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Abstract

This paper presents the cartographic elements of a system for classifying and visualizing high-
dimensionabeographiaatasetsThe systemhasbeendevelopedaspartof the Land Oceaninter-
actions in the Coastal Zone [LOICZ] project. The goal of the system ivétogergional and
globaltypologiesof coastakzonesusinglarge multi-variabledatasetsOur implementatiorbrings
togetherstatisticalclusteringalgorithmswith visualizationcapabilitiesto allow easyanalysisand
comprehension of the results. Thetmain tasks of the visualization are to ailfor discrimina-

tion of multiple classes and to shoelationships between those classes. These are accomplished
in two different visual presentations. In both cases, the system selects colors appropriate to the
purpose. In the latter case--shog relationships--the system uses aeldateratve refinement
algorithmto selectthecolors.Theresultsshav thatthesystems successfuatbothgeneratinghe
classes and visualizing the relationships between them.
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Visualizing Geographic Classifications Using Color

1 Intr oduction

The Land-Ocean Interaction in the Coastal Zone project [LOICZ] is a component of the Interna-
tional Geosphere-Biosphere Programme [IGBP] that focuses on the area of tiseseahtte

where land, ocean and atmosphere meet and interactvétadl goal of this project is to deter-
mineatregionalandglobalscalesthe natureof thatdynamicinteraction;how changesn various
compartments of the Earth system afeaing coastal zones and altering their role in global
cycles;to assestiow futurechangesn theseareaswill affecttheir useby people;and,to provide

a sound scientific basis for future igtated management of coastal areas on a sustainable basis
[Pernetta, JC and Milliman, JD (Editors) (1995)].

A primaryLOICZ objectveis developingglobal scale-estimatesf biogeochemicafluxesof car-
bon, nitrogen, and phosphorous [C, N and P] in and through the coastal zone [CZ]. Tty strate
adopteds to identify ‘type-specimenCTNP budgetsor well-characterizedoastakegions,to fur-
theridentify the coastaregionsaroundtheworld of which suchfunctionalobserationsmightbe
typical, and to use this typology relationship to upscale the limited local data to an estimate of
global coastal zone function.ithin this contet, a typology is defined as a classification system
that dvides coastal zones into a set of classes according to one or igsiEptyeological,
atmospheric, or human-relateariables.

The deelopment of an wentory of standard-format CAitigets is in progress in the Bio-
geochemical Budgets task of LOICZ (http://data.ecakgge/mnode/). Theypology project
(http://www.nioz.nl/loicz/typo.htm) is responsible fonddoping the coastal classification
approach needed fouiget upscaling. One of the major stggs adopted by the typology
project is the deelopment of clustering and visualization techniques suitable for classifying
coastal areas in terms of their similarity with respect Wremmental \ariables releant to bio-
geochemical function.

Visualizationof geographiclassificationss afundamentapartof the systematidypologydevel-
opment process. The process is described in detail in [Maxwell, M and Buddesn@ner

review)]. Appropriate visualization all@s users to intuiely assess the typologies and mak
judgements about the similarity of geographic classes. This in turn can identify problems with
typologies or hild confidence in the results.

There are tw major elements in the visualization of geographic classes. First, the user must be
ableto discriminatethe classesn orderto geta senseof thespatialdistribution of individual class
members. Second the user needs to be able to visualize class relationships suchvasaiheir o
relatve similarity

Thefirstissueis oneof color selectiorfor maximumdiscrimination Appropriateuserinteraction

can also add discriminability to a set of selected colors. Our solution to this problem, is to use an
empirically selected set of colors for the initial ten classeswelliothereafter by randomly
selectectolorsfrom the RGB spectrumWe augmenthevisualizationby giving usergsthe ability

to turn the coloring for a particular class on dr of

Thesecondssueinvolvesmappinghigh-dimensionatlistances--e.chetweerN-dimensionalec-
tors, where N may be 20 to 100--to &ldimensional space--e.g. red, green, and blue [RGB].



This problem is quite dérent from the standard one of visualization of a singteatble using a
color spectrum. This paper presents gehgolution to this mapping based on an iteeatefine-
ment process. The resulting colors closely match thewelsitinilarity relationships between the
geographic classes, and ypide an intuitve visual understanding of the class relationships.

We bring these tools together in the LOIG&V application and demonstrate the results of these
algorithms on a 17ariable subset of the global LOICZ data. The paper concludes with a discus-
sion and directions for futureosk.

2 Theory and methodology

This sections pnades a brief gerview of the methods used in the typologywelepment, and a
more etensve description of the visualization methods.

2.1 Typology class deelopment

There are tw parts to our typology delopment process: 1) selecting a similarity measure for
multivariate geographic data points, and 2) selecting a clustering method to generate classes of
similar geographic points\ygn the similarity measure.

2.1.1 Distance measws br multi variate geographic data points

We hare explored the use of seral similarity measures for muléiriate geographic data points.
To clarify the meaning of this phrase, a data point isyaipal location or area--in our dataset it
constitutes a 1-dgee by 1-dgree area. Each data point has a set of measuremerdsiabtes,
associated with it. These includariables lile air temperature, sea sacé temperature, soil
moisture, precipitation, etc. If we collect thesgiables into a singleector then each data point
is represented by an n-tuple, or n-dimensioeatat that describes the geographic location.

The significant issues wade when selecting an appropriate measure of similarity between data
points--and thus betweenawnulti-dimensional gctors--are that 1) theasiables do not all ve

the same mean or standardidéon, and 2) not all of theaviables are meaningful for all data
points. for example, sea suate temperature is not meaningful for a data point that contains no
ocean. Lilewise, soil moisture is not meaningful for a data point that contains no land. Further-
more, because th@wrables are not necessarily normally disttéal the ceariance matrix of the

data points is not necessarilyantible, irvalidating traditional similarity measures such as the
Mahalanobis distance [H&rf) and Dais, JC (1990)].

To dealwith theseproblemswe have definedtwo differentsimilarity measurespnebasednthe
average scaled erroand one based on the maximum scaled .error

We define the\gerage scaled Euclidean [ASE] distance betweenpiwints,Dy, as in (1),
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wherex andy are the tw data point EC'[OI‘S,OiZ is the \ariance of ariablei, Valid is the set of
dimensionghathave valid datain bothx andy, andcard(Valid) is thenumberof valid dimensions.

The distance measu®, can be interpreted in the folling intuitive mannerlf the \alue is less

thanone,thentheaveragedifferencebetweerx andy in arny onedimensiornis lessthana standard
deviation. If the \alue is greater than one, then threrage diference is greater than a standard
deviation. Takingthesquareroot of D, would provide anexactmeasuren termsof standardlevi-

ations.

An alternatve distancemeasurdor geographiclassifications to usethe maximumscaleddiffer-
ence [MSD] between correspondingriables rather than theexrage scaled distance. In other
words,two vectorsthatareidenticalexceptfor asinglevariablex;, will have thescaleddifference
in x; astheir distance Comparehisto atraditionalmeasurewherethefactthatmostof thediffer-
ences are zero &8s the Euclidean or scaled Euclidean distaneartts zero as the number of
dimensions increases. A formal definition of the distancesengn (2).

_ (A -B)°

MSD(A, B) = max (—2) (2)

iol oF
The MSD is a well-behed distance measure since it yoéhe properties of identitgymmetry
and the triangle inequalityn other vords, tw vectors that contain allviables can only va a
distance of zero if theare equal to one another (identity propertyyoVectors hae the same
distance no matter the order in whichytlaee considered (symmetry property); and if
MSD(A, B) #0 andMSD(A, C) = 0, thenMSD(B, C) # 0 (triangle inequality), which just
states that if tw points are not equal, heannot both be equal to some third point. The MSD
alsobehaesnicely bothwith respecto missingvariables--ifjust considers/ariablesthatexist in
both data points--and multipl@nables that carry the same information--it considers only the
maximum diference.

Anotherway of thinking aboutthe MSD is thatit letsthe extremesrule judgement®f similarity;
two vectorscannotbesimilarif they have a singlevariablethatis very different.In ourimplemen-
tation of MSD distance, we use the maximum normalized squafededife, where the normal-
ization constants are thanances of the specifi@xiables.

TheMSD distancas inspiredby theHausdorf distancewhichis ameasuref similarity between
setsthathasbeenusedsuccessfullyn imagecomparisongandobjectrecognitiontasksin thefield

of computer vision [HuttenlocheDPR, Klanderman, GA, and Rucklidge, WJ (1993)]. It has also
recently been used in data mining applications to sedeihles andldald decision trees [Pira-
muthu, S (1999)]. The Hausdbdistance says that the distance betweenggis A and B is the
maximum of the minimum distances between all points in A and all points in B.

2.1.2 Clustering data points to generate classes

Given a definition of similaritywe can nav start to look for natural groupings of similar points
that may indicate thexestence of a meaningful class. A standard method for clustering similar
pointsis unsuperviset-mean<lusteringalsocalledvectorquantizatiofVQ] [Anderbeg, M R
(1973)][RabinerL, andJuang B-H (1993)]. Overall, the algorithmtakesasinput a distancanea-



sure, a dataset, and a desired number of clusters. It then attempts to find ader®that best
represents the dataset. Each of thestors is the meareetor of a unique subset of the data
points. The output of the VQ algorithm is the set of mean clad®ns and a tag for each data
point, indicating its class membership.

Since there is a random element to the VQ algorithm, it is important to run it multiple times with
thesamenputs.Thebestsetof classvectorsV is thesetthatminimizestheoverallrepresentation

error, which can be defined as the sum of the distances between each point and its nearest mean
class ector

We select the desired number of classes using a combinatirpest pidgement and the infor-
mation theoretic description length of the classes and the resulting representational error [Ris-
sanen, J (1989)]. This process is described in more detail in [Maxwell, M and Budd&h{eier
review)].

2.2 Selection of colors and a user interfaceif maximum discrimination

Thetwo majorissuesn visualizationarel) how to enableusergo discriminatebetweerdifferent
classes, and 2) toto enable users to visualize relationships betwederélift classes.

2.2.1 Selection of colorsor maximum discriminability

The selection of colors for maximum discriminability of thdet#nt classes is a much more dif-
ficult problem than map-coloring, which seeks to maximize local discriminability between adja-
centneighborsSincetheclassdevelopmentmethoddoesnotrestrictthe spatialcharacteristicef

the classes--i.e. thielo not hae to be contiguous or located in a particular geographic area--it is
possiblefor every classto bespatiallylocatednext to every otherclass.Thereforegachclassmust

have its avn unique colgrand, if possible, each color must be discriminable freanyeother

color.

We have talen an empirical approach to this problem based onwniobserations and typical
numbers of classes that users can usefully visualize. These empiricahtibesrare as follgs:

» Itis difficult to select more that twenty colors that can be easilgrdiitiated based on 4-6
pixel-wide dots on a black background (wedampirically found it better to use a black
background than white when using a computer monitor),

» Users can easily visually identify points whose color is changing in response to some stimu-
lus, like clicking a mouse, and

* FortheLOICZ datasetsit will berarefor usersto belooking at morethan20-30classesand
more commonly thewill be considering 10-20,

The second obseation is also supported by thect that people possess a strong ability to detect
motionin theirervironmentthatis separatérom their color detectioncapability[Sperling,G and
Lu, Z-L (1996)].

This combinationof obsenationsled usto thefollowing implementationFirst, we have specified

by hand the colors for the first 10 classes the uaetsito visualize. These ten colors arensho

in Figure 1. These colors are easily discriminated by a person with normal color wsion, e

when intermied with points sizes of 2-4 mis. Bgond the first ten, the colors are selected by
generating random 24-bitlues--creating 8-bit red, green, blue triples--and ensuring that each is



Top Row Bottom Row

White (1,1,1) Violet (0.5,0,1)
Red (1,0,0) Orange (1,0.5,0)
Green 0, 1,0 Cyan 0,1,1)
Blue 0,0,1) Pink (1, 0.5, 0.75)
Yellow (1,1,0) Dk. Green (0, 0.5, 0)

Figure 1 Hand-picked colors for maximum discrimination between up to 10 classes.

brightenougho bevisible. Secondio take advantageof thefactthatpeoplecaneasilyseeobjects
whenthey changeywe give theusertheability to turnthecoloringof classe®n andoff, switching

thedatapointsbetweera mediumgrayandtheir selectedcolor. Thus,the pointsflashin response
to a uses mouse clicks.

2.2.2 Iterative refinement br visualization of cluster relationships

Throughouthe procesof clusteror region developmentandmergingit is importantto beableto
visualizethe processaandtheresults.The LoiczView programprovidesanintuitive graphicaluser
interface to the set of tools that implement the typologield@ment and visualization methods
describedabore. In particular it allows theuserto visualizeboththespatialdistribution of classes
and, through color relationships, the similarity of classes.

The program uses avel iteratve refinement technique for selecting the display colors to repre-
sent distances between col@ctors. This is a hard problem because the distances calculated
betweerclassesesidein a high-dimensionaspace--ugo 100dimensions--whileolorresidesn

a three dimensional space. Therefore, in most cases we cannot select a set of colors whose dis-
tances ractly mirrors the true distances between the mean chassrs.

As a simple gample of this problem, considevdipoints in a fie dimensional space that are all
equidistanfrom oneanotherOnesetof pointsthatmeetshis criteriais theset{(1, 0,0, 0, 0), (O,

1,0,0,0),(0,0,1,0,0), (0,0,0, 1, 0), (0,0, 0, 0, 1)}. In this case, each 5-D pdhaisay
from every otherpoint.In a3-dimensionaspaceit is only possibleio have four pointsequidistant
from one anothera tetragon. It is not possible to generate fioints that are equidistant from
oneanothelin a 3-D spaceThereforethebestwe candowhenselectingcolorsis to approximate
the true distances in color space.

The problem can be set up as falto First, calculate the matrix of distances between each class
vector Normalizethis matrix by dividing eachelementby the largestelemenif the matrix. Now
all of the distances are in the range [0, 1].

Second, generate a set of random colors and assign one color to each wlasdcilate the
matrix of distancedetweerthecolorsin color spaceln this descriptionof thetechniqueyve will
use the RGB color space, letting each axis ranges from [0, Wjwchae two matrices whose
elements are in the range [0, 1]. The failog algorithm will iteratvely modify the class colors
so that it reduces the thfence between the twmatrices.



Calculate distance Calculate color Find max element
matrix D distance matrix C of [D - C]

Assign random )
colors to each clags If the error is smal Update tvo colors
enough, git to improve D-C

v

Figure 2 Graphical representation of iterative algorithm

Calculate the normalized class distance matrix D

Assign a random color to each class

Set the adjustment rate A (e.g. 20%)

Loop
Calculate the color distance matrix C
LetE j; be the largest magnitude element of D-C
Let | and J be the classes whose error is E i
LetC j; be the color vector from color j tocolor
Adjust the color values of | and J to reduce E

Until the matrices are close enough or we've looped enough

The update rule for the class colors igegiin (3).

color; = color; + C;; AE;; 3)

color; = color; —Cj; AE;;

Figure 2 shws a graphical representation of the color selection process.

The number of iterations required to produce a good result is dependent upon the size of the
matrix and the number of classesr & 10x10 matrix--i.e. 10 classes--200 iterations aekia
result that no longer changes significantly in terms of tlye&rerror between the twmatrices.

For amuchlargermatrix, moreiterationsmayberequired As eachiterationrequiresa searchor

themaximumdifferentbetweertwo matrices gachiterationtakesO(?) time, wheren is thenum-
ber of classes. Since this is a process that only needs to be done once per visualization, the algo-
rithm is suficiently fast.

The adjustment rate is an important parameter of the problem. The adjustment rate needs to be
fast enough to al@ improvement, lnt not so lage that the systenvershoots good solutions. A
rate of 20% appears toonk well for the LOICZ dataset.

To demonstrate the process, we camstie results of the algorithm on a set of mean class v
tors identical to thexample gven abee: {(1, O, O, 0, 0), (0, 1, O, O, 0), (0, O, 1, O, 0), (0, 0, O, 1,
0),(0,0,0,0,1)}. Using200iterationsanda 20%learningrate,theresultingcolorsandthetrain-

ing graph are shn in Figure 3. From thisxample we can see that the resulting colors are satu-
rated and easily discriminable from one anather
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Figure 3 A) Training curve showing maximum error between distance and
color matrices, B) Resulting colors for simple equidistant example.

3 Experiments and esults

The methods described atecallovs us to analyze and visualizegarheterogeneous datasets
such as the LOICZ dataseb fest and refine these methods weehapplied them to a subset of
the LOICZ dataset and compared the results wipied judgements.

Our process for deeloping and alidating a horizontal typology (not hierarchical) is as feo
Select the ariables to use

Select hav mary classes (clusters) to create

Apply the VQ algorithm using an appropriate distance measure

Apply semantic labels to each cluster

Compare with gpert judgement or prexisting typologies

arwpnpE

For our prototype typology delopment we use a subset of the LOICZ dataset corresponding to
the Australia/Nes Zealand coastline. This dataset has a spatial resolution gifdede

For this paperwhich focuses on the cartographic aspects of this process, we will tbliough
steps 1 and 3 and slkidnow the visualization helps to analyze aradidate the results for a 12-
class subdiision.

3.1 \ariables

In this experiment the ariable selection as based on wfactors. First, did theariable preoide
good cwerage of the area (<10% missing data). Second, dicatieble actually prade useful
information(vary in areasonablevay over the dataset)Beyondthesetwo considerationghe pri-
mary concern &s not to gie too strong a weight to ymone aspect of the emonment. The end
result was a set of 17ariables.

The ariables we selected included: seasonal precipitation (max and min), seasonal air tempera-
ture(maxandmin), seasonaseasurfacetemperaturémaxandmin), seasonasoil moisture(max

and min), seasonal salinity (max and min), seasonal Coastal Zone Color Scanner [CZCS] (max
and min), &erage annual runpfan annualeaporation proxyaverage vave height, standard

deviation of elevation,andatidal mixing proxy. Precipitatiorandair temperaturéenformationare

from [IPCC Data Distriition Centre for Climate Change and Related Scenarios for Impacts



(@) (b)

Figure 4 (a) 12-class clustering result for Australasia using average scaled Euclidean
distance and randomly selected colors. (b) Same clustering result but with colors
selected to reflect the similarity of the classes

Assessment, CD-®M, Version 1.0, April 1999.], the remainingnables are from the LOICZ
typology dataset [LOICZ typology dataset, http://wkellia.nioz.nl/loicz/typo.htm, 1999.].d¥

the Australasia coast we modified the LOICZ typology data by interpolating ivéo lozations
with no data. Br the most part this meant taking land calliables and interpolating them onto
adjacent coastal cells, and taking sea @eilbles and interpolating them onto adjacent coastal
cells.

The e/aporation proxy is a combination of wind speed aaubv pressure. The proxgnable is
the productof thetwo multiplied by 10 (vaporpressures watervaporpressurenultiplied by 10).
The vapor pressureariable came from [IPCC Data Distuition Centre for Climate Change and
Related Scenarios for Impacts Assessment, CDARVersion 1.0, April 1999.] and the wind
speed from [LOICZ typology dataset, http://wwellia.nioz.nl/loicz/typo.htm, 1999.].

Thetidal mixing proxyis acombinatiorof atidal form variable[semidiurnal mixed,diurnal]and
tidal range. The tidal mixing proxy is tidal range multiplied by tidal frequenbere tidal fre-
gueng is [semidiurnal = 2, mied = 1.5, and diurnal = 1]. The dvbase ariables came from
[LOICZ typology dataset, http://wwikellia.nioz.nl/loicz/typo.htm, 1999.].

3.2 Cluster the data

We used the VQ algorithm using theeeage scaled Euclidean distance measure to generate a set
of representatie classesTo geta goodsetof classesve ranit tentimesandtook thelowesterror
result. This preided us with a reasonable set of represergaiiasses for the data.

Figure 4(a) shes a visualization of the resulting classes by mapping them into an image using
latitude, longitude, and using color to identify the class of each data point. Figure 4¢b)asho
visualization of the same clustering resulit Wwith the class colors selected using the itegati
selection algorithm to skothe relationships between classes. Note that three distinct classes
exist, while the others mge into more of a continuum in the color similarity presentation.

This obseration is supported if we look at the matrix of distances between clusabts. IT

shaws this matrix for the clusters in Figure 4. In each column, the most similar cluster is in bold.
Note the pink and red clusters are both dissimilar to all of the other clusters (distances > 1.0),
whereas the remaining clusters areailly similar to at least one other cluster (distances < 1.0).



Table 1 Distance matrix between clusters in Figer4

Color white red | green | blue | yellow p(ilarliokle orange| cyan | pink Sra;rgn purple | brown
white 0 34 0.98 [0.85 [0.32 |0.67 |2.2 0.50 (2.8 0.62 |2.3 2.0
red 34 0 24 4.2 3.7 4.1 3.8 3.3 6.7 3.4 3.1 2.6
green 098 (24 0 25 1.3 11 11 0.7 5.2 0.49 |0.93 |0.72
blue 0.85 (4.2 25 0 054 |[1.6 29 2.0 11 15 3.4 3.3
yellow 0.32 (3.7 1.3 054 |0 0.62 |2.3 0.70 2.1 0.58 |2.7 24
dk. purple |0.67 |4.1 11 1.6 062 |0 2.3 0.31 (3.9 0.68 |2.8 2.9
orange 2.2 3.8 11 29 23 23 0 25 5.0 0.92 |0.45 |0.93
cyan 0.5 3.3 0.7 2.0 0.70 [0.31 |25 0 4.5 0.82 |24 2.3
pink 2.8 6.7 5.2 11 21 3.9 5.0 4.5 0 34 5.8 5.7
dk. green |0.62 (3.4 0.49 |15 0.58 [0.68 |0.92 |0.82 |34 0 14 1.2
purple 23 3.1 0.93 (34 2.7 2.8 0.45 (2.4 5.8 14 0 0.57
brown 2.0 2.6 0.72 |3.3 24 29 0.93 |23 5.7 1.2 057 |0

This relationship is echoed in the itevaticolor scheme, where both the pink and red clusters in
Figure4(a)standoutin comparisorio their neighborsn Figure4(b). Whatis alsoindicatedin the
similarity color scheme is that the northern clustersairy fsimilar to one anothemb quite dif-
ferentthanthe southerrclusters Thisis supportedy examiningthe distancematrix. The brown,
purple, and orange clusters are aitlf similar to one anothebut are distant from the yeilg

cyan, dark purple, white, and blue clusters thatengk the southern area.

3.3 Comparison of &erage scaled Euclidean distance to the MSD distance

We can undertakthe same process of typologywelepment using the alternagi MSD distance
measureFigure5 compared 2-classclusteringausingthe averagescaledeuclideandistanceand
the Hausdoffdistance.

Note the similarities and dédrences between thedwesults. The biggest tifences occurs on

the southern and northern coasts of Australia where the southern coast apparentigrhas fe
extreme diferences (bt higher aerage diferences) than the northern coast. Thus, the MSD dis-
tancedoesnot divide the southerrcoastinto two sectiondn a 12-classclustering but the average
scaled Euclidean distance does.

Figure6 shavs the sameclusteringsut usesassociatesolor with the similarity of theclassesln
bothcaseghesouthcoastof New Zealandshavs up asa uniquelocation.Lik ewise,thesoutheast
coast of Australia slwas up as being similar to north N&ealand. The diérent between the

ASE and MSD results are that the North-South Australia similarity is more pronounced in the
ASE dvision than it is in the MSD dision. This likely reflects thedct that maw variables are
different between the north and south classgsthie maximum dierences may be more similar
to the diferences between the other classes.



(a) (b)
Figure 5 (a) 12-class clustering using average scaled Euclidean distance.
(b) 12-class clustering using MSD distance.

(a) (b)
Figure 6 (a) 12-class ASE clustering with colors related to similarity, (b) 12-class
MSD cluster with colors related to similarity.

4 Discussion and Futue Directions

Fromthe Australasieexample ,we canseethatthe processappearso produceareasonablsetof
classesTheresultsshav broadagreementvith previousexperttypologies{Smith, SV, andCross-
land, C J (1999)]. Furthermore, thieighlight localized phenomena that do notwghmp in the
expertversion,but neverthelesexist in thedata.Notethatwe obtainedheseresultsdespiteheter-
ogeneous ariables with some missing data, indicating that the distance measures we used are
appropriate for the task.

With respect to the visualization, our stgtdor selecting colors for maximum discrimination
appearso work well. It allows for easydiscriminationof thedifferentclassesasshavn in Figure

5. In cases where colors may be confusing, the inclusion of the ability to turn clusters dn and of
makes it possible to easily distinguish class membership for each point in the visualization.

The iteratve color selection for matching distances also appearsvapran intuitve visualiza-
tion of similarity. The mostcommoncriticism of usersandviewersis thatthe color selectionsare
not alvays aesthetically pleasing or easy to seavéder, the color relationships do appear to be
intuitively correct.Oneareof futurework is to objectively evaluatehow well peopleinterpretthe
results of the color selection program.



A second area of futureosk is to look at more limited color spaces such as pure inteibigy
reason for pursuing this is toyean algorithm that gne who can perog intensity--lit per-
haps not certain colors--can use to visualize relationships. A mappentiskmust be used in
ary situation where umersal access to the information is required.

Overall this paper presents a set of methods that permit clustering, classification, and visual com-
parison of emronments at rgional and global scales. Clustering of high-dimensionality datasets
can be based on scaled Euclidian distancesys\that permit the use of datasets that are incom-
plete, not normally distrilted, or otherwise unsuitable for more traditional statistical analysis.

Two different distance criteria -- th@erage scaled Euclidean distance and the maximum scaled
distance -- praide alternatre ways to @plore the nature of @ironmental similarities and dédr-

ences.

Thepaperalsopresentancillarytechniqueshatexpandthe applicabilityandeaseof useof these
methods. One of these is a stggtef using color and motion to visualize classes. The second is
the use of a neel colorsimilarity approach that permits visualization of the similarities of spa-
tially distributed clusters.

Thesetechniqguethave beenappliedto al17-variablecoastadatasetor Australiaandneighboring
regions.Theresultsarehighly consistentvith anindependengxpert-judgementoastatypology,
and the difierences and similarities between tlagious approaches to cluster definition are intu-
itively understandable in terms of treriables and techniques used.

The methods prade a neel and potentially pwerful set of tools for classifying and visualizing
relationships between@nonments. Initial applications will be genalization and globalization
of coastal C, N, Pumlgets as part of the LOICZ projects.\Wwer, the techniques are further
applicableto differentdatasetsandto issuesf globalandregionalchangeln addition,the color
selection techniques are applicable tg application that ants to visualize high dimensional
relationships using color
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