, 0)

Cyan (0, 1, 1)

Pink (1, 0.5, 0.75)

Dk. Green (0, 0.5, 0)

Figure 1 Hand-picked colors for maximum discrimination between up to 10 classes.
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Calculate the normalized class distance matrix D
Assign a random color to each class
Set the adjustment rate A (e.g. 20%)
Loop

Calculate the color distance matrix C
Let E ij  be the largest magnitude element of D-C

Let I and J be the classes whose error is E ij

Let C ij  be the color vector from color j  to color i

Adjust the color values of I and J to reduce E
Until the matrices are close enough or we’ve looped enough

The update rule for the class colors is given in (3).

(3)

Figure 2 shows a graphical representation of the color selection process.

The number of iterations required to produce a good result is dependent upon the size of the
matrix and the number of classes. For a 10x10 matrix--i.e. 10 classes--200 iterations achieves a
result that no longer changes significantly in terms of the largest error between the two matrices.
For amuchlargermatrix,moreiterationsmayberequired.As eachiterationrequiresasearchfor

themaximumdifferentbetweentwo matrices,eachiterationtakesO(n2) time,wheren is thenum-
ber of classes. Since this is a process that only needs to be done once per visualization, the algo-
rithm is sufficiently fast.

The adjustment rate is an important parameter of the problem. The adjustment rate needs to be
fast enough to allow improvement, but not so large that the system overshoots good solutions. A
rate of 20% appears to work well for the LOICZ dataset.

To demonstrate the process, we can show the results of the algorithm on a set of mean class vec-
tors identical to the example given above: {(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1,
0), (0, 0, 0, 0, 1)}. Using200iterationsanda20%learningrate,theresultingcolorsandthetrain-
ing graph are shown in Figure 3. From this example we can see that the resulting colors are satu-
rated and easily discriminable from one another.

colori colori Cij AEij+=

color j color j Cij AEij–=

Calculate distance
matrix D

Assign random
colors to each class

Calculate color
distance matrix C

Find max element
of [D - C]

Update two colors
to improve D-C

If the error is small
enough, exit

Figure 2 Graphical representation of iterative algorithm



3 Experiments and results

The methods described above allows us to analyze and visualize large heterogeneous datasets
such as the LOICZ dataset. To test and refine these methods we have applied them to a subset of
the LOICZ dataset and compared the results with expert judgements.

Our process for developing and validating a horizontal typology (not hierarchical) is as follows.
1. Select the variables to use
2. Select how many classes (clusters) to create
3. Apply the VQ algorithm using an appropriate distance measure
4. Apply semantic labels to each cluster
5. Compare with expert judgement or pre-existing typologies

For our prototype typology development we use a subset of the LOICZ dataset corresponding to
the Australia/New Zealand coastline. This dataset has a spatial resolution of 1 degree.

For this paper, which focuses on the cartographic aspects of this process, we will follow through
steps 1 and 3 and show how the visualization helps to analyze and validate the results for a 12-
class subdivision.

3.1 Variables

In this experiment the variable selection was based on two factors. First, did the variable provide
good coverage of the area (<10% missing data). Second, did the variable actually provide useful
information(vary in a reasonablewayover thedataset).Beyondthesetwo considerations,thepri-
mary concern was not to give too strong a weight to any one aspect of the environment. The end
result was a set of 17 variables.

The variables we selected included: seasonal precipitation (max and min), seasonal air tempera-
ture(maxandmin), seasonalseasurfacetemperature(maxandmin), seasonalsoil moisture(max
and min), seasonal salinity (max and min), seasonal Coastal Zone Color Scanner [CZCS] (max
and min), average annual runoff, an annual evaporation proxy, average wave height, standard
deviationof elevation,andatidal mixing proxy. Precipitationandair temperatureinformationare
from [IPCC Data Distribution Centre for Climate Change and Related Scenarios for Impacts

Figure 3 A) Training curve showing maximum error between distance and
color matrices, B) Resulting colors for simple equidistant example.

(A) (B)

Number of iterations

Error



Assessment, CD-ROM, Version 1.0, April 1999.], the remaining variables are from the LOICZ
typology dataset [LOICZ typology dataset, http://www.kellia.nioz.nl/loicz/typo.htm, 1999.]. For
the Australasia coast we modified the LOICZ typology data by interpolating it to cover locations
with no data. For the most part this meant taking land cell variables and interpolating them onto
adjacent coastal cells, and taking sea cell variables and interpolating them onto adjacent coastal
cells.

The evaporation proxy is a combination of wind speed and vapor pressure. The proxy variable is
theproductof thetwo multipliedby 10(vaporpressureis watervaporpressuremultipliedby 10).
The vapor pressure variable came from [IPCC Data Distribution Centre for Climate Change and
Related Scenarios for Impacts Assessment, CD-ROM, Version 1.0, April 1999.] and the wind
speed from [LOICZ typology dataset, http://www.kellia.nioz.nl/loicz/typo.htm, 1999.].

Thetidal mixing proxy is acombinationof atidal form variable[semidiurnal,mixed,diurnal]and
tidal range. The tidal mixing proxy is tidal range multiplied by tidal frequency, where tidal fre-
quency is [semidiurnal = 2, mixed = 1.5, and diurnal = 1]. The two base variables came from
[LOICZ typology dataset, http://www.kellia.nioz.nl/loicz/typo.htm, 1999.].

3.2 Cluster the data

We used the VQ algorithm using the average scaled Euclidean distance measure to generate a set
of representativeclasses.To getagoodsetof classesweranit tentimesandtook thelowesterror
result. This provided us with a reasonable set of representative classes for the data.

Figure 4(a) shows a visualization of the resulting classes by mapping them into an image using
latitude, longitude, and using color to identify the class of each data point. Figure 4(b) shows a
visualization of the same clustering result, but with the class colors selected using the iterative
selection algorithm to show the relationships between classes. Note that three distinct classes
exist, while the others merge into more of a continuum in the color similarity presentation.

This observation is supported if we look at the matrix of distances between clusters. Table 1
shows this matrix for the clusters in Figure 4. In each column, the most similar cluster is in bold.
Note the pink and red clusters are both dissimilar to all of the other clusters (distances > 1.0),
whereas the remaining clusters are all fairly similar to at least one other cluster (distances < 1.0).

(a) (b)

Figure 4 (a) 12-class clustering result for Australasia using average scaled Euclidean
distance and randomly selected colors. (b) Same clustering result but with colors

selected to reflect the similarity of the classes



This relationship is echoed in the iterative color scheme, where both the pink and red clusters in
Figure4(a)standout in comparisonto theirneighborsin Figure4(b).Whatis alsoindicatedin the
similarity color scheme is that the northern clusters are fairly similar to one another but quite dif-
ferentthanthesouthernclusters.This is supportedby examiningthedistancematrix.Thebrown,
purple, and orange clusters are all fairly similar to one another, but are distant from the yellow,
cyan, dark purple, white, and blue clusters that make up the southern area.

3.3 Comparison of average scaled Euclidean distance to the MSD distance

We can undertake the same process of typology development using the alternative MSD distance
measure.Figure5 compares12-classclusteringsusingtheaveragescaledEuclideandistanceand
the Hausdorff distance.

Note the similarities and differences between the two results. The biggest differences occurs on
the southern and northern coasts of Australia where the southern coast apparently has fewer
extreme differences (but higher average differences) than the northern coast. Thus, the MSD dis-
tancedoesnotdivide thesoutherncoastinto two sectionsin a12-classclustering,but theaverage
scaled Euclidean distance does.

Figure6 showsthesameclusteringsbut usesassociatescolorwith thesimilarity of theclasses.In
bothcasesthesouthcoastof New Zealandshowsupasauniquelocation.Likewise,thesoutheast
coast of Australia shows up as being similar to north New Zealand. The different between the
ASE and MSD results are that the North-South Australia similarity is more pronounced in the
ASE division than it is in the MSD division. This likely reflects the fact that many variables are
different between the north and south classes, but the maximum differences may be more similar
to the differences between the other classes.

Table 1  Distance matrix between clusters in Figure 4

Color white red green blue yellow
dark

purple
orange cyan pink

dark
green

purple brown

white 0 3.4 0.98 0.85 0.32 0.67 2.2 0.50 2.8 0.62 2.3 2.0

red 3.4 0 2.4 4.2 3.7 4.1 3.8 3.3 6.7 3.4 3.1 2.6

green 0.98 2.4 0 2.5 1.3 1.1 1.1 0.7 5.2 0.49 0.93 0.72

blue 0.85 4.2 2.5 0 0.54 1.6 2.9 2.0 1.1 1.5 3.4 3.3

yellow 0.32 3.7 1.3 0.54 0 0.62 2.3 0.70 2.1 0.58 2.7 2.4

dk. purple 0.67 4.1 1.1 1.6 0.62 0 2.3 0.31 3.9 0.68 2.8 2.9

orange 2.2 3.8 1.1 2.9 2.3 2.3 0 2.5 5.0 0.92 0.45 0.93

cyan 0.5 3.3 0.7 2.0 0.70 0.31 2.5 0 4.5 0.82 2.4 2.3

pink 2.8 6.7 5.2 1.1 2.1 3.9 5.0 4.5 0 3.4 5.8 5.7

dk. green 0.62 3.4 0.49 1.5 0.58 0.68 0.92 0.82 3.4 0 1.4 1.2

purple 2.3 3.1 0.93 3.4 2.7 2.8 0.45 2.4 5.8 1.4 0 0.57

brown 2.0 2.6 0.72 3.3 2.4 2.9 0.93 2.3 5.7 1.2 0.57 0



4 Discussion and Future Directions

FromtheAustralasiaexample,wecanseethattheprocessappearsto producea reasonablesetof
classes.Theresultsshow broadagreementwith previousexperttypologies[Smith,SV, andCross-
land, C J (1999)]. Furthermore, they highlight localized phenomena that do not show up in the
expertversion,but neverthelessexist in thedata.Notethatweobtainedtheseresultsdespiteheter-
ogeneous variables with some missing data, indicating that the distance measures we used are
appropriate for the task.

With respect to the visualization, our strategy for selecting colors for maximum discrimination
appearsto work well. It allowsfor easydiscriminationof thedifferentclasses,asshown in Figure
5. In cases where colors may be confusing, the inclusion of the ability to turn clusters on and off
makes it possible to easily distinguish class membership for each point in the visualization.

The iterative color selection for matching distances also appears to provide an intuitive visualiza-
tion of similarity. Themostcommoncriticismof usersandviewersis thatthecolorselectionsare
not always aesthetically pleasing or easy to see. However, the color relationships do appear to be
intuitively correct.Oneareof futurework is to objectively evaluatehow well peopleinterpretthe
results of the color selection program.

Figure 5 (a) 12-class clustering using average scaled Euclidean distance.
(b) 12-class clustering using MSD distance.

(a) (b)

Figure 6 (a) 12-class ASE clustering with colors related to similarity, (b) 12-class
MSD cluster with colors related to similarity.

(a) (b)



A second area of future work is to look at more limited color spaces such as pure intensity. The
reason for pursuing this is to have an algorithm that anyone who can perceive intensity--but per-
haps not certain colors--can use to visualize relationships. A mapping like this must be used in
any situation where universal access to the information is required.

Overall this paper presents a set of methods that permit clustering, classification, and visual com-
parison of environments at regional and global scales. Clustering of high-dimensionality datasets
can be based on scaled Euclidian distances in ways that permit the use of datasets that are incom-
plete, not normally distributed, or otherwise unsuitable for more traditional statistical analysis.
Two different distance criteria -- the average scaled Euclidean distance and the maximum scaled
distance -- provide alternative ways to explore the nature of environmental similarities and differ-
ences.

Thepaperalsopresentsancillarytechniquesthatexpandtheapplicabilityandeaseof useof these
methods. One of these is a strategy of using color and motion to visualize classes. The second is
the use of a novel color-similarity approach that permits visualization of the similarities of spa-
tially distributed clusters.

Thesetechniqueshavebeenappliedto a17-variablecoastaldatasetfor Australiaandneighboring
regions.Theresultsarehighly consistentwith anindependentexpert-judgementcoastaltypology,
and the differences and similarities between the various approaches to cluster definition are intu-
itively understandable in terms of the variables and techniques used.

The methods provide a novel and potentially powerful set of tools for classifying and visualizing
relationships between environments. Initial applications will be regionalization and globalization
of coastal C, N, P budgets as part of the LOICZ projects. However, the techniques are further
applicableto differentdatasets,andto issuesof globalandregionalchange.In addition,thecolor
selection techniques are applicable to any application that wants to visualize high dimensional
relationships using color.
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