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ABSTRACT

We study the problem of visualizing large-scale and high-
dimensional data in a low-dimensional (typically 2D or 3D)
space. Much success has been reported recently by tech-
niques that first compute a similarity structure of the data
points and then project them into a low-dimensional space
with the structure preserved. These two steps suffer from
considerable computational costs, preventing the state-of-
the-art methods such as the t-SNE from scaling to large-
scale and high-dimensional data (e.g., millions of data points
and hundreds of dimensions). We propose the LargeVis, a
technique that first constructs an accurately approximated
K-nearest neighbor graph from the data and then layouts
the graph in the low-dimensional space. Comparing to t-
SNE, LargeVis significantly reduces the computational cost
of the graph construction step and employs a principled
probabilistic model for the visualization step, the objective
of which can be effectively optimized through asynchronous
stochastic gradient descent with a linear time complexity.
The whole procedure thus easily scales to millions of high-
dimensional data points. Experimental results on real-world
data sets demonstrate that the LargeVis outperforms the
state-of-the-art methods in both efficiency and effectiveness.
The hyper-parameters of LargeVis are also much more sta-
ble over different data sets.
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1. INTRODUCTION
We now live in the era of the big data. Understanding and

mining large-scale data sets have created big opportunities
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for business providers, data scientists, governments, educa-
tors, and healthcare practitioners. Many computational in-
frastructures, algorithms, and tools are being constructed for
the users to manage, explore, and analyze their data sets.
Information visualization has been playing a critical role in
this pipeline, which facilitates the description, exploration,
and sense-making from both the original data and the analy-
sis results [16]. Classical visualization techniques have been
proved effective for small or intermediate size data; they
however face a big challenge when applied to the big data.
For example, visualizations such as scatter plots, heatmaps,
and network diagrams all require laying out data points on a
2D or 3D space, which becomes computationally intractable
when there are too many data points and when the data
have many dimensions. Indeed, while there exist numer-
ous network diagrams with thousands of nodes, a visualiza-
tion of millions of nodes is rare, even if such a visualization
would easily reveal node centrality and community struc-
tures. In general, the problem is concerned with finding an
extremely low-dimensional (e.g., 2D or 3D) representation of
large-scale and high-dimensional data, which has attracted
a lot of attentions recently in both the data mining com-
munity [25, 2, 27] and the infoviz community [11, 14, 17].
Compared to the high-dimensional representations, the 2D
or 3D layouts not only demonstrate the intrinsic structure
of the data intuitively and can also be used as the basis to
build many advanced and interactive visualizations.

Projecting high-dimensional data into spaces with fewer
dimensions is a core problem of machine learning and data
mining. The essential idea is to preserve the intrinsic struc-
ture of the high-dimensional data, i.e., keeping similar data
points close and dissimilar data points far apart, in the
low-dimensional space. In literature, many dimensionality
reduction techniques have been proposed, including both
linear mapping methods (e.g., Principle Component Analy-
sis [15], multidimensional scaling [25]) and non-linear map-
ping methods (e.g., Isomap [24], Locally Linear Embed-
ding [20], Laplacian Eigenmaps [2]). As most high-dimensional
data usually lie on or near a low-dimensional non-linear man-
ifold, the performance of linear mapping approaches is usu-
ally not satisfactory [27]. For non-linear methods such as
the Laplacian Eigenmaps, although empirically effective on
small, laboratory data sets, they generally do not perform
well on high-dimensional, real data as they are typically not
able to preserve both the local and the global structures of
the high-dimensional data. Maaten and Hinton proposed
the t-SNE technique [27], which captures both the local and
the global structures. Maaten further proposed an accel-



Figure 1: A typical pipeline of data visualization by first constructing a K-nearest neighbor graph and then projecting the
graph into a low-dimensional space.

eration technique [26] for the t-SNE by first constructing
a K-nearest neighbor (KNN) graph of the data points and
then projecting the graph into low-dimensional spaces with
tree-based algorithms. T-SNE and its variants, which rep-
resent a family of methods that first construct a similarity
structure from the data and then project the structure into
a 2D/3D space (see Figure 1), have been widely adopted re-
cently due to the ability to handle real-world data and the
good quality of visualizations.

Despite their successes, when applied to data with millions
of points and hundreds of dimensions, the t-SNE techniques
are still far from satisfaction. The reasons are three-fold:
(1) the construction of the K-nearest neighbor graph is a
computational bottleneck for dealing with large-scale and
high-dimensional data. T-SNE constructs the graph using
the technique of vantage-point trees [28], the performance
of which significantly deteriorates when the dimensionality
of the data grows high; (2) the efficiency of the graph vi-
sualization step significantly deteriorates when the size of
the data becomes large; (3) the parameters of the t-SNE
are very sensitive on different data sets. To generate a good
visualization, one has to search for the optimal parameters
exhaustively, which is very time consuming on large data
sets. It is still a long shot of the community to create high
quality visualizations that scales to both the size and the
dimensionality of the data.

We report a significant progress on this direction through
the LargeVis, a new visualization technique that computes
the layout of large-scale and high-dimensional data. The
LargeVis employs a very efficient algorithm to construct an
approximate K-nearest neighbor graph at a high accuracy,
which builds on top of but significantly improves a state-of-
the-art approach to KNN graph construction, the random
projection trees [7]. We then propose a principled probabilis-
tic approach to visualizing the K-nearest neighbor graph,
which models both the observed links and the unobserved
(i.e., negative) links in the graph. The model preserves the
structures of the graph in the low-dimensional space, keep-
ing similar data points close and dissimilar data points far
away from each other. The corresponding objective func-
tion can be optimized through the asynchronous stochastic
gradient descent, which scales linearly to the data size N .
Comparing to the one used by the t-SNE, the optimization
process of LargeVis is much more efficient and also more ef-
fective. Besides, on different data sets the parameters of the
LargeVis are much more stable.

We conduct extensive experiments on real-world, large-
scale and high-dimensional data sets, including text (words

and documents), images, and networks. Experimental re-
sults show that our proposed algorithm for constructing
the approximate K-nearest neighbor graph significantly out-
performs the vantage-point tree algorithm used in the t-
SNE and other state-of-the-art methods. LargeVis gener-
ates comparable graph visualizations to the t-SNE on small
data sets and more intuitive visualizations on large data sets;
it is much more efficient when data becomes large; the pa-
rameters are not sensitive to different data sets. On a set
of three million data points with one hundred dimensions,
LargeVis is up to thirty times faster at graph construction
and seven times faster at graph visualization. LargeVis only
takes a couple of hours to visualize millions of data points
with hundreds of dimensions on a single machine.

To summarize, we make the following contributions:

• We propose a new visualization technique which is able
to compute the layout of millions of data points with
hundreds of dimensions efficiently.

• We propose a very efficient algorithm to construct an
approximate K-nearest neighbor graph from large-scale,
high-dimensional data.

• We propose a principled probabilistic model for graph
visualization. The objective function of the model can
be effectively optimized through asynchronous stochas-
tic gradient descent with a time complexity of O(N).

• We conduct experiments on real-world, very large data
sets and compare the performance of LargeVis and t-
SNE, both quantitatively and visually.

2. RELATED WORK
To the best of our knowledge, very few visualization tech-

niques can efficiently layout millions of high-dimensional data
points meaningfully on a 2D space. Instead, most visualiza-
tions of large data sets have to first layout a summary or a
coarse aggregation of the data and then refine a subset of
the data (a region of the visualization) if the user zooms in
[5]. Admittedly, there are other design factors besides the
computational capability, for example the aggregated data
may be more intuitive and more robust to noises. However,
with a layout of the entire data set as basis, the effectiveness
of these aggregated/approximate visualizations will only be
improved. Many visualization tools are designed to layout
geographical data, sensor data, and network data. These
tools typically cannot handle high-dimensional data.

Many recent successes of visualizing high-dimensional data
come from the machine learning community. Methods like



the t-SNE first compute a K-nearest-neighbor graph and
then visualizes this graph in a 2D/3D space. Our work fol-
lows this direction and makes significant progress.

2.1 K-nearest Neighbor Graph Construction
Constructing K-nearest neighbor (KNN) graphs from high-

dimensional data is critical to many applications such as sim-
ilarity search, collaborative filtering, manifold learning, and
network analysis. While the exact computation of a KNN
has a complexity of O(N2d) (with N being the number of
data points and d being the number of dimensions) which is
too costly, existing approaches use roughly three categories
of techniques: space-partitioning trees [3, 10, 21, 7], locality
sensitive hashing techniques [8, 6, 12], and neighbor explor-
ing techniques [9]. The space-partitioning methods divide
the entire space into different regions and organize the re-
gions into different tree structures, e.g., k-d trees [3, 10], vp-
trees [28], cover trees [4], and random projection trees [7].
Once the trees are constructed, the nearest neighbors of each
data point can be found through traversing the trees. The lo-
cality sensitive hashing [8] techniques deploy multiple hash-
ing functions to map the data points into different buckets
and data points in the same buckets are likely to be similar
to each other. The neighbor exploring techniques, such as
the NN-Descent [9], is built on top of the intuition that “my
neighbors’ neighbors are likely to be my neighbors.” Start-
ing from an initial nearest-neighbor graph, the algorithm
iteratively refines the graph by exploring the neighbors of
neighbors defined according to the current graph.

The above approaches work efficiently on different types
of data sets. The k-d trees, vp-trees, or cover-trees have
been proved to very efficient on data with a small num-
ber of dimensions. However, the performance significantly
deteriorates when the dimensionality of the data becomes
large (e.g., hundreds). The NN-descent approach is also
usually efficient for data sets with a small number of dimen-
sions [9]. A comparison of these techniques can be found at
https://github.com/erikbern/ann-benchmarks. The ran-
dom projection trees have demonstrated state-of-the-art per-
formance in constructing very accurate K-nearest neighbor
graphs from high-dimensional data. However, the high ac-
curacy is at the expense of efficiency, as to achieve a higher
accuracy many more trees have to be created. Our proposed
technique is built upon random projection trees but signifi-
cantly improves it using the idea of neighbor exploring. The
accuracy of a KNN graph quickly improves to almost 100%
without investing in many trees.

2.2 Graph Visualization
The problem of graph visualization is related to dimen-

sionality reduction, which includes two major types of ap-
proaches: linear transformations and non-linear transforma-
tions. When projecting the data to extremely low-dimensional
spaces (e.g., 2D), the linear methods such as the Princi-
ple Component Analysis [15] and the multidimensional scal-
ing [25] usually do not work as effectively as the non-linear
methods as most high-dimensional data usually lies on or
near low-dimensional non-linear manifolds. The non-linear
methods such as Isomap [24], local linear embedding (LLE) [20],
Laplacian Eigenmaps [2] are very effective on laboratory
data sets but do not perform really well on real-world high-
dimensional data. Maaten and Hinton proposed the t-SNE [27],
which is very effective on real-world data. None of these

methods scales to millions of data points. Maaten improved
the efficiency of t-SNE through two tree based algorithms
[26], which scale better to large graphs. The optimization
of the t-SNE requires the fully batch gradient descent learn-
ing, the time complexity of which w.r.t the data size N is
O(N logN). LargeVis can be naturally optimized through
asynchronous stochastic gradient descent, with a complex-
ity of O(N). Besides, the parameters of t-SNE are very
sensitive on different sets while the parameters of LargeVis
remain very stable.

There are many algorithms developed in the information
visualization community to compute the layout of nodes in a
network. They can also be used to visualize the KNN graph.
The majority of these network layout methods use either
the abovementioned dimensionality reduction techniques or
force-directed simulations. Among them, force-directed lay-
outs generates better visualizations, but their high computa-
tional complexity (ranging from O(N3) to O(N log2 N) with
N being the number of nodes [22]) has prevented them from
being applied to millions of nodes.

Among them, the classical Fruchterman-Reingo algorithm
[11] and the original ForceAtlas algorithm provided in Gephi
[1] have a complexity of O(N2). An improved version of
ForceAtlas called the ForceAtlas2 [14] and the newly devel-
oped Openord algorithm [17] reduce the time complexity to
O(N logN). These two algorithms have been used to visu-
alize one million data points 1, but the complexity prevents
them from scaling up further.

The LargeVis is also related to our previous work on net-
work/graph embedding, the LINE model [23]. LINE and
other related methods (e.g., Skipgram [18]) are not designed
for visualization purposes. Using them directly to learn 2/3-
dimensional representations of data may yield ineffective vi-
sualization results. However, these methods can be used as
a preprocessor of the data for the visualization (e.g., use
LINE or Skipgram to learn 100 dimensional representations
of the data and then use LargeVis to visualize them).

3. LARGEVIS
In this section, we introduce the new visualization tech-

nique LargeVis. Formally, given a large-scale and high-
dimensional data set X = {~xi ∈ Rd}i=1,2,...,N , our goal
is to represent each data point ~xi with a low-dimensional
vector ~yi ∈ Rs, where s is typically 2 or 3. The basic idea
of visualizing high-dimensional data is to preserve the in-
trinsic structure of the data in the low-dimensional space.
Existing approaches usually first compute the similarities
of all pairs of {~xi, ~xj} and then preserve the similarities
in the low-dimensional transformation. As computing the
pairwise similarities is too expensive (i.e., O(N2d)), recent
approaches like the t-SNE construct a K-nearest neighbor
graph instead and then project the graph into the 2D space.
LargeVis follows this procedure, but uses a very efficient
algorithm for K-nearest neighbor graph construction and a
principled probabilistic model for graph visualization. Next,
we introduce the two components respectively.

3.1 Efficient KNN Graph Construction
A K-nearest neighbor graph requires a metric of distance.

We use the Euclidean distance ||~xi− ~xj || in the high-dimensional
space, the same as the one used by t-SNE. Given a set of

1http://sebastien.pro/gephi-esnam.pdf
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high-dimensional data points {~xi}i=1,...,N , in which ~xi ∈ Rd,
constructing the exact KNN graph takes O(N2d) time - too
costly. Various indexing techniques have been proposed to
approximate the KNN graph (see Section 2).

Among these techniques, the random projection trees have
been proved to be very efficient for nearest-neighbor search
in high-dimensional data. The algorithm starts by partition-
ing the entire space and building up a tree. Specifically, for
every non-leaf node of the tree, the algorithm selects a ran-
dom hyperplane to split the subspace corresponding to the
non-leaf node into two, which become the children of that
node. The hyperplane is selected through randomly sam-
pling two points from the current subspace and then taking
the hyperplane equally distant to the two points. This pro-
cess continues until the number of nodes in the subspace
reaches a threshold. Once a random projection tree is con-
structed, every data point can traverse the tree to find a
corresponding leaf node. The points in the subspace of that
leaf node will be treated as the candidates of the nearest
neighbors of the input data point. In practice multiple trees
can be built to improve the accuracy of the nearest neigh-
bors. Once the nearest neighbors of all the data points are
found, the K-nearest neighbor graph is built.

However, constructing a very accurate KNN graph re-
quires many trees to be built, which significantly hurts the
efficiency. This dilemma has been a bottleneck of applying
random projection trees to visualization. In this paper we
propose a new solution: instead of building a large num-
ber of trees to obtain a highly accurate KNN graph, we use
neighbor exploring techniques to improve the accuracy of a
less accurate graph. The basic idea is that“a neighbor of my
neighbor is also likely to be my neighbor” [9]. Specifically,
we build a few random projection trees to construct an ap-
proximate K-nearest neighbor graph, the accuracy of which
may be not so high. Then for each node of the graph, we
search the neighbors of its neighbors, which are also likely to
be candidates of its nearest neighbors. We may repeat this
for multiple iterations to improve the accuracy of the graph.
In practice, we find that only a few iterations are sufficient
to improve the accuracy of the KNN graph to almost 100%.

For the weights of the edges in the K-nearest neighbor
graph, we use the same approach as t-SNE. The conditional
probability from data ~xi to ~xj is first calculated as:

pj|i =
exp(−||~xi − ~xj ||

2/2σ2
i )

∑

(i,k)∈E
exp(−||~xi − ~xk||2/2σ2

i )
, and

pi|i = 0,

(1)

where the parameter σi is chosen by setting the perplexity
of the conditional distribution p·|i equal to a perplexity u.
Then the graph is symmetrized through setting the weight
between ~xi and ~xj as:

wij =
pj|i + pi|j

2N
. (2)

The complete procedure is summarized in Algo. 1.

3.2 A Probabilistic Model for Graph Visual-
ization

Once the KNN graph is constructed, to visualize the data
we just need to project the nodes of the graph into a 2D/3D
space. We introduce a principled probabilistic model for
this purpose. The idea is to preserve the similarities of the
vertices in the low-dimensional space. In other words, we

Algorithm 1: Graph Construction

Data: {~xi}i=1,...,N , number of trees NT , number of neighbors
K, number of iterations Iter.

Result: Approximate K-nearest neighbor graph G.
1. Build NT random projection trees on {~xi}i=1,...,N ;
2. Search nearest neighbors:

for each node i in parallel do

Search the random projection trees for i’s K nearest
neighbors, store the results in knn(i);

end

3. Neighbor exploring:
while T < Iter do

Set old knn() = knn(), clear knn();
for each node i in parallel do

Create max heap Hi;
for j ∈ old knn(i) do

for l ∈ old knn(j) do

Calculate dist(i, l) = ||~xi − ~xl||;
Push l with dist(i, l) into Hi;
Pop if Hi has more than K nodes;

end

end

Put nodes in Hi into knn(i);

end

T++;

end

for each node i and each j ∈ knn(i) do

Add edge (i, j) into graph G;
end

4. Calculate the weights of the edges according to Eqn. 1, 2.

want to keep similar vertices close to each other and dissim-
ilar vertices far apart in the low-dimensional space. Given
a pair of vertices (vi, vj), we first define the probability of
observing a binary edge eij = 1 between vi and vj as follows:

P (eij = 1) = f(||~yi − ~yj ||), (3)

where ~yi is the embedding of vertex vi in the low-dimensional
space, f(·) is a probabilistic function w.r.t the distance of
vertex yi and yj , i.e., ||~yi − ~yj ||. When yi is close to yj in
the low-dimensional space (i.e., ||~yi − ~yj || is small), there is
a large probability of observing a binary edge between the
two vertices. In reality, many probabilistic functions can be
used such as f(x) = 1

1+ax2 or f(x) = 1
1+exp(x2)

. We compare

different probabilistic functions in Section 4.
Eqn. (3) only defines the probability of observing a binary

edge between a pair of vertices. To further extend it to
general weighted edges, we define the likelihood of observing
a weighted edge eij = wij as follows:

P (eij = wij) = P (eij = 1)wij . (4)

With the above definition, given a weighted graph G =
(V,E), the likelihood of the graph can be calculated as:

O =
∏

(i,j)∈E

p(eij = 1)wij
∏

(i,j)∈Ē

(1− p(eij = 1))γ

∝
∑

(i,j)∈E

wij log p(eij = 1) +
∑

(i,j)∈Ē

γ log(1− p(eij = 1)),

(5)
in which Ē is the set of vertex pairs that are not observed and
γ is an unified weight assigned to the negative edges. The
first part of Eqn. (5) models the likelihood of the observed
edges, and by maximizing this part similar data points will
keep close together in the low-dimensional space; the second
part models the likelihood of all the vertex pairs without
edges, i.e., negative edges. By maximizing this part, dissim-



ilar data will be far away from each other. By maximizing
the objective (5), both goals can be achieved.
Optimization. Directly maximizing Eqn. (5) is compu-
tationally expensive, as the number of negative edges is
quadratic to the number of nodes. Inspired by the negative
sampling techniques [18], instead of using all the negative
edges, we randomly sample some negative edges for model
optimization. For each vertex i, we randomly sample some
vertices j according to a noisy distribution Pn(j) and treat
(i, j) as the negative edges. We used the noisy distribution
in [18]: Pn(j) ∝ d0.75j , in which dj is the degree of vertex
j. Letting M be the number of negative samples for each
positive edge, the objective function can be redefined as:

O =
∑

(i,j)∈E

wij

(

log p(eij = 1) +

M
∑

k=1

Ejk∼Pn(j)γ log(1− p(eijk = 1))
)

. (6)

A straightforward approach to optimize Eqn. (6) is stochas-
tic gradient descent, which is problematic however. This is
because when sampling an edge (i, j) for model updating,
the weight of the edge wij will be multiplied into the gradi-
ent. When the values of the weights diverge (e.g., ranging
from 1 to thousands), the norms of the gradient also diverge,
in which case it is very difficult to choose an appropriate
learning rate. We adopt the approach of edge sampling pro-
posed in our previous paper [23]. We randomly sample the
edges with the probability proportional to their weights and
then treat the sampled edges as binary edges. With this
edge sampling technique, the objective function remains the
same and the learning process will not be affected by the
variance of the weights of the edges.

To further accelerate the training process, we adopt the
asynchronous stochastic gradient descent, which is very ef-
ficient and effective on sparse graphs [19]. The reason is
that when different threads sample different edges for model
updating, as the graph is very sparse, the vertices of the
sampled edges in different threads seldom overlap, i.e., the
embeddings of the vertices or the model parameters usually
do not conflict across different threads.

For the time complexity of the optimization, each stochas-
tic gradient step takes O(sM), where M is the number of
negative samples and s is the dimension of low-dimensional
space (e.g., 2 or 3). In practice, the number of stochastic
gradient steps is typically proportional to the number of ver-
tices N . Therefore, the overall time complexity is O(sMN),
which is linear to the number of nodes N .

4. EXPERIMENTS
We evaluate the efficiency and effectiveness of the LargeVis

both quantitatively and qualitatively. In particular, we sep-
arately evaluate the performance of the proposed algorithms
for constructing the KNN graph and visualizing the graph.

4.1 Data Sets
We select multiple large-scale and high-dimensional data

sets of various types including text (words and documents),
images, and networks including the following:

• 20NG: the widely used text mining data set 20news-
groups2. We treat each article as a data point.

2Available at http://qwone.com/~jason/20Newsgroups/

Table 1: Statistics of the data sets.

Data Set # data # dimension # categories
20NG 18,846 100 20
MNIST 70,000 784 10

WikiWord 836,756 100 -
WikiDoc 2,837,395 100 1,000
CSAuthor 1,854,295 100 -
DBLPPaper 1,345,560 100 -
LiveJournal 3,997,963 100 5,000

• MNIST: the handwritten digits data set3. Each image
is treated as a data point.

• WikiWord: the vocabulary in the Wikipedia articles4

(words with frequency less than 15 are removed). Each
word is a data point.

• WikiDoc: the entire set of English Wikipedia articles
(articles containing less than 1000 words are removed).
Each article is a data point. We label the articles with
the top 1,000 Wikipedia categories and label all the
other articles with a special category named “others.”

• CSAuthor: the co-authorship network in the computer
science domain, collected fromMicrosoft Academic Search.
Each author is a data point.

• DBLPPaper: the heterogeneous networks of authors,
papers, and conferences in the DBLP data5. Each pa-
per is a data point.

• LiveJournal: the LiveJournal social network6. Every
node is labeled with the communities it belongs to, if it
is one of the most popular 5,000 communities, or with
a special category named “others.”

Note that although the original data sets all come with
variety numbers of dimensions (e.g., size of the vocabulary
for text documents), for comparison purposes we represent
them with a fixed number of dimensions (e.g., 100) before
applying any visualization techniques. This step is not re-
quired for LargeVis in practice, but learning an intermediate
representation of the data can improve (e.g., smooth) the
similarity structure of the original data. There are quite a
few efficient embedding learning techniques (such as Skip-
gram [18] and LINE [23]), the computational cost of which
will not be a burden of the visualization. Specifically, the
representations of nodes in network data are learned through
the LINE; the representations of words are learned through
the LINE using a simple co-occurrence network; and the rep-
resentations of documents are simply taken as the averaged
vectors of the words in the documents. The vector represen-
tation of the image data is already provided from the source,
so we do not further learn a new embedding.

We summarize the statistics of the above data sets in Ta-
ble 1. Next, we report the results of KNN graph construc-
tion and graph visualization respectively. All the following
results are executed on a machine with 512GB memory, 32
cores at 2.13GHz. When multiple threads are used, the num-
ber of threads is always 32. For visualization purposes, in
all the experiments, we learn a 2D layout of the data.

3Available at http://yann.lecun.com/exdb/mnist/
4https://en.wikipedia.org/wiki/Wikipedia:Database_
download
5Available at http://dblp.uni-trier.de/xml/
6Available at https://snap.stanford.edu/data/

http://qwone.com/~jason/20Newsgroups/
http://yann.lecun.com/exdb/mnist/
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://dblp.uni-trier.de/xml/
https://snap.stanford.edu/data/
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Figure 2: Running time v.s. Accuracy of KNN graph construction. The lower right corner indicates optimal performance.
LargeVis outperforms the vantage-point tree and other state-of-the-art methods.

4.2 Results on KNN Graph Construction
We first compare the performance of different algorithms

for K-nearest neighbor graph construction, including:

• Random Projection Trees [7]. We use the implementa-
tion of random projection trees in the Annoy7 system.

• Vantage-point trees [28]. This is the approach used by
the t-SNE.

• NN-Descent [9]. This is a representative neighbor ex-
ploring technique.

• LargeVis. Our proposed technique by improving ran-
dom projection trees with neighbor exploration.

Fig. 2 compares the performance of different algorithms
for KNN graph construction. The number of neighbors for
each data point is set as 150. For each algorithm, we try
different values of its parameters, resulting in a curve of run-
ning time over accuracy (i.e., the percentage of data points
that are truly K-nearest neighbors of a node). Some results
of the vantage-point trees could not be shown as the values
are too large. For LargeVis, only one iteration of neigh-
bor exploring is conducted. Overall, the proposed graph
construction algorithm consistently achieves the best perfor-
mance (the shortest running time at the highest accuracy)
on all the four data sets, and the vantage-point trees per-
form the worst. On the WikiDoc data set, which contains
around 3 million data points, our algorithm takes only 25
minutes to achieve 95% accuracy while vantage-point trees
take 16 hours, which is 37 times slower. Compared to the
original random projection trees, the efficiency gain is also
salient. On some data sets, e.g., LiveJournal and CSAuthor,
it is very costly to construct a KNN graph at a 90% accu-
racy through random projection trees. However, with the
neighbor exploring techniques, the accuracy of the graph
significantly improves to near perfection.

How many iterations of neighbor exploring are required
for LargeVis to achieve a good accuracy? Fig. 3 presents the
results of the accuracy of KNN Graph w.r.t the number of
iterations of neighbor exploring. We initialize KNN graphs
with different levels of accuracy, constructed with different
numbers of random projection trees. Neighbor exploring is
very effective. On WikiDoc, the accuracy of the approxi-
mate KNN graph improves from 0.4 to almost 1 with only
one iteration of neighbor exploring. On LiveJounal, at most
three iterations are needed to achieve a very high accuracy,

7https://github.com/spotify/annoy
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Figure 3: Accuracy of KNN Graph w.r.t number of itera-
tions of neighbor exploring in LargeVis. Curves correspond
to initializing KNN Graphs at different levels of accuracy.

even if starting from a very inaccurate KNN graph. Similar
results are also observed in other data sets.

Our proposed algorithm for KNN graph construction is
very efficient, easily scaling to millions of data points with
hundreds of dimensions. This solves the computational bot-
tleneck of many data visualization techniques. Next, we
compare algorithms that visualize the KNN graphs. All vi-
sualization algorithms use the same KNN graphs constructed
by LargeVis as input, setting the perplexity to 50 and the
number of neighbors for each data point to 150.

4.3 Graph Visualization
We compare the following graph visualization algorithms:

• Symmetric SNE [13]. The approach of symmetric stochas-
tic neighbor embedding. To scale it up for large graphs,
the Barnes-Hut algorithm [26] is used for acceleration.

• t-SNE [26]. The state-of-the-art approach for visual-
izing high-dimensional data, also accelerated through
the Barnes-Hut algorithm.

• LINE [23]. A large-scale network/graph embedding
method. Although not designed for visualization pur-
poses, we directly learn a 2-dimensional embedding.
First-order proximity [23] is used.

• LargeVis. Our proposed technique for graph visualiza-
tion introduced in Section 3.2.

Model Parameters and Settings. For the model param-
eters in SNE and t-SNE, we set θ = 0.5 and the number of it-
erations to 1, 000, which are suggested by [26]. For the learn-
ing rate of t-SNE, we find the performance is very sensitive



w.r.t. different values and the optimal values on different
data sets vary significantly. We report the results with the
default learning rate 200 and the optimal values respectively.
For both LINE and LargeVis, the size of mini-batches is set
as 1; the learning rate is set as ρt = ρ(1− t/T ), where T is
the total number of edge samples or mini-batches. Different
values of initial learning rate is used by LINE and LargeVis:
ρ0 = 0.025 in LINE and ρ0 = 1 in LargeVis. The number
of negative samples is set as 5 and γ is set as 7 by default.
The number of samples or mini-batches T can be set pro-
portional to the number of nodes. In practice, a reasonable
number of T for 1 million nodes is 10K million. The LINE
and LargeVis can be naturally parallelized through asyn-
chronously stochastic gradient descent. We also parallelize
Symmetric SNE and t-SNE by assigning different nodes into
different threads in each full batch gradient descent.
Evaluation. The evaluation of data visualization is usually
subjective. Here we borrow the approach adopted by the
t-SNE to evaluate the visualizations quantitatively [26]. We
use a KNN classifier to classify the data points based on
their low-dimensional representations. The intuition of this
evaluation methodology is that a good visualization should
be able to preserve the structure of the original data as much
as possible and hence yield a high classification accuracy
with the low-dimensional representations.

4.3.1 Comparing Different Probabilistic Functions
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Figure 4: Comparing different probabilistic functions.

We first compare different probabilistic functions in Eq. (3),
which define the probability of observing a binary edge be-
tween a pair of vertices based on the distance of their low-
dimensional representations. We compare functions f(x) =

1
1+ax2 and f(x) = 1

1+exp(−x2)
with various values of a. Fig. 4

presents the results on the WikiDoc and the LiveJournal
data sets. We can see among all probabilistic functions,
f(x) = 1

1+x2 achieves the best result. This probability func-
tion specifies a long-tailed distribution, therefore can also
solve the “crowding problem” according to [27]. In the fol-
lowing experiments, we always use f(x) = 1

1+x2 .

4.3.2 Results on Different Data Sets

We compare the efficiency and effectiveness of different
visualization algorithms. Fig. 5 compares the classification
accuracy with the K-nearest neighbor classifier by using the
low-dimensional representations as features. For the KNN
classifier, different numbers of neighbors are tried. For t-
SNE, both the results with default learning rate 200 and the
optimal learning rate tuned thorough exhaustively search
are reported. On the small data sets 20NG and MNIST,
which contain less than 100,000 data points, the default

learning rate of t-SNE yields optimal performance, which
is comparable to LargeVis. However, on the large data sets
WikiDoc and LiveJournal, which contain millions of data
points, the LargeVis is more effective or comparable to the
t-SNE with optimal learning rates, significantly outperform-
ing t-SNE with default learning rate. However, empirically
tuning the learning rate of t-SNE requires repeatedly train-
ing, which is very time consuming on the large data sets.
The optimal learning rates of t-SNE on different data sets
vary significantly. On the small data sets 20NG and MNIST,
the optimal learning rate is around 200, while on the large
data sets WikiDoc and LiveJournal, the optimal values be-
come as large as 3000. Comparing to t-SNE, the perfor-
mance of LargeVis is very stable w.r.t the learning rate, the
default value of which can be applied to various data sets
with different sizes. We also notice that the performance of
the LINE is very bad, showing that an embedding learning
method is not appropriate for data visualization as is.

Table 2 compares the running time of t-SNE and LargeVis
for graph visualization. On the small data sets 20NG and
MNIST, the two algorithms perform comparable to each
other. However, on the large data sets, the LargeVis is much
more efficient than the t-SNE. Specially, on the largest data
set LiveJournal, which contains 4 million data points, the
LargeVis is 6.6 times faster than the t-SNE.

4.3.3 Performance w.r.t. Data Size

We further compare the performance of the LargeVis and
t-SNE w.r.t the size of the data in terms of both effectiveness
and efficiency. Fig. 6 presents the results on the WikiDoc
and LiveJournal data sets. Different sizes of data sets are
obtained by randomly sampling different percentages of the
data. In Fig. 6(a) and 6(b), we can see that as the size
of the data increases, by using the default learning rates,
the performance of the LargeVis increases while the per-
formance of t-SNE decreases. By exhaustively tuning the
learning rates, the performance of t-SNE will be comparable
to LargeVis. However, this process is very time consuming,
especially on large-scale data sets. Fig. 6(c) and 6(d) show
that the LargeVis becomes more and more efficient than t-
SNE as the size of the data grows. This is because the time
complexity of graph visualization in t-SNE is O(N log(N))
while that of LargeVis is O(N).

4.3.4 Parameter Sensitivity

Finally, we investigate the sensitivity of the parameters
in the LargeVis including the number of negative samples
(M) and training samples (T). Fig. 7(a) shows the results
w.r.t the number of negative samples. When the number of
negative samples becomes large enough (e.g., 5), the perfor-
mance becomes very stable. For each data point, instead
of using all the negative edges, we just need to sample a
few negative edges according to a noisy distribution. An in-
teresting future direction is to design a more effective noisy
distribution for negative edge sampling. Fig. 7(b) presents
the results w.r.t the number of training samples. When the
number samples becomes large enough, the performance be-
comes very stable.

4.4 Visualization Examples
Finally, we show several visualization examples so that we

can intuitively evaluate the quality of LargeVis visualiza-
tions and compare the performance of t-SNE and LargeVis.
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Figure 5: Performance of classifying data points according to 2D representations using the K-nearest neighbor classifier.
Overall, the LargeVis is more effective or comparable to t-SNE with optimal learning rates, significantly outperforming t-SNE
with the recommended learning rate (1,000) on large data sets. The optimal learning rates of t-SNE vary significantly on
different data sets, ranging from around 200 (on 20NG and MNIST) to 2,500 (on WikiDoc) and 3,000 (on LiveJournal), which
are very expensive to search on large data sets. Even with the optimal parameters, t-SNE is inferior to LargeVis which simply
uses default parameters on all data sets.

Table 2: Comparison of running time (hours) in graph visualization between the t-SNE and LargeVis.

Algorithm 20NG MNIST WikiWord WikiDoc LiveJournal CSAuthor DBLPPaper
t-SNE 0.12 0.41 9.82 45.01 70.35 28.33 18.73

LargeVis 0.14 0.23 2.01 5.60 9.26 4.24 3.19
Speedup Rate 0 0.7 3.9 7 6.6 5.7 4.9
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Figure 6: Accuracy and running time of the LargeVis and t-SNE w.r.t the size of data. LargeVis is much more efficient than
t-SNE when the size of the data grows.
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Figure 7: Performance of LargeVis w.r.t the number of nega-
tive samples and training samples on WikiDoc. Performance
is not sensitive to the two parameters.

Fig. 8 and Fig. 9 present the visualizations. Different col-
ors correspond to different categories (20NG), or clusters
computed with K-means based on high-dimensional repre-
sentations (WikiWord, WikiDoc, CSAuthors and LiveJour-
nal). 200 clusters are used for all the four data sets. We can
see that on the smallest data set 20NG, the visualizations
generated by the t-SNE and LargeVis are both meaning-

ful and comparable to each other. On the large data sets
such as WikiDoc and LiveJournal, which contain at least
2.8 million data points, the visualizations generated by the
LargeVis look much more intuitive than the ones by t-SNE.

Fig. 10 shows a region of the visualization of DBLP pa-
pers generated by LargeVis. Each color corresponds to a
computer science conference. The visualization is very intu-
itive. The papers published at WWW are connected to the
papers of “WWW (Companion Volume),” corresponding to
its workshop and poster papers. The closest conference to
WWW is ICWSM, right to the north. This “Web” cluster
is close to SIGIR and ECIR on the west (the information
retrieval community), with three digital library conferences
close by. KDD papers locate to the east of WWW, and the
database conferences ICDE, SIGMOD, EDBT and VLDB
are clustered to the south of KDD. It is interesting to see
that the papers published at CIKM are split into three dif-
ferent parts, one between SIGIR and WWW, and two be-
tween KDD and ICDE, respectively. This clearly reflects the
three different tracks of the CIKM conference: information
retrieval, knowledge management, and databases.



(a) 20NG (t-SNE) (b) 20NG (LargeVis)

(c) WikiDoc (t-SNE) (d) WikiDoc (LargeVis)

(e) LiveJournal (t-SNE) (f) LiveJournal (LargeVis)

Figure 8: Visualizations of 20NG, WikiDoc, and LiveJournal by t-SNE and LargeVis. Different colors correspond to different
categories (20NG) or clusters learned by K-means according to high-dimensional representations.



(a) WikiWord (LargeVis) (b) CSAuthor (LargeVis)

Figure 9: Visualizations of WikiWord and CSAuthor by LargeVis. Colors correspond to clusters learned by K-means according
to high-dimensional representations.

Figure 10: Visualizing the papers in DBLP by LargeVis. Each color corresponds to a conference.

5. CONCLUSION
This paper presented a visualization technique called the

LargeVis which lays out large-scale and high-dimensional
data in a low-dimensional (2D or 3D) space. LargeVis eas-
ily scales up to millions of data points with hundreds of
dimensions. It first constructs a K-nearest neighbor graph
of the data points and then projects the graph into the low-
dimensional space. We proposed a very efficient algorithm
for constructing the approximate K-nearest neighbor graphs
and a principled probabilistic model for graph visualization,
the objective of which can be optimized effectively and ef-
ficiently. Experiments on real-world data sets show that
the LargeVis significantly outperforms the t-SNE in both
the graph construction and the graph visualization steps,

in terms of both efficiency, effectiveness, and the quality
of visualizations. In the future, we plan to use the low-
dimensional layouts generated by the LargeVis as the basis
for more advanced visualizations and generate many intu-
itive and meaning visualizations for high-dimensional data.
Another interesting direction is to handle data dynamically
changing over time.
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