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Abstract: Imaging a reaction taking place at the molecular level could provide the most direct 

information for understanding catalytic reaction mechanism. We used nanocrystalline anatase 

TiO2 (1×4)-(001) surface as a catalyst, which provided highly ordered Ti4c “active rows” to realize 

real-time monitoring of H2O molecules dissociating and reacting on the catalyst surface with in-20 

situ environmental transmission electron microscopy. The twin-protrusion configuration of 

adsorbed H2O was observed. During the water-gas-shift reaction, dynamic changes in these 

structures were visualized on these active rows at the molecular level. 

 

One Sentence Summary: Visualization of H2O molecules reacting at active sites of TiO2 surface 25 

at the molecular level was realized via ETEM. 
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Imaging at the atomic scale with transmission electron microscopy (TEM) has benefited from 

the developments of aberration corrector and in situ equipment (1-8). For studies of heterogeneous 

catalysts, these developments, along with approaches that allow gases and even liquids to contact 

samples (environmental TEM or ETEM) have enabled imaging of single molecules and atoms 

adsorbed on catalyst surface (9-14). However, the direct visualization of gas molecules reacting at 5 

catalytic sites is generally challenging for TEM. Normally, the molecules that adsorb and react 

dynamically do not offer sufficient contrast for TEM identification. We now show that this 

obstacle could be overcome by taking advantage of the highly ordered four-coordinated Ti (Ti4c) 

rows (“active rows”, because of the lower coordination) on the anatase TiO2 (1×4)-(001) surface, 

which ensured enhanced contrast of adsorbing molecules along the row direction to allow real-10 

time monitoring of H2O species dissociating and reacting on the catalyst surface.  

The atomic structure of TiO2 (1×4)-(001) surface has been characterized by both aberration-

corrected ETEM and scanning transmission electron microscopy (STEM) images. The bulk-

truncated (1×1)-(001) surface usually reconstructs to a (1×4)-(001) surface (Fig. 1, A to C) by 

periodically replacing the surface oxygen rows (along [010] direction) with TiO3 ridges every four-15 

unit cell along TiO2 [100] direction (15-17). As a result, protruded Ti4c rows are periodically 

exposed on the surface and show distinct contrast, so the subtle changes occurring in reactions 

could be detected in ETEM observation without contrast overlap. The ordered Ti4c “active rows” 

could provide sufficient contrast for direct ETEM visualization of water if it adsorbed in ordered 

arrays. 20 
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Figure 1. The dynamic atomic structural evolution of (1×4) reconstructed TiO2 (001) surface 

under water vapor environment. (A) HAADF-STEM image of (1×4)-(001) surface, viewed from 

[010] direction. The image was acquired at 700 °C in vacuum (TEM column pressure: ~10-7 mbar). 

(B) Ad-molecule (ADM) reconstruction models of the (1×4)-(001) surface. (Ti, gray; O, red) (C) 5 

atomic model of Ti4c row. (D-G) Aberration-corrected in situ ETEM images show the same area 

of TiO2 (001) surface at 700 °C under oxygen (D, 0.001 mbar) and water vapor conditions (E, 0.01 

mbar; F, 1 mbar; G, 2.5 mbar). The scale bar indicates 1 nm. (H-J) another case shows the 

reversible structural change induced by the changing of gas environment at 700 °C, from oxygen 

(H, 0.001 mbar) to water vapor (I, 3 mbar), and revert to oxygen (J, 0.001 mbar). The scale bar 10 

indicates 2 nm. 

We synthesized TiO2 nanocrystals with exposed {001} facets by a hydrothermal route (see 

supplementary materials) (18, 19). The nanocrystals were heated in oxygen in situ (~10-3 mbar) at 

500 to 700 °C to trigger the reconstruction. The reconstructed structures remained stable in this 

temperature range, in accord with recent studies in ETEM (15, 16, 20). During the ETEM 15 

experiments, we used a constant electron beam dose with a small value (< 1 A/cm2), and no 
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appreciable irradiation damage was observed on TiO2 surface (21). After heating at 700 °C for ~10 

mins, the reconstructed TiO2 (1×4)-(001) surface of an ad-molecule (ADM) configuration was 

obtained, as confirmed by the ETEM image (Fig. 1D) where the protruding black dots represent 

the Ti4c rows. The ADM structure did not show appreciable change after ~16 mins of intermittent 

TEM observation.  5 

The O2 gas was then evacuated and H2O vapor (Fig. S1) was introduced at the same temperature. 

When the H2O pressure was raised to 1 mbar, two additional small protrusions were observed at 

the top of the Ti4c rows (Fig. 1F). This twin-protrusion structure became more resolved for a H2O 

pressure to 2.5 mbar due to a higher water coverage (Fig. 1G and Movie S1). At both pressures, 

the twin-protrusion structure kept visible during the TEM observation. When the background 10 

environment was changed from H2O to O2 or vacuum, the twin-protrusion structure disappeared 

(Fig. 1, H and J; Fig. S2). If we kept the electron beam off after acquiring Fig. 1H and then 

introduced H2O, a snapshot (Fig. 1I) obtained ~ 5 mins later still showed twin-protrusion structure, 

which excludes the effect of electron beam in its formation. We also excluded the defocus effect 

of TEM imaging in different gas environments (Figs. S3-S5). Because there was no other structural 15 

change of the TiO2 surface, we attributed the twin protrusions to an adsorbed water species.  

We performed in situ Fourier transform infrared spectroscopy (FTIR) to characterize the surface 

adsorption species. We heated the TiO2 crystals to 500 °C in vacuum to obtain the (1×4)-(001) 

surface. Under these conditions, no obvious valley was observed in the hydroxyl region (blue line 

in Fig. 2A). Water vapor (5 mbar) was introduced into the in situ FTIR reactor to mimic the in situ 20 

TEM experimental condition. ~20 minutes later, we started to acquire spectrum and observed two 

valleys at hydroxyl region at 3717 and 3663 cm-1. We assigned both features to the adsorbed 

species on the Ti4c rows (22, 23) because previous studies show that the water molecules only 
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chemically adsorb at the Ti4c ridges on the (1×4)-(001) surface (24). It indicates that the twin-

protrusion structure observed in the ETEM experiments (also at 500 oC, refer to Fig. S6) was 

composed of two different hydroxyl species. 

 

Figure 2. (A)  In situ FTIR spectra of hydroxyl region are shown for TiO2 in the presence of water 5 

vapor (5 mbar; 500 °C) and vacuum (10-6 mbar; 500 °C). (B to D) Atomic structure of the adsorbed 

H2O species on the TiO3 rows verified by theoretical calculations, viewed from [010] direction (B). 

[100] direction (C), and [00-1] direction (D) (gray, Ti; red, O; cyan, H).  

 

We used density functional theory (DFT) to examine the different adsorbed water structures on 10 

the (1×4)-(001) surface (Fig. S7, Fig. S8 and Appendix S1). At low coverage, one dissociative 

H2O adsorbs stably at the Ti4c site by transforming the H atom to the adjacent O2c atom and 

cleaving the Ti4c-O2c bond. With increasing coverage, the stability of dissociatively adsorbed H2O 

structure decreases because of the increased stress in the reconstructed substrate, which agrees 

recently reported results (25). Instead, the relative stability of the structure with two symmetric 15 
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protrusions (each is an OH-H2O group (Figs. 2, B to D) increases because it does not induce 

additional stress at higher coverages (Fig. S9). It has comparable adsorption energy per H2O with 

the dissociatively adsorbed H2O at 1/2 coverage. The stability of this twin-protrusion structure 

becomes compelling when the coverage reaches 1, which corresponds to the experimental 

condition as calculated by combining the adsorption energy with the thermodynamic adsorption 5 

isotherm (26, 27). Based on this atomic structure, a simulated HRTEM image (Fig. S10B) was 

generated that agreed with the ETEM image (Fig. S10A), and the calculated vibration frequencies 

of the twin-protrusion at 3695 and 3652 cm-1, respectively, were in good consistence with the in 

situ FTIR results. 

 10 

Figure 3. (A) Sequential ETEM images show the dynamic structural evolution of (1×4)-(001) 

surface under the mixed gas environment (CO and H2O vapor; 1:1; gas pressure: 5 mbar; 

temperature 700 °C), viewed from [010] direction. The scale bar indicates 2 nm. (B) The enlarged 

ETEM images show the dynamic structural evolution of the Ti row marked by the dotted rectangle 

of (A). The scale bar indicates 0.5 nm. (C) Intensity profiles along the lines crossed the Ti rows of 15 

(B). The blue arrows point to the intensity valleys corresponding to the “twin-protrusions.” 
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Because TiO2 can catalyze the water-gas-shift (WGS) reaction (H2O + CO  H2 + CO2) at 

elevated temperatures (28, 29), we studied this reaction by introducing CO into the ETEM column.  

The gas environment was changed from the pure water vapor (2.5 mbar) to a mixed gas 

environment (CO and H2O vapor; 1:1; pressure: 5 mbar). Under these conditions, the twin-5 

protrusion structure became unstable (Fig. 3A, Movie S2). Its contrast changed dynamically. Most 

of the time it was blurred but would occasionally clear (Fig. 3B), with no substantial contrast 

change observed in TiO2 bulk and in other surface areas. For example in one case, initially the 

twin-protrusion was clearly seen [Fig. 3B(1)], almost disappeared after 2.2 s [Fig. 3B(2)], and then 

reappeared at 4 s [Fig. 3B(3)]. The disappearance and reappearances occurred again at 5.8 s [Fig. 10 

3B(4)] and 7.8 s [Fig. 3B(5)], respectively. The contrast change of the twin-protrusions was also 

evidenced by the intensity profiles across the protruding row (Fig. 3C). Similar cases are shown in 

Fig. S11 and Movie S3. In a pure water vapor environment, the twin-protrusions did not show such 

contrast changes (Fig. S12 and Movie S1), which excludes electron beam effects for the 

disappearance and reappearances.  15 

Thus, the dynamic change of twin-protrusions under mixture gas environments suggests the 

adsorbed hydroxyls were reacting with CO molecules, which directly shows that the Ti4c sites are 

the reaction sites. In addition, because the net free energy change of this reaction is negative (-3.76 

kJ mol-1 under the experimental condition) and the known conversion temperatures are generally 

lower than 700 °C (28, 29), it is reasonable to conclude that the observed reaction was not induced 20 

by the election-beam. The reaction pathway of the twin-protrusion adsorbed H2O species with CO 

molecules was calculated by DFT (Fig. S13). During the reaction, the H2O species of the twin-

protrusion are consumed by CO gas and supplemented by H2O vapor repeatedly, which relates to 
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the dynamic contrast change observed in experiments. In the reaction cycle (Fig. S13), the two 

largest energy barriers come from H2O dissociation of the twin-protrusion (0.48 eV) and single-

OH-H2O (0.57 eV) structures, which makes them two relatively stable structures in the reaction 

with relatively long lifetimes. Thus, a changing mixture of single-OH-H2O and twin-protrusion 

structures were imaged in TEM. The contrast of the twin-protrusions would occasionally clear 5 

when they were the majority on one of the active rows [Figs. 3B(2) and 3B(4)]. Most of the time, 

the contrast is blurred because of the interference between the two structures [Figs. 3B(1), 3B(3) 

and 3B(5)]. The single-OH-H2O structure was not obvious in TEM, as shown by the simulated 

image (Fig. S14). 

By visualizing and monitoring the adsorbed water species on the ridge of the (1×4)-(001) TiO2 10 

surface, we confirmed directly the Ti4c atoms on the ridge are active sites for H2O dissociation and 

reaction. The direct TEM visualization revealed an adsorbed water structure on the TiO2 surface 

with a twin-protrusion feature. This work demonstrates that the in situ ETEM can be used to 

monitor a catalytic process taking place at highly ordered active sites. 

 15 
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